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Despite being a well-established research method, the use of whole-genome
sequencing (WGS) for routine molecular typing and pathogen characterization remains
a substantial challenge due to the required bioinformatics resources and/or expertise.
Moreover, many national reference laboratories and centers, as well as other laboratories
working under a quality system, require extensive validation to demonstrate that
employed methods are “fit-for-purpose” and provide high-quality results. A harmonized
framework with guidelines for the validation of WGS workflows does currently, however,
not exist yet, despite several recent case studies highlighting the urgent need thereof.
We present a validation strategy focusing specifically on the exhaustive characterization
of the bioinformatics analysis of a WGS workflow designed to replace conventionally
employed molecular typing methods for microbial isolates in a representative small-
scale laboratory, using the pathogen Neisseria meningitidis as a proof-of-concept. We
adapted several classically employed performance metrics specifically toward three
different bioinformatics assays: resistance gene characterization (based on the ARG-
ANNOT, ResFinder, CARD, and NDARO databases), several commonly employed typing
schemas (including, among others, core genome multilocus sequence typing), and
serogroup determination. We analyzed a core validation dataset of 67 well-characterized
samples typed by means of classical genotypic and/or phenotypic methods that
were sequenced in-house, allowing to evaluate repeatability, reproducibility, accuracy,
precision, sensitivity, and specificity of the different bioinformatics assays. We also
analyzed an extended validation dataset composed of publicly available WGS data for
64 samples by comparing results of the different bioinformatics assays against results
obtained from commonly used bioinformatics tools. We demonstrate high performance,
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with values for all performance metrics >87%, >97%, and >90% for the resistance
gene characterization, sequence typing, and serogroup determination assays,
respectively, for both validation datasets. Our WGS workflow has been made publicly
available as a “push-button” pipeline for Illumina data at https://galaxy.sciensano.be
to showcase its implementation for non-profit and/or academic usage. Our validation
strategy can be adapted to other WGS workflows for other pathogens of interest and
demonstrates the added value and feasibility of employing WGS with the aim of being
integrated into routine use in an applied public health setting.

Keywords: Neisseria meningitidis, whole-genome sequencing, validation, public health, national reference center

INTRODUCTION

Whole-genome sequencing (WGS) has become a well-established
technique, spurred by the rapid development of different next-
generation sequencing (NGS) technologies, and ample case
studies have been published in recent years that demonstrate the
added value of WGS for surveillance monitoring and outbreak
cases for many microbial pathogens of interest in public health
(Mellmann et al., 2011; Kwong et al., 2015; Aanensen et al., 2016;
Charpentier et al., 2017; Harris et al., 2018). WGS offers the
potential to replace traditional molecular approaches for typing
of microbial pathogens because of several advantages: more cost-
efficient, less labor-intensive, faster, more information per sample
and at a higher resolution (Gilmour et al., 2013; Kwong et al.,
2015; Allard, 2016; Deurenberg et al., 2017). WGS for instance
enabled the development of novel typing methods such as core
genome multilocus sequence typing (cgMLST), which expands
the breadth of standard MLST by including several hundreds
of loci (Maiden et al., 2013). Additionally, the resolution up to
the nucleotide level enables pathogen comparison and clustering
with unprecedented precision (Carriço et al., 2013; Dallman
et al., 2015; Ronholm et al., 2016). A gap nevertheless still exists
between the acclaimed success and the everyday implementation
and usage of this technology in a public health setting, especially
for many national reference laboratories (NRLs) and centers
(NRCs) in smaller and/or less developed countries, which do not
always have access to the same resources that are available for
public health agencies in larger and/or more developed countries
that already routinely process large volumes of samples with NGS
technologies (WHO, 2018). In Europe, recent surveys in 2016 by
both the European Food Safety Authority (EFSA) (García Fierro
et al., 2018) and the European Centre for Disease Prevention
and Control (ECDC) (Revez et al., 2017) indicated that NGS
was being used in 17 out of 30 and 25 out 29 responding
constituents, respectively, and that large discrepancies existed
between different European countries in the advancement of
implementing this technology for different microbial pathogens
of interest, for which the lack of expertise and financial resources
were often quoted.

The data analysis bottleneck in particular represents a serious
obstacle because it typically consists out of a stepwise process
that is complex and cumbersome for non-experts. An overview
of data analysis tools that can be used for capacity building
was recently published by the ENGAGE consortium, which aims

to establish the NGS ability for genomic analysis in Europe
(Hendriksen et al., 2018). Many of these tools still require
substantial expertise because they are only available using the
command line on Linux, but a subset is also available as
web-based platforms with a user-friendly interface open to the
scientific community. For instance, an entire suite of tools for
pathogen characterization through WGS data has been made
available by the Center for Genomic Epidemiology1 hosted at
the Technical University of Denmark allowing, among others,
assembly, serotyping, virulence detection, plasmid replicon
detection, MLST, and phylogenetic clustering (Deng et al., 2016),
and is frequently used by the different enforcement laboratories
in Europe (García Fierro et al., 2018). PubMLST2 is another
popular web-based platform that maintains databases with
sequence typing information and schemas for a wide variety
of pathogens, and can be queried with WGS data (Jolley and
Maiden, 2010). Some resources have also been developed tailored
specifically toward certain pathogens, such as NeisseriaBase as
a platform for comparative genomics of Neisseria meningitidis
(Katz et al., 2011). While these resources are most definitely
useful, they do have some disadvantages. Several databases and
tools typically still need to be combined manually, whereas
an integrated approach encompassing all required analytical
steps is preferred for a public health laboratory (Lindsey et al.,
2016). In addition, a set of standardized tools and guidelines is
not defined yet, limiting the collaboration and reproducibility
between different NRCs and NRLs that all have their own way
of analyzing WGS data (Rossen et al., 2018). Many of these
resources are also lacking traceability. Database versions, and tool
parameters and versions, can be missing in the output or change
without notice, making it hard to compare and exchange results
with other laboratories. Systematic international collaboration
between different NRCs and NRLs across multiple years is,
however, only possible when a standardized workflow is used.
The time between submitting data to the webserver and receiving
results varies and could be a limiting factor in emergency cases,
unless the application is locally installed.

Moreover, most NRCs and NRLs operate according to a
strict quality system that requires an extensive validation to
demonstrate that methods are “fit-for-purpose,” thereby fulfilling
the task for which the method was developed in order to

1http://www.genomicepidemiology.org
2http://pubmlst.org
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produce high-quality results, which is also important to obtain
accreditation (Rossen et al., 2018). For classical typing methods,
the process of validation is typically dependent upon the
exact type of analysis and the (often limited) number of well-
characterized samples. A standardized approach to validate WGS
for routine use in public health laboratories for microbiological
applications is not available yet and still under development by
the International Organization for Standardization (ISO) in the
working group “WGS for typing and genomic characterization”
(ISO TC34-SC9-WG25) (Portmann et al., 2018). Although this
working group is expected to lead to an official standard in the
next few years, many NRCs and NRLs already face the need for
validation at the current moment, as evidenced by many recent
case studies that describe the validation of components of the
WGS workflow. Portmann et al. (2018) presented the validation
of an end-to-end WGS workflow for source tracking of Listeria
monocytogenes and Salmonella enterica. Holmes et al. (2018)
reported the validation of a WGS workflow for the identification
and characterization of Shiga toxin-producing Escherichia coli
(STEC) focusing on standardization between different public
health agencies. Mellmann et al. (2017) described external quality
assessment options for WGS. Lindsey et al. (2016) documented
the validation of WGS for a commercial solution for STEC.
Dallman et al. (2015) reported the validation of WGS for outbreak
detection and clustering of STEC. Recently, Kozyreva et al.
(2017) detailed an entire modular template for the validation
of the WGS process not limited to certain species but generally
applicable for a public health microbiology laboratory. Such
case studies help to propel the implementation of WGS for
clinical microbiology, but the comprehensive validation of the
underlying bioinformatics analysis has not been documented
yet. This is however of paramount importance as bioinformatics
analysis is inherently part of the evaluation of every step
of the entire WGS workflow going from sample isolation,
DNA extraction, library preparation, sequencing, to the actual
bioinformatics assays. It is therefore imperative to thoroughly
validate this step before the other levels of the WGS workflow
are evaluated (Angers-Loustau et al., 2018). The bioinformatics
analysis acts as the “most common denominator” between
these different steps, allowing to compare and evaluate their
performance. An exhaustive validation of the bioinformatics
analysis for WGS for clinical and/or public health microbiology
has, however, not yet been described, and is not an easy
task because classical performance metrics cannot be directly
applied to bioinformatics analyses, and it is often not possible
to obtain a realistic ‘gold standard’ for systematic evaluation
(Kozyreva et al., 2017).

As a proof-of-concept, we focus here on N. meningitidis,
a Gram-negative bacterium responsible for invasive meningo-
coccal disease, causing symptoms such as meningitis, septicemia,
pneumonia, septic arthritis, and occasionally inflammatory heart
disorders. The Belgian NRC Neisseria analyses approximately
100–130 strains per year, and traditionally employed the
following molecular techniques for pathogen surveillance: species
identification by real-time polymerase chain reaction (qPCR);
matrix assisted laser desorption/ionization; or biochemistry to
verify that the infection is N. meningitidis and not another

pathogen also causing bacterial meningitis such as Streptococcus
pneumonia or L. monocytogenes; serogroup determination
by slide agglutination or qPCR of the capsule genes; drug
susceptibility and antibiotics resistance testing by determining
the minimum inhibitory concentration on plated samples; and
subtyping by PCR followed by Sanger sequencing of several
loci of interest such as for instance the classic seven MLST
genes (Maiden et al., 1998) and vaccine candidates such as
Factor H-binding protein (fHbp) (Brehony et al., 2009). The
rapid progression, high fatality rate, and frequent complications
render N. meningitidis an important public health priority in
Belgium and an ideal candidate to investigate the feasibility
of using WGS while effectively mitigating the data analysis
bottleneck. At the same time, the strict requirement for ISO15189
accreditation, which deals with the quality and competence of
medical laboratories for all employed tests and is demanded by
the Belgian national stakeholder (the national institute for health
and disability insurance), renders it an ideal proof-of-concept to
investigate how to validate the bioinformatics workflow.

We describe here the first exhaustive validation of a
bioinformatics workflow for microbiological isolate WGS
data, extensively documenting the performance of different
bioinformatics assays at the genotypic level by means of a set of
traditional performance metrics with corresponding definitions
and formulas that were adapted specifically for WGS data.
The WGS workflow was evaluated both on a set of sequenced
reference samples and collected public data generated by means
of the Illumina sequencing platforms, and demonstrates high
performance. Our validation strategy can serve as a basis
to validate other bioinformatics workflows that employ WGS
data, irrespective of their targeted pathogen, and illustrates the
feasibility of employing WGS as an alternative to traditional
molecular techniques for a relatively small-scale laboratory in a
public health context.

MATERIALS AND METHODS

Bioinformatics Workflow
Data (Pre-)processing and Quality Control
Figure 1 provides an overview of the bioinformatics workflow.
The workflow supports all WGS data generated by means of the
Illumina technology. Pre-trimming data quality reports are first
generated to obtain an overview of raw read quality with FastQC
0.11.5 (available at https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) using default settings. Afterward, Trimmomatic
0.36 (Bolger et al., 2014) is used to trim raw reads using the
following settings: “LEADING:10” (i.e., first remove all residues
at the beginning of reads with a Q-score < 10), “TRAILING:10”
(i.e., then remove all residues at the ending of reads with a
Q-score < 10), “SLIDINGWINDOW:4:20” (i.e., then clip reads
as soon as the average Q-score is <20 over a sliding window of
four residues), and “MINLEN:40” (i.e., then remove all reads that
are <40 residues after the previous steps). The “ILLUMINACLIP”
option can be set to either “Nextera,” “TruSeq2,” or “TruSeq3”
dependent upon the used sequencing protocol (see below), and
is added to the command as “[adapter]-PE:2:30:10.” All other
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FIGURE 1 | Overview of the bioinformatics workflow. Each box represents a
component corresponding to a series of tasks that provide a certain
well-defined functionality (indicated in bold). Major bioinformatics utilities
employed in each module are also mentioned (indicated in italics).
Abbreviations: paired-end (PE).

options are left at their default values. Post-trimming data quality
reports are then generated using FastQC to obtain an overview of
processed read quality. Afterward, processed paired-end reads are
de novo assembled using SPAdes 3.10.0 (Bankevich et al., 2012).
Orphaned reads resulting from trimming (i.e., reads where only
one read of the pair survived) are provided to the assembler as
unpaired reads. The “–careful” option is used. All other options
are left at their default values (kmers are chosen automatically
based on the maximum read length). Assembly statistics such
as N50 and number of contigs are calculated with QUAST 4.4
(Gurevich et al., 2013) using default settings. The processed reads
are then mapped back onto the assembled contigs using Bowtie2
2.3.0 (Langmead and Salzberg, 2012) with the following settings:
“–sensitive,” “–end-to-end,” and “–phred33” (all other options are
left at their default values). The mapped reads are used to estimate
the coverage by calculating the median of the per position depth
values reported by SAMtools depth 1.3.1 (Li et al., 2009) using
default settings (SPAdes by default also maps reads back to
the assembly but reports coverage in terms of kmer coverage).
Lastly, several quality metrics are checked to determine whether
data quality are sufficient before proceedings toward the actual
bioinformatics assays. Threshold values for these quality metrics

were set based on the quality ranges observed during validation
by selecting more and less stringent values for metrics exhibiting
less and more variation between samples/runs, respectively. An
overview of all quality metrics and their corresponding warning
and failure thresholds is provided in Table 1.

Resistance Gene Characterization Assay
Genotypic antimicrobial resistance is detected by identifying
resistance genes with nucleotide BLAST+ 2.6.0 (Camacho et al.,
2009) using default values against four widely used resistance
gene databases: ARG-ANNOT (Gupta et al., 2014), CARD (Jia
et al., 2017), ResFinder (Zankari et al., 2012), and NDARO3.
These databases are automatically pulled in-house and updated
on a weekly basis (the date of the last database update is always
included in the output). First, hits that cover less than 60% of, or
have less than 90% identity to the subject, are removed. Second,
overlapping hits (i.e., hits located on the same contig with at least
one base overlap) are grouped into clusters. The best hit for each
cluster is then determined using the method for allele scoring as
described by Larsen et al. (2012). The different possibilities for
“hit types” and their corresponding color codes used in the output
are detailed in Supplementary Table S1. Visualizations of pair-
wise alignments are extracted from the blast output generated
with the pair-wise output format (“-outfmt 1”).

Sequence Typing Assay
Several relevant databases for sequence typing hosted by the
PubMLST platform4 (Jolley and Maiden, 2010) are employed
for genotypic sequence typing (Table 2). All sequences and
profiles are obtained using the REST API (Jolley et al., 2017)
and are automatically pulled in-house and updated on a weekly
basis (the date of the last database update is always included
in the output). For every database, loci are typed separately by
aligning the assembled contigs against all allele sequences of
that locus using Blastn and Blastx for nucleotide and protein
sequences, respectively (Camacho et al., 2009). Filtering and
best hit identification are performed as described previously for
resistance gene characterization. If multiple exact matches exist,
the longest one is reported. For protein sequences, alignment
statistics are calculated based on the translated sequences. The
different possibilities for “hit types” and their corresponding
color codes used in the output are detailed in Supplementary
Table S2. If sequence type definitions are available and the
detected allele combination matches a known sequence type,
this is reported along with associated metadata in the output
(for classic MLST: corresponding clonal complex; for rplF:
genospecies and associated comments). For rpoB (rifampicin
resistance) and penA (penicillin resistance), the phenotypically
tested susceptibility to the corresponding antibiotics of strains
carrying that particular allele is also retrieved from PubMLST and
included in the output.

Serogroup Determination Assay
Serogroup determination is based on the genotypic sequence
typing of the capsule loci (Harrison et al., 2013). Serogroup

3https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/
4http://pubMLST.org
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TABLE 1 | Advanced quality control metrics with their associated definitions and threshold values for warnings and failures.

Warning Failure

Metric Definition threshold threshold

Median coverage Median coverage based on mapping of the trimmed reads against the assembly (Desai et al., 2013) 20 10

% reads mapping back to assembly Percentage of the trimmed reads mapping back to the assembly (Smith-Unna et al., 2016) 95 90

% cgMLST genes identified Percentage of cgMLST genes identified. Only perfect hits (i.e., full length and 100% identity) are
considered (Mellmann et al., 2017)

95 90

Average read quality (Q-score) Q-score of the trimmed reads averaged over all reads and positions 30 25

GC-content deviation Deviation of the average GC content of the trimmed reads from the expected value for
N. meningitidis (51.5%; Tettelin et al., 2000)

2 4

N-fraction Average N-fraction per read position of the trimmed reads 0.05 0.10

Mean Q-score drop Average position in the trimmed reads where the average Q-score drops below 28, expressed in
the percentage of the total read length (e.g., 200 bases and 150 bases when raw input read
lengths are 300 bases long)

66.67% 50.00%

Per base sequence content Difference between AT and GC frequencies averaged at every read position. Since primer artifacts
can cause fluctuations at the start of reads due to the non-random nature of enzymatic
tagmentation when the Nextera XT protocol is used for library preparation, the first 20 bases are not
included in this test. As fluctuations can also exist at the end of reads caused by the low abundance
of very long reads because of read trimming, the 0.5% longest reads are similarly excluded

3 6

Minimum read length Minimum read length after trimming (denoted as percentage of untrimmed read length) that
minimum half of all trimmed reads must obtain (e.g., half of all trimmed reads should either be
minimally 175 or 150 bases long when raw input reads lengths are 300 bases long)

58.33% 50%

profiles are obtained from PubMLST using the REST API and
are automatically pulled in-house and updated on a weekly basis
(the date of the last database update is always included in the
output). Serogroup profiles are available on PubMLST for the
following 10 serogroups: A, B, C, E, H, L, W135, X, Y, and Z.
Genotypic profiles for other serogroups are not available and
can hence not be detected by the assay. The serogroups are
assigned to categories based on the number and type of hits
(see Supplementary Table S2) for the corresponding schemas.
The first category contains serogroups for which all loci are
found as perfect hits. In the second category, all loci are found
as perfect or imperfect identity hits. In the third category, loci

TABLE 2 | Overview of employed typing schemas#.

Schema name #Total loci # Nucleotide loci # Protein loci

Classic MLST 7 7 0

rplF 1 1 0

cgMLST 1605 1605 0

Bexsero antigen
sequence typing

5 0 5

porA 2 0 2

porB 1 1 0

fetA 1 0 1

fHbp∗ 9 2 7

Resistance genes 9 9 0

Vaccine targets (fHbp∗,
nadA, nhba)

3 3 0

#All schemas are extracted from https://pubmlst.org (Jolley and Maiden, 2010;
Jolley et al., 2017). A detailed overview of all their source links is provided
in Supplementary Table S3. ∗fHbp is typed twice: for the vaccine targets
as the whole gene (nucleotide), and for the fHbp schema as the whole gene
(nucleotide) but also as a DNA fragment (nucleotide) and seven different peptides
corresponding to, among others, the different protein segments.

are detected as perfect hits, imperfect identity hits, imperfect
short hits, or multi-hits. In the fourth category, not all loci
are detected. The serogroup of the highest possible category is
always reported. When there are multiple possible serogroups in
the highest category, the serogroup with the highest fraction of
perfect hits (i.e., number of perfect hits divided by number of loci
in the schema) is reported. Serogroup determination fails when
less than 75% of loci are detected for the best serogroup reported
according to the above classification.

Implementation and Availability
The bioinformatics workflow was implemented in collaboration
with the experts from the Belgian NRC Neisseria to ensure
it complied with the needs of its actual end users by
providing a “push-button” pipeline solution. On the front-
end, the bioinformatics workflow was integrated as a stand-
alone tool into a local instance of the Galaxy Workflow
Management System (Afgan et al., 2016) to ensure a user-friendly
interface that only requires uploading the data and selecting
the desired bioinformatics assays (the data pre-processing
and quality control are always executed by default). An
illustration of the input interface is provided in Supplementary
Figure S1. The bioinformatics workflow is compatible with
data from all Illumina sequencing platforms (other sequencing
technologies are not supported). Threshold values for some
quality metrics such as the sequence length distribution (Table 1)
are dynamically adapted based on the detected sequence length.
Results are presented as an interactive user-friendly HTML
output report and a tabular summary file. The HTML output
report presents the results of all quality checks and bioinformatics
assays, also containing linked data such as the trimmed reads,
assembly, and all alignments, which can easily be accessed and/or
downloaded by clicking the interactive link and can afterward
be used for additional analyses, that are not part of the routine
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requirements, within Galaxy or other bioinformatics software.
The tabular summary file contains an accumulation of the most
important statistics and results in tab-separated format that
can be useful for programmatic processing. On the back-end,
the bioinformatics workflow was written in Python 2.7 and
set up to comply with both the direct and indirect needs of
the NRC. All required components (tools, databases, etc.) were
directly integrated within the high-performance computational
infrastructure at our institute. Employed public databases are
pulled automatically in-house on a weekly basis to ensure that
results are always up-to-date and that execution can be performed
at all times without any direct dependencies on external resources
(e.g., for outbreak situations). All tool parameters and options
were optimized and validated (see below) to ensure that no
parameter tweaking is required. The full workflow including all
assays takes on average only 1 h to run to completion for a dataset
sequenced at 60× coverage, which is only a fraction of the time
compared to the data generation that can take multiple days.
All individual components are version controlled and traceable,
ranging from tool versions (managed through Lmod, available at
https://github.com/TACC/Lmod), databases (managed through
Git), in-house code (managed through Git), and workflow runs
(managed through storing all essential information for rerunning
the workflow in a custom-designed SQL database). This “push-
button” pipeline is also available at the public instance of the
Galaxy Workflow Management System of our institute, which
is accessible at https://galaxy.sciensano.be. This is offered as a
free resource for academic and non-profit usage (registration
required), specifically intended for scientists and laboratories
from other smaller European and/or developing countries that
process a limited number of samples and/or do not have access
to the required expertise and/or financial means themselves
to analyze NGS data for N. meningitidis (with the caveat of
depending on an external service for which 100% uptime cannot
be guaranteed). A specific training video for this resource is also
available (see Supplementary Material).

Validation Data
Core Validation Dataset
The core validation dataset consisted out of N. meningitidis
reference strains selected from the global collection of 107
N. meningitidis strains maintained at the University of Oxford
(Bratcher et al., 2014) for which sequence data were generated
in-house. Reference strains from this biobank were originally
used to validate cgMLST at the genotypic level, and were
extensively characterized using several sequencing technologies
and platforms, thereby constituting a valuable resource that
represents the global diversity of N. meningitidis for which
high-quality genotypic information is available. A subset of
67 samples was selected by specialists from the Belgian NRC
Neisseria to ensure that these cover the entire spectrum of
clonal complexes that are representative for Belgium (see also
the section “Discussion”). The selected samples were originally
collected from 26 different countries over a timespan of more
than 50 years encompassing endemic, epidemic, and pandemic
disease cases, as well as asymptotic carriers. At least one sample

was selected for each of the disease causing serogroups (A, B,
C, W135, X, Y) (Harrison et al., 2009). An overview of these 67
samples is provided in Supplementary Table S4. Genomic DNA
was extracted using the column-based GeneElute kit (Sigma),
using the manufacturer’s instructions. Sequencing libraries were
prepared with an Illumina Nextera XT DNA sample preparation
kit and sequenced on an Illumina MiSeq instrument with a
300-bp paired-end protocol (MiSeq v3 chemistry) according to
the manufacturer’s instructions. The 67 selected samples were
sequenced three times in total. Runs A and B were performed on
the same MiSeq instrument using newly created libraries from the
samples, whereas run C was performed on a different MiSeq unit
but using the same libraries as prepared for run B. Run A was
done by a different operator than runs B and C. All WGS data
generated for these samples in the three different runs have been
deposited in the NCBI Sequence Read Archive (SRA) (Leinonen
et al., 2011) under accession number SRP137803. Individual
accession numbers for all sequenced samples for all runs are listed
in Supplementary Table S14.

Extended Validation Dataset
The extended validation dataset consisted out of 64
N. meningitidis samples selected from publicly available
NGS data. This additional dataset was collected to evaluate
our bioinformatics workflow on data coming from different
laboratories, as is often the case in real-world applications. In this
extended dataset, we included additional strains of serogroups Y
and W135, which are underrepresented in the global collection
of 107 N. meningitidis samples maintained at the University of
Oxford, and which are currently causing epidemics in both the
United States and Europe (Mustapha et al., 2016; Whittaker
et al., 2017) (see also the section “Discussion”). Additionally,
the majority of samples in the extended validation dataset were
generated by means of the HiSeq instrument in contrast to the
MiSeq used for the core validation dataset, and read lengths for
this dataset were consequently typically shorter. An overview
of these samples with their corresponding NCBI SRA accession
numbers is available in Supplementary Table S20.

Validation of the Bioinformatics
Workflow
Validation Strategy
We built upon previously described case studies (Lindsey
et al., 2016; Kozyreva et al., 2017; Yachison et al., 2017;
Holmes et al., 2018; Portmann et al., 2018) by implementing
performance metrics that were adapted toward our purpose
of exhaustively validating the bioinformatics workflow:
repeatability, reproducibility, accuracy, precision, (diagnostic)
sensitivity, and (diagnostic) specificity. A full overview of
all performance metrics and their corresponding definitions
and formulas is presented in Table 3. Some metrics were not
evaluated for all bioinformatics assays, since it was not always
possible to find suitable definitions in context of the specific
analysis (see also the section “Discussion”). Precision specifically
refers to the positive predictive value rather than repeatability
and reproducibility as is the case in Kozyreva et al. (2017).
“Within-run” replicates refer to duplicate (bioinformatics)
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analysis by executing the bioinformatics workflow twice on
the same dataset for the calculation of repeatability. “Between-
run” replicates refer to duplicate (bioinformatics) analysis by
executing the bioinformatics workflow twice on the same sample
generated on a different sequencing run for the calculation
of reproducibility. Note that reproducibility could never be
calculated for the extended validation dataset because no
between-run replicates were available for these samples. The
accuracy, precision, sensitivity, and specificity metrics all
require the classification of results as either true positives
(TPs), false positives (FPs), true negatives (TNs), or false
negatives (FN), which by definition all require the comparison
against a reference or standard that represents the “truth,” for
which we adopted two reference standards. First, genotypic
information for the reference strains from the core validation
dataset available in the PubMLST isolate database (accessible
at https://pubmlst.org/bigsdb?db=pubmlst_neisseria_isolates)
was used to compare results from our bioinformatics workflow
against, which was referred to as “database standard.” Second,
because no such high-quality genotypic information was
available for the samples from the extended validation dataset
with the sole exception of the serogroup, results of our
bioinformatics workflow were compared against the results of
tools commonly used and adopted by the scientific community,
which was referred to as “tool standard.” This second approach
was also employed for the core validation dataset to evaluate
consistency between both standards, and also because for the
resistance gene characterization assays no genotypic information
was available in the associated reference database for the
core validation dataset. All analyses were done through a
local “push-button” implementation of the bioinformatics
workflow (see the section “Implementation and Availability”).
All output files were downloaded upon completion and
the performance of the different bioinformatics assays was
evaluated by querying the output files using in-house scripts
that collected the performance metrics presented in Table 3.
All output reports of the bioinformatics workflow are publicly
available at Zenodo5.

Resistance Gene Characterization Assay
The reportable range for all three databases corresponds to
their respective gene content, and performance was evaluated
at the level of the gene. For repeatability and reproducibility,
replicates were considered to be in agreement when a gene
(also including imperfect hits) was detected or absent in within-
run and between-run replicates, respectively. For the database
standard, no metrics could be calculated as no such associated
information is available for neither the core nor extended
validation datasets. For the tool standard, no accompanying
reference tool exists for the ARG-ANNOT database, for which
performance metrics could therefore not be calculated. For
the CARD database, Resistance Gene Identifier (RGI) 4.0.3
(Jia et al., 2017) was used as the tool standard. The program
was executed on all assemblies using the following settings:
database version 1.1.8, input type parameter set to “contig,”

5http://doi.org/10.5281/zenodo.1575931

alignment tool set to BLAST (all other settings were left at
their default values). Loose hits, hits that covered less than
60% of the query sequence or with less than 90% sequence
identity, and hits that aligned to the protein variant model
were afterward excluded. For the ResFinder database, the online
web service6 was used as the reference tool, by analyzing all
assemblies using the following settings: 90% identity threshold,
60% minimum length, and all antimicrobial resistance databases
selected. For the NDARO database, AMRfinder (alpha version)
was used as the tool standard (excluding hits covering less
than 60% of the target gene). The following definitions for
classification were used: TP as genes detected by both our
workflow and the tool standard; FN as genes missed by our
workflow but reported by the tool standard; FP as genes detected
by our workflow but not reported by the tool standard; and
TN as genes not detected by both our workflow and the
tool standard.

Sequence Typing Assay
The reportable range for all sequence typing schemas
corresponds to their respective gene content (see Table 2
and Supplementary Table S3). cgMLST was used as a proxy
for the performance of all typing schemas because this schema
contains 1605 loci, whereas no single other typing schema
included in our workflow contains more than 9 loci (Table 2),
so that too few observations would be present to employ
the formulas presented in Table 3. Similar to resistance gene
characterization, a gene-by-gene approach was taken for
calculating performance. For repeatability and reproducibility,
replicates were considered to be in agreement when no allele
was detected or the same allele was detected as a perfect hit in
within-run and between-run sequencing replicates, respectively.
Database reference information was extracted directly from
the PubMLST isolate database (see Supplementary Table S3
for exact source locations), whereas tool standard information
was obtained by using the assemblies as input for the online
PubMLST sequence query tool (https://pubmlst.org/bigsdb?db=
pubmlst_neisseria_seqdef&page=sequenceQuery). The following
definitions for classification were used: TP and FN as alleles
where the output of our workflow corresponded, or did not
correspond, to the database reference, respectively. In case
the database standard contained several alleles for a locus,
results were considered concordant as soon as one of them
matched with our workflow. TN and FP were evaluated by
querying the assemblies against a cgMLST database for an
unmatched species for which the sequence typing assay is
not expected to identify any alleles (Kozyreva et al., 2017).
We employed the L. monocytogenes cgMLST schema that is
available through BIGSdb hosted at the Institut Pasteur (Moura
et al., 2016). TN and FP were defined as unidentified and
identified alleles by our workflow, respectively. We verified
this approach by checking all assemblies with the sequence
query tool of BIGSdb hosted at the Institut Pasteur against
the L. monocytogenes cgMLST schema, for which never any
allele was reported.

6https://cge.cbs.dtu.dk/services/ResFinder
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Serogroup Determination Assay
The reportable range for the serogroup determination assay
corresponds to the 10 serogroups for which a schema with
capsule loci exists in the PubMLST database (see Supplementary
Table S3). Performance was evaluated at the level of the
serogroup. For repeatability and reproducibility, replicates
were considered to be in agreement when the same or
no serogroup was detected in within-run and between-
run replicates, respectively. Database standard information
was extracted directly from the PubMLST isolate database
(see Supplementary Table S3 for exact source location),
whereas tool standard information was obtained by using
the assemblies as input for the online PubMLST sequence
query tool (https://pubmlst.org/bigsdb?db=pubmlst_neisseria_
seqdef&page=sequenceQuery). The following definitions for
classification were used: TP and FN as serogroups where the
output of our workflow corresponded, or did not correspond,
to the reference. Note that for the tool standard, however, the
sequence query tool of PubMLST does not output serogroups
but rather results for all corresponding capsule loci. We therefore
considered a serogroup to be detected when all its corresponding
loci were detected, and samples for which this was not the case
were considered as missing data. TN and FP were evaluated
by querying the assemblies against a cgMLST database for an
unmatched species for which the serogroup determination assay
is not expected to identify any serogroups (Kozyreva et al.,
2017). We employed the L. monocytogenes serogroup schema
that is available through BIGSdb hosted at the Institut Pasteur
(Moura et al., 2016). TN and FP were defined as unidentified
and identified serogroups by our workflow, respectively. We
verified this approach similarly by checking all assemblies with
the sequence query tool of BIGSdb hosted at the Institut Pasteur
against the L. monocytogenes serogrouping schema, for which
never any locus of the capsule loci was reported.

Supplementary Material
A supplementary manuscript containing all supplementary
figures and tables is available as “Bogaerts_Neisseria_
supplementaryMaterial.docx.” A supplementary video providing
a tutorial for employing the “push-button” pipeline instance of
our bioinformatics workflow is also available at Zenodo7.

RESULTS

Evaluation of Sequence Data Quality
Core Validation Dataset
Read counts for raw and trimmed reads for all 67 samples
of the core validation dataset in each of the three separate
sequencing runs are provided in Supplementary Figure S4 and
Supplementary Table S5. The number of raw reads per sample is
in the same range for all runs with medians of 341,547; 338,107,
and 354,874 paired-end reads for runs A, B, and C, respectively,
although run A displayed more variation in the number of reads
per sample. The fraction of forward and reverse reads surviving

7https://doi.org/10.5281/zenodo.1452401

trimming is generally high with medians of 76.91%, 88.83%, and
90.49% for runs A, B, and C, respectively. A larger fraction of
forward reads always survived trimming, indicating the reverse
reads are generally of lower quality. Assembly statistics for all
samples and runs are provided in Supplementary Figure S5
and Supplementary Table S6. The N50, a metric used as a
proxy for assembly quality that is defined as the length at which
contigs of equal or longer length contain at least 50% of the
assembled sequence (Lander et al., 2001), is comparable across
all runs with medians of 49,389, 54,223, and 56,526 bases for
runs A, B, and C, respectively. Assemblies of run A contained
substantially lower numbers of contigs compared to runs B and
C, with medians of 182, 822, and 832 contigs for runs A, B,
and C, respectively. Results for all runs are, however, comparable
with medians of 87, 85, and 82 contigs for runs A, B, and C,
respectively, when only contigs >1,000 bases are considered.
Sample Z4242 in run A is an outlier for both N50 (8,743 bases)
and number of contigs >1,000 bases (295 contigs), indicating a
highly fractured assembly. More contigs were hence generated
for all samples in runs B and C compared to run A, but these
were typically <1,000 bases so that the overall N50 is similar
for all runs. Advanced quality statistics for all samples and runs
are provided in Supplementary Figure S6 and Supplementary
Table S7. The coverage for samples in run A displays more
variation and is lower compared to runs B and C with medians
of 45, 60, and 65× for runs A, B, and C, respectively, and are
above recommendations from other studies that indicated values
of 20×–40× are required for high-quality results (Lindsey et al.,
2016). The percentage of cgMLST genes identified was very high
across all runs with medians of 97.76, 97.94, and 97.94% for
runs A, B, and C, respectively, close to the mean observation
of 98.8% across five different laboratories during a ring trial for
Staphylococcus aureus (Mellmann et al., 2017). Sample Z4242 in
run A is again an outlier (see before), as it is the only sample in
all three runs with <95% identified cgMLST genes. The mapping
rate was generally also very high with medians of 99.25, 98.30, and
98.30% for runs A, B, and C, respectively, with the exception of
sample Z4242 in run A. All samples for all runs passed all quality
checks listed in Table 1, with some warnings but never a failure
for any metric.

Extended Validation Dataset
Read counts for raw and trimmed reads for all 64 samples of
the extended validation dataset are provided in Supplementary
Figure S7 and Supplementary Table S21. The median number of
raw reads across all samples is 1,826,497. The fraction of forward
and reverse reads surviving read trimming is very high with a
median value of 99.58% across all samples. These observations
are in line with the higher coverage and shorter read lengths
provided by the HiSeq sequencing instrument for samples of the
extended validation dataset. Assembly statistics for all samples
are provided in Supplementary Figure S8 and Supplementary
Table S22. The median values for the N50, number of contigs,
and number of contigs >1,000 bases are 52,341 bases, 650
contigs, and 170 contigs, respectively. These numbers indicate
that the assemblies are more fragmented compared to the core
validation dataset, as can be expected through their shorter read
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length. Three samples, ERR314131, ERR314115, and ERR278691,
displayed however extremely fragmented assemblies with a
N50 <1,000 bases. Advanced quality statistics for all samples
are provided in Supplementary Figure S9 and Supplementary
Table S23. The median coverage, percentage of identified
cgMLST genes, and mapping rate are 142×, 97.82%, and 99.58%,
respectively. Samples ERR314131, ERR314115, and ERR278691
did not have a single cgMLST allele detected, in line with their
exceptionally low N50, and also failed multiple of the quality
checks mentioned in Table 1. All other samples passed all of these
quality checks, the mean Q-score drop being the only exception
for some samples that had a more pronounced Q-score dip at the
beginning of reads.

Evaluation of Performance Metrics
Resistance Gene Characterization Assay
Table 4 presents results for the core validation dataset for the
three different databases, and a detailed overview of all detected
genes for all three databases is available in Supplementary
Table S8. For the ARG-ANNOT database, within-run replicates
were always fully consistent, resulting in a repeatability of 100%.
No perfect hits were detected in any samples of any run. A full-
length imperfect hit with 99.67% identity to tetB was found
in sample Z5826 for all sequencing runs. Another imperfect
hit, covering 71.79% of ermF with 99.83% identity, was found
for sample Z1073 in run B only. As this results in only two
between-run replicates not in agreement on a total of 128,439
comparisons (i.e., 639 database genes times 67 samples times
3 runs), the reproducibility rounds up to 100%. Performance
metrics could not be calculated for the database standard because
no such information was available, nor for the tool standard as a
reference tool does not exist for ARG-ANNOT. For the ResFinder
database, within-run replicates were always fully consistent,
resulting in a repeatability of 100%. No perfect hits were detected
in any samples of any run. Similar to ARG-ANNOT, a full

length imperfect hit with 99.92% identity to tetB was found
in sample Z5826 for all sequencing runs. The identity differs
slightly between ResFinder and ARG-ANNOT for tetB because
a different variant is found in both databases. Another imperfect
hit, covering 71.79% of ermF with 99.83% identity, was found for
sample Z1073 in run B only. As this results in only two between-
run replicates not in agreement on a total of 106,932 comparisons
(i.e., 532 database genes times 67 samples times 3 runs), the
reproducibility rounds up to 100%. Performance metrics could
not be calculated for the database standard because no such
information was available. For the tool standard, all detected
genes were always fully consistent with results of the ResFinder
web tool. The ensuing confusion matrix (i.e., a contingency
table that lists the performance based on actual and predicted
classes) is presented in Supplementary Table S15, and results in
a perfect accuracy, precision, sensitivity, and specificity of 100%.
For the CARD database, within-run replicates were always fully
consistent, resulting in a repeatability of 100%. Four genes were
detected in several samples as perfect hits for all runs: farA, farB,
mtrC, and mtrD. An imperfect hit, covering 71.79% of ermF with
99.83% identity, was found for sample Z1073 in run B only.
Another imperfect hit, covering 71.79% of mtrR with 99.83%
identity, was detected in runs B and C but not in run A for sample
Z4242. As these were the only four between-run replicates not in
agreement on a total of 158,187 comparisons (i.e., 787 database
genes times 67 samples times 3 runs), the reproducibility rounds
up to 100%. Performance metrics could not be calculated for the
database standard because no such information was available. For
the tool standard, all detected genes were always fully consistent
with results of the RGI tool, with the exception of mtrE and
aac(2′). mtrE was detected in all samples across all runs by
our workflow but never by RGI, and was therefore classified
as a FP in all samples. This was most likely because the mtrE
sequence displayed very high nucleotide identity (∼94%) with
the database variant, but had some frameshift mutations. Since
RGI predicts open reading frames followed by protein alignment

TABLE 4 | Results for the core validation dataset.

Metric Bioinformatics assay

Sequence typing Serogroup

Resistance gene detection (cgMLST) determination

ARG-ANNOT ResFinder CARD NDARO

Repeatability 100% 100% 100% 100% 100% 100%

Reproducibility 100% 100% 100% 100% 99.65% 99.50%

Database standard Accuracy – – – – 98.62% 95.27%

Precision – – – – 100% 100%

Sensitivity – – – – 97.12% 90.55%

Specificity – – – – 100% 100%

Tool standard Accuracy – 100% 99.87% 100% 99.37% 100%

Precision – 100% 87.52% 100% 100% 100%

Sensitivity – 100% 99.93% 100% 98.68% 100%

Specificity – 100% 99.87% 100% 100% 100%

A dash (“–”) indicates a performance metric could not be calculated/determined.
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of the translated sequences, it did never detect mtrE. aac(2′)
was not detected by our workflow in sample Z1092 in run B,
and was therefore classified as a FN. The ensuing confusion
matrix is presented in Supplementary Table S15, and results
in an accuracy, precision, sensitivity, and specificity of 99.87,
87.52, 99.93, and 99.87%, respectively. For the NDARO database,
within-run replicates were always fully consistent, resulting in
a repeatability of 100%. No perfect hits were detected in any
samples of any run. Similar to ARG-ANNOT and ResFinder,
a full length imperfect hit with 99.93% identity to tetB was
found in sample Z5826 for all sequencing runs. The identity
differs slightly between databases due to different variants that are
present in the databases. Another imperfect hit, covering 63.82%
of ermF with 99.65% identity, was found for sample Z1073 in
run B only (corresponding to the ResFinder output for the same
sample). The oxa gene was found in five more samples (Z4690
run C, Z4707 run B, Z5043 run C, Z6414 run B, and Z6430
run B) with over 99% identity and covering around 65% of the
reference sequence. As this results in a total of 12 between-
run replicates not in agreement on a total number of 180,699
comparisons (i.e., 899 database genes times 67 samples times
3 runs), the reproducibility rounds up to 100%. Performance
metrics could not be calculated for the database standard because
no such information was available. For the tool standard, all
detected genes were always fully consistent with results of the
AMRfinder tool. The ensuing confusion matrix is presented in
Supplementary Table S15, and results in an accuracy, precision,
sensitivity, and specificity of 100%.

Table 5 presents results for the extended validation dataset for
the three different databases. A detailed overview of all detected
genes for all three databases can be found in Supplementary
Table S24. Within-run replicates were always fully consistent,
resulting in a repeatability of 100%. Reproducibility could not be
assessed as no between-run replicates were available. No perfect
hits were detected for any of the resistance gene databases, but
several imperfect hits were found. As for the core validation

dataset, performance metrics could only be calculated for the tool
standard for the ResFinder, CARD, and NDARO databases, and
the resulting confusion matrices are presented in Supplementary
Table S28. For the NDARO database, not a single gene was
detected in the extended validation dataset by both our workflow
and AMRfinder, meaning that precision and sensitivity could not
be calculated. For the ResFinder database, a perfect accuracy,
precision, sensitivity, and specificity of 100% were obtained. For
the CARD database, there were again several FP that were all due
to the mtrE gene being detected in several samples, resulting in
an accuracy, precision, sensitivity, and specificity of 99.88, 87.50,
100, and 99.88%, respectively. Results for both databases were
therefore in line with results observed for the tool standard for
the core validation dataset (Table 4).

Sequence Typing Assay
Table 4 presents results for the core validation dataset, using
cgMLST as a proxy for the performance of all sequence typing
schemas (see the section “Materials and Methods”). Within-
run replicates were always fully consistent, resulting in a
repeatability of 100%. Results for between-run replicates are
presented in Figure 2 and Supplementary Table S9. The median
reproducibility is 99.56% for run A versus B, 99.63% for run A
versus C, and 99.75% for run B versus C, with a reproducibility
of 99.65% averaged over all three comparisons. One outlier is
present for the comparisons of run A versus B and run A
versus C, which is in both cases due to sample Z4242 in run
A that only had 94.14% of its cgMLST loci identified in the
first place. Because results for this sample were relatively bad
in run A compared to runs B and C, we checked whether
contamination had occurred but could find no indication thereof
(see Supplementary Figure S3). For the database standard,
results are presented in Figure 3 and Supplementary Table S10.
TP were defined as loci of the cgMLST schema where our
workflow identified the same allele as the database standard,
with median values of 97.07, 97.13, and 97.20% of cgMLST loci

TABLE 5 | Results for the extended validation dataset.

Metric Bioinformatics assay

Sequence typing Serogroup

Resistance gene detection (cgMLST) determination

ARG-ANNOT ResFinder CARD NDARO

Repeatability 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Reproducibility – – – – – –

Database standard Accuracy – – – – – 96.09%

Precision – – – – – 100.00%

Sensitivity – – – – – 92.19%

Specificity – – – – – 100.00%

Tool standard Accuracy – 100.00% 99.88% 100.00% 99.78% 100.00%

Precision – 100.00% 87.50% ∗ 100.00% 100.00%

Sensitivity – 100.00% 100% ∗ 99.52% 100.00%

Specificity – 100.00% 99.88% 100.00% 100.00% 100.00%

A dash (“–”) indicates a performance metric could not be calculated/determined because the data were unavailable. An asterisk (∗) indicates that the metric could not be
calculated, due to division by zero.
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FIGURE 2 | Reproducibility of the sequence typing assay for the core
validation dataset. The abscissa depicts the sequencing runs that are being
compared, while the ordinate represents the percentage of cgMLST loci that
were concordant between the same samples of different sequencing runs.
Note that the ordinate starts at 94% instead of 0% to enable illustrating the
variation between run comparisons more clearly. Each comparison is
presented as a boxplot based on 67 samples where the boundary of the box
closest to the abscissa indicates the 25th percentile, the thick line inside the
box indicates the median, and the boundary of the box farthest from the
abscissa indicates the 75th percentile. See also Supplementary Table S9 for
detailed values for all samples and sequencing runs.

for runs A, B, and C, respectively. All other loci were classified
as FN, of which the majority were due to cgMLST loci being
identified by our workflow while no information was available in
the database standard rather than an actual mismatch between
our workflow and the database standard (Figure 3). Values
for TN and FP were put at 100% and 0% of cgMLST loci,
respectively, to reflect that the database standard represents the
“truth” (see also the section “Discussion”). The ensuing confusion
matrix is presented in Supplementary Table S16, and results
in an accuracy, precision, sensitivity, and specificity of 98.62,
100, 97.12, and 100%, respectively. For the tool standard, results
are presented in Figure 4 and Supplementary Table S11. TP
were defined as loci of the cgMLST schema where our workflow
identified the same allele as the PubMLST sequence query tool,
with medians of 98.69, 98.69, and 98.69% of cgMLST loci for
runs A, B, and C, respectively. All other loci were classified as
FN, of which the majority were due to multiple alleles being
identified by our workflow, in which case the longest one is
reported in contrast to the reference tool where an allele is
picked randomly, rather than an actual mismatch between our
workflow and the tool standard (Figure 4). TN and FP were
defined as alleles correctly unidentified, or falsely identified, when
challenged with the cgMLST schema of L. monocytogenes, for
which neither our workflow nor the reference tool, however, ever

picked up a single allele resulting in values for TN and FP of
100 and 0% of cgMLST loci, respectively. The ensuing confusion
matrix is presented in Supplementary Table S17, and results in
an accuracy, precision, sensitivity, and specificity of 99.37, 100,
98.68, and 100%, respectively.

Table 5 presents results for the extended validation dataset
for the cgMLST assay. Within-run replicates were always fully
consistent, resulting in a repeatability of 100%. Reproducibility
could not be assessed as no between-run replicates were available.
Performance metrics could neither be calculated for the database
standard because no such information was available. Results
for the tool standard are detailed in Supplementary Table S25.
Our workflow identified the same allele as the tool standard
for 99.50% of cgMLST loci that were classified as TP. All
other loci were classified as FN. No alleles were detected by
our workflow nor the reference tool when challenged with
the cgMLST schema of L. monocytogenes resulting in values
for TN and FP of 100 and 0% of cgMLST loci, respectively.
The ensuing confusion matrix is presented in Supplementary
Table S29, and results in an accuracy, precision, sensitivity, and
specificity of 99.78, 100, 99.52, and 100%, respectively, which is
in line with results observed for the tool standard for the core
validation dataset.

Serogroup Determination Assay
Table 4 presents results for the serogroup determination assay
for the core validation dataset. Within-run replicates were always
fully consistent, resulting in a repeatability of 100%. Between-run
replicates were also fully consistent with the exception of sample
Z4242 for which serogroup B was detected in run A but serogroup
C in runs B and C. Serogroups B and C share four common loci
with one and two additional unique loci, respectively. Because
this unique locus was not detected due to the low quality of
sample Z4242 in run A (see before), it was classified as serogroup
B, resulting in a reproducibility of 99.50%. For the database
standard, results are presented Supplementary Table S12. TP
were defined as samples where our workflow identified the same
serogroup as the database standard, which resulted in 89.55,
91.04, and 91.04% correctly predicted serogroups for runs A,
B, and C, respectively. All other samples were classified as FN.
Values for TN and FP were put at 100 and 0% of serogroups,
respectively, to reflect that the database standard represents the
“truth” (see also the section “Discussion”). The ensuing confusion
matrix is presented in Supplementary Table S18, and results
in an accuracy, precision, sensitivity, and specificity of 95.27,
100, 90.55, and 100%, respectively. For the tool standard, results
are presented Supplementary Table S13. TP were defined as
samples for which our workflow identified the same serogroup
as the tool standard, which resulted in values of 100% for all
runs so that no single sample was classified as FN. TN and
FP were defined as samples where the serogroup was correctly
unidentified, or falsely identified, when challenged with the
serogroup schema of L. monocytogenes, for which neither our
workflow nor the reference tool, however, ever picked up a single
capsule locus resulting in values for TN and FP of 100 and 0% of
samples, respectively. The ensuing confusion matrix is presented
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FIGURE 3 | Database standard results of the sequence typing assay for the core validation dataset. The abscissa depicts the sequencing run, while the ordinate
represents the percentages of cgMLST loci as indicated by the title above each graph. Each sequencing run is presented as a boxplot based on 67 samples (see the
legend of Figure 2 for a brief explanation). The upper left graph depicts the percentage of concordant cgMLST loci, i.e., where our workflow identified the same
allele as the database standard, which were classified as TPs. Note that the ordinate starts at 93% instead of 0% to enable illustrating the results more clearly. All
other cases were classified as FNs, and encompass three categories. First, the upper right graph depicts the percentage of cgMLST loci for which our workflow
detected a different allele than present in the database standard. Second, the bottom left graph depicts the percentage of cgMLST loci for which our workflow did
not detect any allele but an allele was nevertheless present in the database standard. Third, the bottom right graph depicts the percentage of cgMLST loci for which
our workflow detected an allele but for which no allele was present in the database standard. Most FNs are explained by no information being present in the
database standard, followed by an actual mismatch, and only few cases are due to our workflow improperly not detecting an allele. See also Supplementary
Table S10 for detailed values for all samples and runs.

in Supplementary Table S19, and results in a perfect accuracy,
precision, sensitivity, and specificity of 100%.

Table 5 presents results for the extended validation dataset
for the serogroup determination assay. Within-run replicates
were always fully consistent, resulting in a repeatability of
100%. Reproducibility could not be assessed as no between-
run replicates were available. Results for the database standard
are presented in Supplementary Table S26. Our workflow
identified the same serogroup as the database standard for
92.19% of samples that were classified as TP. All other
samples were classified as FN. Values for TN and FP were
put at 100 and 0% of samples, respectively, to reflect that the
database standard represents the “truth” (see also the section
“Discussion”). The ensuing confusion matrix is presented in

Supplementary Table S30 and results in an accuracy, precision,
sensitivity, and specificity of 96.09, 100, 92.19, and 100%,
respectively. Results for the tool standard are presented in
Supplementary Table S27. Our workflow identified the same
serogroup as the tool standard for 100% of samples that were
classified as TP, and no samples were classified as FN. No
capsule loci were detected by our workflow nor the reference tool
when challenged with the serogroup schema of L. monocytogenes
resulting in values for TN and FP of 100 and 0% of samples,
respectively. The ensuing confusion matrix is presented in
Supplementary Table S31, and results in a perfect accuracy,
precision, sensitivity, and specificity of 100%. Results for both
the database and tool reference were therefore in line with results
observed for the core validation dataset (Table 4).
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FIGURE 4 | Tool standard results of the sequence typing assay for the core validation dataset. The abscissa depicts the sequencing run, while the ordinate
represents the percentages of cgMLST loci as indicated by the title above each graph. Each sequencing run is presented as a boxplot based on 67 samples (see the
legend of Figure 2 for a brief explanation). The upper left graph depicts the percentage of concordant cgMLST loci, i.e., where our workflow identified the same
allele as the tool standard, which were classified as TPs. Note that the ordinate starts at 98% instead of 0% to enable illustrating the results more clearly. All other
cases were classified as FNs, and encompass two categories. First, the upper right graph depicts the percentage of cgMLST loci for which our workflow identified
multiple perfect hits, of which at least one corresponded to the tool standard but was reported differently. Second, the lower left graph depicts the percentage of
cgMLST loci for which our workflow detected a different allele compared to the tool standard. Most FNs are therefore explained by a different manner of handling
multiple perfect hits, and only a small minority are due to an actual mismatch between our workflow and the tool standard. Furthermore, upon closer inspection,
these mismatches were due to an artifact of the reference tool used for the tool standard that has been resolved in the meantime (see Supplementary Figure S2).
See also Supplementary Table S11 for detailed values for all samples and runs.

DISCUSSION

We report here the first exhaustive validation of a bioinformatics
workflow for clinical microbiological isolate WGS data. We
employed the pathogen N. meningitidis as a proof-of-concept by
designing a bioinformatics workflow (Figure 1) that incorporates
different quality checks (Table 1) and relevant typing schemas
(Table 2) with the aim of either extracting information that
ensures backward compatibility with currently existing “classical”
molecular biology techniques (e.g., serotyping), or alternatively
taking advantage of the full potential offered by WGS by
extracting information at the scale of the full genome (e.g.,
cgMLST). Our study is relevant because recent surveys by
both the EFSA (García Fierro et al., 2018) and the ECDC
(Revez et al., 2017) have indicated that, at least in Europe,

the data analysis and required expertise remain substantial
bottlenecks impeding the implementation of NGS for routine
use in microbiology. For NRCs and NRLs, as well as other
laboratories working under a quality system, a harmonized
framework for validation of the WGS workflow presents an
additional obstacle (Rossen et al., 2018). A series of recently
published studies have, however, showcased the need thereof,
and presented validation approaches for certain components
of the WGS workflow focusing either on a modular template
for the validation of WGS processes (Kozyreva et al., 2017),
the entire workflow “end-to-end” (Portmann et al., 2018),
standardization (Holmes et al., 2018), external quality assessment
(Mellmann et al., 2017), commercial bioinformatics software
(Lindsey et al., 2016), outbreak clustering (Dallman et al., 2015),
or specific assays such as serotyping (Yachison et al., 2017).
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We complement these studies by proposing a validation strategy
focusing specifically on the bioinformatics analysis of the WGS
workflow to exhaustively evaluate performance at this level,
which is crucial because the bioinformatics component serves
as the “common denominator” that allows to compare the
different steps of the WGS workflow (e.g., library preparation,
sequencing, etc.) or even different WGS workflows and/or
sequencing technologies. Although workflow components and
quality metrics listed in Figure 1 and Table 1 will need to
be adapted, the validation strategy proposed in our study is
platform-agnostic and can be tailored toward other sequencing
technologies. The underlying premise of our validation strategy
consists of demonstrating that the bioinformatics workflow is
“fit-for-purpose,” which is defined by the ISO17025 standard
as providing “confirmation by examination and provision of
objective evidence that the particular requirements for a specific
intended use are fulfilled” (ISO/IEC 17025:2005). We addressed
this by employing several classical performance metrics with
definitions and formulas adapted specifically toward the nature
of the different bioinformatics assays (Table 3), which were
evaluated on both a core and extended validation dataset. The
core validation dataset was constructed by means of in-house
sequencing of a selection of 67 samples from the global collection
of 107 N. meningitidis strains maintained at the University of
Oxford (Bratcher et al., 2014), because it contains strains that
encompass much of the genetic diversity encountered within
Belgium and therefore can be considered as representative for
our country. Moreover, this collection has been extensively
characterized and high-quality genotypic information is available
for many relevant assays such as cgMLST and serogrouping,
thereby providing a database standard to compare results of our
bioinformatics workflow against. The extended validation dataset
was composed by selecting 64 samples from publicly available
NGS data, and therefore allowed to expand the validation
scope to genotypes underrepresented in this reference collection
and/or sequenced through different (Illumina) platforms. The
Y and W135 serogroups are a notable example of recently
endemic cases in Belgium that are underrepresented in the global
collection of 107 N. meningitidis samples. Because no high-
quality genotypic information was however available for the
sequence typing assay for this dataset, we employed an alternative
reference based on results obtained through bioinformatics tools
and resources commonly used and adopted by the scientific
community (Hendriksen et al., 2018), such as the suite of
tools for pathogen typing and characterization of the Center
for Genomic Epidemiology (Deng et al., 2016) and PubMLST
(Jolley and Maiden, 2010), which were used as a tool standard
to compare the results of our bioinformatics workflow against.
The same approach was also taken for the core validation dataset
to evaluate consistency between the database and tool standard,
and because high-quality genotypic information was not available
for all bioinformatics assays of the core validation dataset such as
resistance gene characterization.

Results for the different performance metrics are presented
in Tables 4, 5 for the core and extended validation datasets,
respectively, and generally demonstrate high to very high
performance in line with results obtained from other case studies

(Lindsey et al., 2016; Kozyreva et al., 2017; Yachison et al., 2017;
Holmes et al., 2018; Portmann et al., 2018). Repeatability and
reproducibility were defined as agreement of within-run and
between-run replicates, and evaluate concordance between runs
of the bioinformatics workflow on either the same NGS dataset,
or a different NGS dataset that was generated for the same
sample and/or library, respectively. Repeatability was always
100% for all assays for both the core and extended validation
datasets. Although certain components of the workflow employ
heuristics to accelerate the computation, they do not appear
to have an effect on the final results. Reproducibility could
only be evaluated for the core validation dataset, and was also
found to be very high reaching values of 100, 99.65, and 99.50%
for the resistance gene characterization, sequence typing, and
serogroup determination assays, respectively. The small number
of discrepancies between sequencing runs could be traced back
to differences between runs A and B/C, whereas results of runs
B and C were always much more concordant, as illustrated for
the sequence typing assay in Figure 2. This could potentially
indicate a library preparation effect because runs B and C share
the same libraries, sequencing instrument, and operator, but
the difference is too small to make any definitive observations
and could also be explained by stochastic variation or the
lower quality of some samples in sequencing run A (see the
section “Results”). Accuracy and precision were defined as the
likelihoods that results are correct and truly present, respectively.
Sensitivity and specificity were defined as the likelihoods that
a result will be correctly picked up when present, and not
falsely be picked up when not present, respectively. These four
performance metrics all require the classification of results of
the different bioinformatics assays as either TP, FN, TN, or FP,
for which assay-specific definitions were formulated (Table 3).
Classification also requires to use a reference that represents the
best possible approximation of the “truth,” for which we used
either a database or tool standard (see above). This approach
differs from the one employed by Kozyreva et al. (2017),
where both standards were used without discrimination for the
validation of the bioinformatics component, but for which we
consider differentiation relevant to indicate whether performance
is evaluated on high-quality genotypic information or rather
widely used and adopted bioinformatics tools. Note that our
implementation of accuracy for bioinformatics assays also differs
from other studies where this was defined as all correct results
divided by all results (Kozyreva et al., 2017; Mellmann et al.,
2017; Yachison et al., 2017), whereas we adopted the more
classically employed definition of all correct classifications (TP+
TN) divided by all classifications (TP+FN+TN+FP) (Hardwick
et al., 2017), thereby also incorporating results from the negative
controls into the calculation of this metric. Additionally, we
introduced precision as a performance metric rather than using
this term to refer to both repeatability and reproducibility
(Kozyreva et al., 2017). This metric is of particular interest
because it does not incorporate TN and is more informative
than the sensitivity for bioinformatics assays for which an
imbalance between the number of positive and negative classes
exists, such as is for instance the case for all resistance gene
characterization assays. These different performance metrics
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therefore all provide complementary information, for which it
can be helpful to consider that “accuracy and precision provide
insight into completeness, whereas sensitivity and specificity
measure completeness” (Olson et al., 2015).

For the resistance gene characterization assay, accuracy,
precision, sensitivity, and specificity could not be calculated for
neither the core nor extended validation datasets for the database
standard because no such information was available. They could
be calculated for the ResFinder, CARD, and NDARO databases
(with the exception of precision and sensitivity for the extended
validation dataset for NDARO due to the lack of TP results)
for both the core and extended validation datasets for the tool
standard, and generally displayed very high performance (all
values >99%), with the exception of precision for the CARD
database that was lower (∼87.50%) due to the presence of
one FP in all samples that most likely represents an artifact
from the RGI tool (see the section “Results”). For the sequence
typing assay, precision and specificity displayed perfect scores of
100% for the core validation dataset for the database standard.
Accuracy (98.62%) and sensitivity (97.12%) were only slightly
lower, and could be explained by the presence of some FN
(i.e., the allele detected by the workflow does not match the
database standard). These were, however, due to no alleles being
present for some loci in the database standard (i.e., missing
data) rather than real mismatches (Figure 3), implying that
both accuracy and sensitivity are underestimated. Precision and
specificity also displayed perfect scores of 100% for both the core
and extended validation datasets for the tool standard. Accuracy
and sensitivity were again slightly lower, but still attained very
high values of 99.37 and 98.68%, and 99.78 and 99.52%, for
the core and extended validation datasets, respectively. This was
similarly explained by the presence of some FN (i.e., the allele
detected by the workflow does not match the tool standard),
which were in this case due to a different manner between the
workflow and tool standard of handling loci for which there were
multiple exact matches rather than real mismatches (Figure 4).
Both the accuracy and sensitivity are hence again underestimated.
Unexpectedly, accuracy and sensitivity were higher for the tool
standard than the database standard for the core validation
dataset because the reference tool, like our workflow, did manage
to identify an allele for all loci for which an identifier was missing
in the database standard. For the serogroup determination assay,
precision and specificity displayed perfect scores of 100% for
both the core and extended validation datasets for the database
standard. Accuracy and sensitivity were lower, but still attained
high values of 95.27 and 90.55%, and 96.09 and 92.19%, for the
core and extended validation datasets, respectively. Similar to the
sequence typing assay, these lower scores were caused by some
FN (i.e., the detected serogroup does not match the database
standard), which were, however, not due to missing data in the
database standard but actual mismatches between the workflow
and database standard. These mismatches could potentially
be explained by the complexity of this assay that represents
an algorithmic layer on top of the more “simple” sequence
typing (see the section “Materials and Methods”), or alternatively
inaccurate information in the database standard (see also below).
Nevertheless, values for these performance metrics are in line

with other reported results for in silico serotyping such as
for instance witnessed in the comparison of commonly used
in silico serotyping tools for Salmonella (Yachison et al., 2017).
Accuracy, precision, sensitivity, and specificity all displayed
perfect scores of 100% for both the core and extended
validation datasets for the tool standard. Since the reference
tool (i.e., the PubMLST sequence query tool) only presents
results for the individual capsule loci, this indicates both our
workflow and tool standard experience the same difficulties in
predicting the serotype.

The following considerations should be taken into account for
our validation strategy. First, all bioinformatics assays are at the
level of the genotype, which does not necessarily correspond with
the phenotype. It is for instance well documented that antibiotics
resistance genes are not always expressed, and therefore not
always result in the corresponding resistant phenotype (Didelot
et al., 2012; Holmes et al., 2018; Rossen et al., 2018). The
same has been witnessed for the serotype (Lindsey et al., 2016;
Yachison et al., 2017). Only systematic and long-term monitoring
of genotype versus phenotype relationships will allow to evaluate
their concordance (Koser et al., 2012; Ellington et al., 2017),
but in the genomic era, a paradigm shift should be envisaged
where currently existing methods for pathogen typing based
on the phenotype are phased out by pathogen characterization
based on the genotype, despite issues for backward compatibility
with traditional methods (Yachison et al., 2017). Second, some
performance metrics could easily be misinterpreted or even
manipulated in certain contexts. For instance, the resistance
characterization assay for the ResFinder database had a perfect
accuracy of 100% for both the core and extended validation
datasets for the tool standard, but only very few TP existed
because N. meningitidis typically only harbors a limited number
of antibiotics resistance genes (Rouphael and Stephens, 2012).
This implies that most database genes will never be detected but
still contribute to the overall accuracy through an overwhelming
number of TN compared to TP. Populating any database with
irrelevant genes would therefore artificially increase the accuracy
of any such assay, and only properly considering and evaluating
other metrics such as precision and sensitivity can help to
put this in its proper context (Hardwick et al., 2017). Third,
evaluation by means of a database standard is preferred over a
tool standard because the former contains high-quality genotypic
information, but the current reality is that such databases are
still scarce and/or incomplete. The database standard employed
for N. meningitidis still contained some missing data, since
both our workflow and the reference tool managed to identify
several loci for which no identifier was stored in the database
standard. Additionally, it always remains a possibility for any
biobank that mutations are introduced over time due to micro-
evolutionary events caused by freezing, thawing, and repeated
cultivations of the reference collection leading to differences
(Mellmann et al., 2017). This highlights that the construction
of “gold standard” databases will greatly benefit the scientific
community by providing a high-quality reference standard to
which results of different bioinformatics methods and workflows
can be compared against, for which notable efforts are already
ongoing within the microbial community such as spearheaded
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by the Global Microbiological Identifier initiative, and which
are expected to aid future validation efforts (Timme et al.,
2017). Fourth, the current validation strategy is at the level of
the isolate, and does not consider any phylogenomic analysis
comprising many isolates. The validation of such a bioinformatics
assay, however, represents an additional layer of complexity and
constitutes an entire study on its own, first requiring consensus
in the scientific community about how WGS workflows for
isolates can be validated, to which our study represents a
significant contribution.

Because access to the required bioinformatics expertise and/or
resources remain obstacles for many NRCs and other laboratories
from smaller and/or less developed countries (WHO, 2018), our
bioinformatics workflow has been made available as a “push-
button” pipeline (compatible with all data generated through
the Illumina technology) accessible free-of-charge at the public
Galaxy instance of our institute8 for non-profit and academic
usage by this target audience. Nevertheless, properly evaluating
performance through a validation strategy as described in this
study is paramount when using this resource to ensure high-
quality results are obtained on a set of samples that contain a
representative (sub)set of genetic variation typically encountered
in the population under investigation. Although both the larger
volume and genetic diversity of samples expected to be analyzed
by NRCs and other laboratories from larger and/or more
developed countries implies that this resource will not scale well
with their requirements, our “push-button” implementation can
still be used by the latter as a showcase to demonstrate how
the bioinformatics workflow was locally implemented and made
available to specialists of the Belgian NRC Neisseria, since they
employ the workflow similarly through an in-house instance of
Galaxy (the volume of samples in Belgium is currently not high
enough to motivate automated workflow execution nor does it
present issues with scalability when using the Galaxy framework).
A training video is also available as a tutorial for using this
resource (see Supplementary Material).

CONCLUSION

We reported a validation strategy focusing specifically on the
bioinformatics analysis for clinical microbiological isolate WGS
data, demonstrating generally high to very high performance,
highlighting the added value and feasibility of employing WGS
with the aim of being integrated into routine use under a
quality system in an applied public health setting. Our validation
strategy can be extended to other bioinformatics assays, WGS
workflow components (e.g., library preparation, etc.), different
WGS workflows and/or sequencing technologies, and pathogens.
Several similar endeavors are currently being undertaken for
other pathogens of interest for other Belgian NRCs and NRLs,
and will in the future help to narrow the gap between the widely
acclaimed success of WGS in research environments and its
practical implementation in applied settings.

8https://galaxy.sciensano.be

DATA AVAILABILITY

The datasets supporting the conclusions of this study have
been deposited in the NCBI SRA under accession number
SRP137803 (in-house sequenced data), Zenodo (http://doi.org/
10.5281/zenodo.1575931) (results of all bioinformatics analysis
for both the core and extended validation datasets), and are
included within this manuscript and its Supplementary Files
(results of the validation for both the core and extended
validation datasets of all bioinformatics assays).

AUTHOR CONTRIBUTIONS

KV, NR, and SD conceived and designed this study. KV
supervised the project. SD supervised the data generation. BB
constructed the bioinformatics workflow and performed all
bioinformatics analysis. RW, QF, and JV contributed toward
the algorithmic implementation of the bioinformatics workflow.
P-JC, WM, and SB collected and isolated DNA of N. meningitidis
samples to be used for the validation, and provided specialist
feedback on the required functionalities of the bioinformatics
workflow. BB and KV conceived the validation strategy, for
which SD provided input and feedback. BB and KV analyzed the
validation results, and wrote the draft for the manuscript. All
authors aided in interpretation of the results and writing of the
final manuscript.

FUNDING

This work was supported by the project “NGS & Bioinformatics
Platform” funded by Sciensano (Sciensano RP-PJ – Belgium)
[0001252].

ACKNOWLEDGMENTS

The authors wish to acknowledge the University of Oxford and
the Norwegian Institute of Public Health (WHO Collaborating
Centre for Reference and Research on Meningococci) for kindly
sharing the reference strains used for the core validation dataset
described in this study. This publication made use of the
PubMLST website (https://pubmlst.org/) developed by Keith
Jolley (Jolley and Maiden, 2010) and sited at the University
of Oxford. The development of that website was funded by
the Wellcome Trust. The authors also wish to acknowledge
Maud Delvoye and Stefan Hoffman for assistance in the library
preparation and data generation performed for this study, and
the two reviewers for their interesting comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmicb.2019.
00362/full#supplementary-material

Frontiers in Microbiology | www.frontiersin.org 17 March 2019 | Volume 10 | Article 362

https://galaxy.sciensano.be
http://doi.org/10.5281/zenodo.1575931
http://doi.org/10.5281/zenodo.1575931
https://pubmlst.org/
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00362/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00362/full#supplementary-material
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00362 March 4, 2019 Time: 19:40 # 18

Bogaerts et al. Validation Bioinformatics Workflow for WGS

REFERENCES
Aanensen, D. M., Feil, E. J., Holden, M. T. G., Dordel, J., Yeats, C. A., Fedosejev, A.,

et al. (2016). Whole-genome sequencing for routine pathogen surveillance
in public health: a population snapshot of invasive Staphylococcus aureus in
Europe. MBio 7:e00444-16. doi: 10.1128/mBio.00444-16

Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Čech, M.,
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