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The leaderless bacteriocin Garvicin KS (GarKS) is a potent antimicrobial, being active
against a wide range of important pathogens. GarKS production by the native
producer Lactococcus garvieae KS1546 is, however, relatively low (80 BU/ml) under
standard laboratory growth conditions (batch culture in GM17 at 30◦C). To improve
the production, we systematically evaluated the impact of different media and media
components on bacteriocin production. Based on the outcomes, a new medium
formulation was made that increased GarKS production about 60-fold compared to
that achieved in GM17. The new medium was composed of pasteurized milk and
tryptone (PM-T). GarKS production was increased further 4-fold (i.e., to 20,000 BU/ml)
by increasing the gene dose of the bacteriocin gene cluster (gak) in the native producer.
Finally, a combination of the newly composed medium (PM-T), an increased gene
dose and cultivation at a constant pH 6 and a 50–60% dissolved oxygen level
in growth medium, gave rise to a GarKS production of 164,000 BU/ml. This high
production, which is about 2000-fold higher compared to that initially achieved in GM17,
corresponds to a GarKS production of 1.2 g/L. To our knowledge, this is one of the
highest bacteriocin production reported hitherto.

Keywords: garvicin KS, leaderless bacteriocins, bacteriocin production, antimicrobial production, lactic acid
bacteria, Lactococcus garviae, growth media

INTRODUCTION

The decreasing effectiveness of antibiotics has become a serious worldwide problem due to the
emergence of multidrug-resistant bacteria (Bush et al., 2011; Laxminarayan et al., 2016). Despite
that, the number of new commercially available antibiotics is dwindling. This is partly due to
the fact that developing new antibiotics is a costly process (Holmes and Mauer, 2016), and most
biopharma companies are therefore reluctant to invest large money in new antibiotics that soon
may be useless because of resistance development. Consequently, there is an urgent need of
cost-effective and efficient antimicrobial agents with different killing mechanisms to overcome
multidrug-resistant bacteria.
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Bacteriocins are ribosomally synthesized antibacterial
peptides produced by bacteria, probably as a means to compete
for nutrients and habitats (Cotter et al., 2005). So far, hundreds
of bacteriocins have been isolated and characterized. Most
of them have narrow-spectrum activity, but some are active
against a broad-spectrum of bacteria including food-spoiling
bacteria as well as important pathogens (Chikindas et al., 1993;
de Arauz et al., 2009). Bacteriocins produced by lactic acid
bacteria (LAB) are particularly interesting due to LAB’s safe
status as they are commonly found in our foods (Grosu-Tudor
et al., 2014; Henning et al., 2015) and the gastrointestinal tract
of man (Millette et al., 2008) and animals (O’Shea et al., 2009).
Most bacteriocins are membrane-active peptides, killing sensitive
bacteria by membrane disruption after selective interaction with
specific membrane receptors (Oscariz and Pisabarro, 2001;
Hasper et al., 2006; Diep et al., 2007; Nissen-Meyer et al., 2009;
Tymoszewska et al., 2017). This mode of action is different from
most antibiotics, which often act as enzyme-inhibitors (Davis,
1987; Bush and Jacoby, 2010). For this reason, antibiotic-resistant
pathogens are often sensitive to bacteriocins, thus making the
latter very attractive as alternative or complementary drugs
for therapeutic use, especially to fight antibiotic resistance.
Nevertheless, poor production is often a bottleneck in large-
scaled production of bacteriocins. Previous studies have shown
that bacteriocin production can be increased by optimization of
growth conditions such as cultivation temperature, pH, aeration
and growth medium (Biswas et al., 1991; Parente and Ricciardi,
1994; Aasen et al., 2000; Cabo et al., 2001; Nel et al., 2001; Guerra
and Pastrana, 2002; Penna and Moraes, 2002; Tafreshi et al.,
2010). In addition, various heterologous expression systems have
been reported for increased bacteriocin production (Horn et al.,
2004; Kong and Lu, 2014; Jimenez et al., 2015; Jiang et al., 2016;
Mesa-Pereira et al., 2017).

Recently, we have reported the identification and charac-
terization of a novel three-peptide bacteriocin called garvicin
KS (GarKS), produced by L. garvieae KS1546, a strain isolated
from raw bovine milk in Kosovo (Ovchinnikov et al., 2016).
A gene cluster (gak) containing the three structural genes
(gakABC) and genes likely involved in immunity (gakIR) and
transport (gakT) has been identified in the genome (Ovchinnikov
et al., 2016). GarKS is active against a broad spectrum of
bacteria such as Listeria, Staphylococcus, Bacillus, Streptococcus
and Enterococcus (Ovchinnikov et al., 2016). Despite its great
potential, production of GarKS is relatively moderate under
standard laboratory growth conditions. To overcome this
problem, we conducted a multi-factorial optimization study that
resulted in over 2000-fold increased bacteriocin production. This
approach includes medium optimization, increased gene dose
and cultivation optimization.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
All bacterial strains and plasmids used in this study are listed in
Table 1. Unless otherwise stated, the native bacteriocin producer
L. garvieae KS1546 was grown in M17 broth supplemented with

TABLE 1 | Bacterial strains, plasmids and primers used in this study.

Strain,
plasmid or
Primer

Description Source/
reference

Strains

L. garvieae
KS1546

Wild type strain, native GarKS bacteriocin
producer

[31]

L. garvieae
KS1546-pA2T

L. garvieae KS1546 containing the
recombinant plasmid pA2T

This study

L. lactis IL
1403-pA2T

L. lactis 1403 containing the recombinant
plasmid pA2T

This study

L. garvieae
KS1546-pMG

L. garvieae KS1546 containing the empty
plasmid pMG36e

This study

L. lactis IL
1403-pMG

L. lactis IL 1403 containing the empty plasmid
pMG36e

This study

Escherichia coli
NEB 10-beta

Subcloning host strain New England
Biolab

Plasmids

pMG36e EmR, E. coli-Lactococcus shuttle vector [48]

pABC pMG36e containing the structural genes
gakABC, EmR

This study

pA2T pMG36e containing the entire gak cluster; EmR This study

Primers

gakF 5′-CGTAATTCGAGCTCCACCTC
TGCTGTTTTTC-3′

This study

gakR 5′-AGACTTTGCAAGCTTGCAAT
ATTACGTTTGTGGG-3′

This study

gakR1 5′-AGACTTTGCAAGCTTTTAATCC
TGACTCATCAGATATTC-3′

This study

gakSeqF 5′-GTACATAGTACCTCAAAATTAT TTGAGC-3′ This study

gakseqF1 5′-GCAGAGCTTTAGTGTGGGAT-3′ This study

gakseqF2 5′-CGCTATTGCTTCTGAATATATA GTGGAC-3′ This study

gakseqF3 5′-GGCACTTTTACAAGAAATAGG ACT-3′ This study

gakseqR 5′-AGTAATTGCTTTATCAACTGCT GC-3′ This study

pMGF 5′-CATCCTCTTCGTCTTGGTAGC-3′ This study

pMGR 5′-GGCAGCTGATCTCAACAATG-3′ This study

0.5% glucose (GM17) under static condition at 30◦C. NEB R©

10-beta E. coli (New England Biolabs, Beverly, MA, United States)
was grown in Luria-Bertani (LB) broth with shaking (200 rpm)
at 37◦C. Bacterial culture media and supplements were
obtained from Oxoid Ltd. (Hampshire, United Kingdom). When
necessary, erythromycin (Sigma-Aldrich Inc., St. Louis, MO,
United States) was added at 200 µg/ml for E. coli and at 5 µg/ml
for LAB strains.

Growth Media for GarKS Production
The influence of different growth media on GarKS production
was assessed in batch cultures under static condition at 30◦C.
Following commercial complex media were used: GM17, deMan,
Rogosa and Sharpe (MRS), Todd-Hewitt (TH) and Brain Heart
Infusion (BHI). To make new milk-based medium formulations,
skim milk (5%, w/v) or pasteurized skim milk was combined
with an equal volume of GM17, MRS, TH, and BHI, or with
tryptone (10% w/v). Skim milk (SM) was prepared by using milk
powder (Oxoid, United Kingdom) while pasteurized milk (PM)
was obtained from a dairy company in Norway, Q-milk.
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DNA Manipulation
The gak cluster responsible for production of GarKS was
amplified from genomic DNA of L. garvieae KS1546 using
Phusion High-fidelity DNA polymerase (New England Biolabs,
United Kingdom) and the primers gakF and gakR1 (Table 1). The
genes gakABC encoding the three peptides constituting GarKS
were amplified using the primers gakF and gakR (Table 1).
Restriction sites SacI and HindIII were introduced at the 5′end
of forward and reverse primers. NEBuilder HiFi DNA assembly
cloning kit (New England Biolabs) was used to assemble the
PCR fragments into the plasmid pMG36e (van de Guchte et al.,
1989). Plasmid DNA was amplified in E. coli NEB R© 10-beta
before being transferred into L. garvieae KS1546 or L. lactis
IL1403 cells using a Gene PulserTM (Bio-Rad Laboratories,
Hercules, CA, United States). Primers used in this study were
obtained from Life Technologies AS (Thermofisher Scientific,
Oslo, Norway). The integrity of all recombinant plasmids was
confirmed by Sanger DNA sequencing (GATC Biotech AG;
Constance, Germany), which were sequenced using primers
gakseqF, gakseqF1, gakseqF2, gakseqF3, gakseqR, pMGF, and
pMGR (Table 1).

Optimization of Bacteriocin Production
in Bioreactor Conditions
The effects of pH and aeration on GarKS production were tested
at various constant pHs (5, 6, and 7), and at controlled aeration
in a fully automated 2.5 L Minifors 1 bioreactor (Infors AG,
Switzerland). The pH was controlled by automatic addition of
5 M HCl or 5 M NaOH. The aeration was maintained by
purging sterile air into culture medium. Temperature (30◦C)
and agitation speed of 150 rpm were maintained constant for
all experiments. Samples of 2 ml were withdrawn aseptically
every 2 h for determination of bacteriocin production and cell
growth (see below).

Determination of Bacteriocin Production
and Cell Growth
Bacteriocin activity was measured from heat-inactivated (100◦C
for 10 min) cell-free culture supernatants. Bacteriocin activity
was quantified using a microtiter plate assay as previously
described (Jimenez et al., 2015; Ovchinnikov et al., 2016). One
bacteriocin unit (BU) was defined as the minimum amount of the
bacteriocin that inhibited at least 50% of growth of the indicator
(L. lactis IL103) in a 200 µl culture volume. Growth curve was
determined by measuring turbidity of culture at OD600 every
30 min for 24 h or by counting colony forming units (CFU)
from serially diluted bacterial cultures on agar plates. Synthetic
GarKS peptides were purchased from Pepmic Co., LTD., China,
with GarA of about 85% purity and GarB and GarC of at least
95% purity. (Higher purity of GarA could not be synthesized due
to constant problems occuring during synthesis/purification).
GarKS composed of these synthetic peptides in equal amounts
(1:1:1, w/v), has a specific activity of 130–140 BU/µg. This
specific activity was used to estimate the amount of GarKS
produced in cultures.

RESULTS

GarKS Production in Complex Media
Two different ways were used to describe the production of
garvicin KS in a culture: production per ml expressed as
bacteriocin unit per ml (BU/ml), and production per 108 cells
expressed as BU/108 cells, the latter being referred to as
specific production. L. garvieae KS1546 (hereafter shortened as
KS1546) was routinely grown in the complex medium GM17
at 30◦C without agitation, and GarKS production was typically
of 80 BU/mL after 7–12 h growth. To examine whether the
level of production was medium-dependent, KS1546 was grown
in different complex media (MRS, BHI, and TH). Highest
production was found between 7–12 h of growth in all tested
media except for TH where bacteriocin production appeared
constantly low for all time-points tested (Figure 1A). Relative to
GM17, GarKS production increased 2 to 4-fold in MRS, while
it was about 2 to 4-fold less in BHI and TH (Figure 1A). Cell
growth was best in GM17 (30× 108 cells/ml) but poorest in MRS
(10 × 108 cells/ml) after 24 h at 30◦C (Table 2). The growth in
MRS gave highest specific production, 32 BU/108 cells, which is
about 12 fold higher than that obtained when cells were grown in
GM17 (2.7 BU/108 cells).

GarKS Production Increased in
Milk-Based Media
It is well known that bacteria are ecologically adapted to the
environments where they normally thrive. Since the producer
KS1546 was isolated from raw milk (Ovchinnikov et al., 2016), we
examine the possibility to use skim milk (SM) as growth medium.
Bacteriocin production was increased 2-fold in SM (160 BU/ml)
compared to GM17 (Figure 1B). However, cell growth was
remarkably poor in skim milk (2 × 108 cells/ml) (Table 2),
resulting in a relatively high specific production, 80 BU/108 cells.
The poor growth suggests that some growth factors were present
in complex media but absent in SM. Therefore, we tested the
mixtures (50:50; v/v) of skim milk and complex media (GM17,
MRS, BHI, and TH). As a result, the bacteriocin production was
increased 16 times in skim milk combined with TH (SM-TH)
and 8 times in SM-GM17, compared to the production in skim
milk (SM) (Table 1 and Figure 1B). The bacteriocin production
in SM-TH and SM-GM17 was 2600 BU/ml and 1280 BU/ml
after 9 h of incubation, respectively. On the other hand, no
significant increase of GarKS in SM-MRS (320 BU/ml) and SM-
BHI (160 BU/ml) was found in all time points (Figure 1B). All
medium formulations gave similar cell densities, i.e., between
28 × 108

−30 × 108 cells/ml (Table 1). In terms of specific
production, SM-TH gave the highest while SM-BHI gave the
lowest, 90 BU/108 cells and 5.5 BU/108 cells, respectively.

The results above indicate that bacteriocin production was
significantly influenced by some specific factor(s)/nutrient(s),
which are present in TH and GM17, but absent in MRS and
BHI. Tryptone, a tryptic digest of milk protein casein (Oh et al.,
1995), is one of the nutrients found in GM17 and TH, but not
in MRS and BHI. The final concentration of tryptone in GM17
and TH broth is 0.5 and 2%, respectively. To examine whether
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FIGURE 1 | GarKS production by the native producer in different complex growth media (A), and in skim milk (SM) combined with complex growth media (B). Each
culture was started by adding 1% (v/v) culture inoculum to 5 ml growth medium and then incubated at 30◦C without shaking. Bacteriocin activity was measured at
different time points. Standard deviations were based on triplicate assays.

tryptone could improve bacteriocin production in combination
with SM, we made formulations with different v/v ratios of SM
and 10% tryptone (w/v). Highest bacteriocin production (about
2,600 BU/ml) was achieved when they were mixed in equal
volumes (50%; v/v); this mixture had a final concentration of
tryptone at 5% (w/v) (Figure 2). Under these circumstances,
final cell density was comparable to that in GM17, i.e., about

30 × 108 cells/ml (Table 2), giving a relatively high specific
production, 87 BU/108 cells, which is comparable to that
in SM-TH (90 BU/108 cells). The formulation composed
of SM (50%; v/v) and a final 5% of tryptone (w/v) is
hereafter called SM-T.

Yeast extract is a rich source of vitamins, minerals, and amino
acids, which often improves bacterial growth. We examined the
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TABLE 2 | Influence of growth media, increased gene dose and culture conditions
on bacteriocin production.

Bacteriocin

production Cell growth Specific activity

Strain Growth medium (BU/ml)c (×108 cells/ml)c (BU/108 cells)d

Native producer
L. garvieae KS1546

GM17a 80 (1) 30 (1) 2.7 (1)

MRSa 320 (4) 10 (0.3) 32 (12)

BHIa 20 (0.25) 15 (0.5) 1.3 (0.5)

THa 20 (0.25) 20 (0.7) 1.0 (0.4)

SMb (10%, w/v) 160 (2) 2 (0.1) 80 (30)

Tryptonea (10%, w/v) 80 (1) 3 (0.1) 27 (10)

SM-THb 2600 (32.5) 29 (1) 90 (33)

SM-GM17b 1280 (16) 30 (1) 43 (16)

SM-MRSb 320 (4) 28 (0.9) 11 (4.2)

SM-BHIb 160 (2) 29 (1) 5.5 (2)

SM-Tb 2600 (32.5) 30 (1) 87 (32)

SM-T-YEb 1300 (16) 30 (1) 43 (16)

PM-Tb 5100 (64) 35 (1.2) 146 (54)

The recombinant
producer
L. garvieae
KS1546-pA2T

PM-Tb (uncontrolled
pH)

20,000 (259) 35 (1.2) 570 (210)

PM-Tb (constant pH
5)

2600 (32,5) 32 1.1) 81 (30)

PM-Tb (constant pH
6)

82,000 (1025) 70 (2.3) 1170 (430)

PM-Tb (constant pH
7)

41,000 (512) 65 (2.2) 630 (230)

PM-Tb (constant pH
6 and aeration)

164,000 (2050) 100 (3.3) 1640 (610)

The bacteriocin activity and cell growth from complex growth media (a) and milk
based media (b) were measured after 7 and 9 h of incubation, respectively. c: Values
are average of triplicate assays, numbers in parentheses are fold increased or
decreased in relation to the value in GM17. d: numbers in parentheses are fold
increased or decreased in relation to the value in GM17.
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FIGURE 2 | Bacteriocin production in a medium composed of skim milk and
tryptone. Different ratios of skim milk and tryptone were made in the
formulation by mixing an increasing portion of skim milk (10%; w/v; from 1
volume to 9 volumes) with a corresponding decreasing portion of tryptone
(10%, w/v; 9 volumes to 1 volume). For growth conditions, see legend in
Figure 1. The bacteriocin activity was measured after 9 h of culture
incubation. Standard deviations were based on triplicate assays.

effect of yeast extract (YE) in combination with SM-T. The
resulting formulation, SM-T-YE (SM-T containing 1% (w/v)
yeast extract) yielded the same cell density as in SM-T

(30 × 108 cells/ml), but bacteriocin production was reduced by
50% (Table 2). Yeast extract was therefore excluded from the
growth medium.

Although SM-T appeared as a good medium for the
producer, we constantly encountered the problem associated with
caramelization of milk sugars in skim milk during autoclaving,
which might have detrimental effects on nutrition value. To avoid
this problem, the autoclaved skim milk in SM-T was replaced
with an equal amount of pasteurized skim milk, resulting in a new
medium termed pasteurized milk–tryptone (PM-T). The content
in pasteurized milk (Q-milk) according to the manufacturer
(Q-Meieriene AS, Bergen, Norway) is, g/l: fat, 5; carbohydrate,
45; protein, 35; salt, 1; calcium, 1.3; vitamin B2, 0.001; and
vitamin B12, 0.7× 10−5. Indeed, cell growth in PM-T was slightly
increased from 30 × 108 cells/ml to 35 × 108 cells/ml, and
GarKS production was increased two-fold in comparison to that
in SM-T (Table 2).

Taken together, compared to other media analyzed so far,
PM-T gave the best results in all aspects assessed: highest
production (5100 BU/ml), highest cell density (35× 108 cells/ml)
and highest specific production (146 BU/108 cells).

GarKS Production Increased by
Higher Gene Dose
The three structural genes (gakABC) encoding the three peptides
that constitute GarKS are clustered with genes probably involved
in immunity (gakIR) and transport (gakT). First we explored
the possibility to increase bacteriocin production by increasing
only the gene dose of structural genes gakABC in the native
producer. The recombinant plasmid pABC carrying structural
genes gakABC was constructed to deliver high gene dose in
the native producer (Table 1). However, we failed to get any
transformants even after several attempts. Similar negative result
(i.e., no transformants) was obtained when we attempted to
transfer pABC into the heterologous host L. lactis IL1403 (data
not shown). Probably, increased gene dose of the structural genes
might override the immunity or/and the transporter in the native
producer, leading to toxicity to cells. Consequently, the plasmid
pA2T carrying the entire gak locus including the genes involved
in immunity and transport was constructed pA2T (Table 1). The
resulting plasmid was first transferred into L. lactis IL1403 to
assess the functionality of the locus. As expected, transformation
was successful and bacteriocin production was detected in
transformed cells (data not shown), confirming the functionality
of the gak locus. Next, the plasmid was transferred into the
native KS1546 and the clone (KS1546-PA2T) was assessed for
bacteriocin production. Using PM-T as growth medium, GarKS
production by the recombinant producer KS1546-pA2T was
found to increase to 20,000 BU/mL, which is about 4 times more
than the production without increased gene dose (native KS1546
in PM-T), and about 250-fold more than that initially obtained in
GM17 (native KS1546 in GM17) (Table 2).

To compare their growth profiles, the native and recombinant
producers were grown in MRS under similar growth conditions
and their growth was measured spectrophotometerically. (The
medium PM-T was not used due to the turbidity of milk
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FIGURE 3 | Temporal growth profile of the recombinant producer
(KS1546-pA2T), and the native producer with empty plasmid (KS1546-pMG)
or without plasmid (L. garvieae KS1546). Data were acquired from triplicate
assays. Standard deviations are within a range ± 0.01 to ± 0.05.

particles causing problem for spectrophotometric reading). The
recombinant producer KS1546-pA2T showed a prolonged lag
growth phase compared to the native GarKS producer or
the native GarKS producer containing the empty plasmid.
Nevertheless, KS1546-pA2T reached eventually about the same
high cell density as the wild type control cells when it entered
stationary growth phase (see Figure 3).

The plasmid map of pABC (A) and pA2T (B), which were used
to increase the gene dose of the structural genes (gakABC) and the
gak cluster in the native producer, respectively.

Optimization of Culture Conditions in a
Bioreactor Increased GarKS Production
The initial pH at 7 was declined to 4.8 when the recombinant
producer KS1546-pA2T was grown in PM-T for 6–7 h at
30◦C (data not shown). To examine whether pH reduction
could have a negative impact on cell growth and bacteriocin
production, we grew the recombinant producer (KS1546-pA2T)
in PM-T in a bioreactor with constant pH at 5, 6, or 7.
Indeed, pH had a great impact on cell growth and bacteriocin
production. Highest cell growth (70 × 108 cells/ml) and
bacteriocin production (82,000 BU/ml) were found at constant
pH 6 (Table 2). Bacteriocin production measured at all time-
points was also highest at constant pH 6 (Figure 4). Cell
growth and bacteriocin production were lowest at constant
pH 5. The impact of constant pH also reflects in specific
production, that amounted to 1170 BU/108 cells at pH 6 but
81 BU/108 cells at pH 5.

Aeration is defined as dissolved oxygen (DO) percentage
in a culture medium. We observed that the initial DO level
at 50–60% was declined to 10% after 2 hours of cell growth
in PM-T medium and at constant pH 6. The effect of
aeration on GarKS production was therefore examined by
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FIGURE 4 | GarKS production of the recombinant producer (KS1546-pA2T)
in cultivation at constant pH (pH at 5, 6, or 7) or at constant pH 6 and aeration
(50−60% dissolved oxygen). Each culture was started by adding 2% (v/v)
culture inoculum in 1.5 l of PM-T medium containing erythromycin at final
concentration of 5 µg/ml. Standard deviations were based on
triplicate assays.

purging the atmospheric sterile air into the growth medium.
With aeration kept at 50–60% and constant pH at 6,
highest cell growth (100 × 108 cells/ml) as well as highest
bacteriocin production (164,000 BU/ml) and highest specific
production (1640 BU/108 cells) were obtained (Table 2 and
Figure 4). This level of bacteriocin production (164,000 BU/ml)
was about 2000-fold more than the initial production in
GM17 which was 80 BU/ml, and about 600-fold more
in terms of specific production (1649 BU/108 cells vs.
2.7 BU/108 cells, respectively).

We have previously shown that synthetic GarKS is
functionally comparable to the biologically produced counterpart
(Ovchinnikov et al., 2016). Synthetic GarKS has a specific activity
of 130–140 BU/µg. Hence, the production of 164,000 BU/ml
is equivalent to 1.2 g GarKS per liter which is a level of
commercial importance.

DISCUSSION

GarKS is potent against a set of important pathogens including
Staphylococcus, Bacillus, Listeria, Streptococcus, and Enterococcus,
making it very attractive in diverse antimicrobial applications
from food to medicine. Unfortunately, as also for many other
bacteriocins, GarKS is produced at relatively low levels under
normal laboratory growth conditions (Ovchinnikov et al., 2016).
The low production by the native producer can dramatically
hamper potential applications of GarKS as industrial use of
bacteriocins requires high and cost-effective production. We
have shown in this study that optimization of bacteriocin
production by a bacterial strain is a multi-factorial process,
which involves a systematic evaluation of nutritional ingredients
and growth conditions e.g., temperature, pH, and aeration. The
type of growth medium is probably one of the key factors
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in bacteriocin production (Guerra et al., 2005). The complex
media e.g., GM17, MRS, BHI, and TH have been used in
cultivation of LAB because they give relatively good cell growth
under laboratory conditions but not necessary for bacteriocin
production (Mataragas et al., 2004). This was also illustrated
in our study: GarKS production was best in MRS (320 BU/ml)
but poorest in BHI and TH (both 20 BU/ml) while the cell
growth appeared about in the same range in these media
(10−20× 108 cells/ml).

To choose the optimal medium for bacteriocin production
is often an empirical matter. The components from complex
media influencing bacteriocin production are often elusive and
the outcomes might vary significantly dependent on the type
of producers. Nevertheless, some media components have been
shown to enhance bacteriocin production by inducing stress
conditions due to nutrient limitation (Verluyten et al., 2004) or
stabilizing the bacteriocin molecules (Herranz et al., 2001). The
use of commercial complex media (e.g., MRS) is not a cost-
effective approach for large-scale bacteriocin production. For
instance, culture medium could account for up to 30% of the total
production cost in commercial biomolecule production (Rivas
et al., 2004). Accordingly, high costs of complex media will reduce
attractiveness of bacteriocins for commercial application. Our
bacteriocin producer is a strain of L. garvieae isolated from raw
milk and it has the capacity to ferment milk-associated sugars
such as lactose and galactose while another strain of L. garvieae
isolated from intestine of Mallard duck can not (Ovchinnikov
et al., 2016). Milk is a low-cost product relative to complex
media and could be an ideal medium for GarKS producer.
However, the native producer appeared to grow poorly in sole
skim milk. Skim milk is enriched in lactose and galactose as
carbon source but does not contain easily accessed nitrogen-
containing components for bacteria. Thus, the combination of
tryptone and pasteurized skim milk, which was found best for
cell growth, was in line with the notion that tryptone serves
as an enriched source of nitrogen. Further, this formula also
increased bacteriocin production over 30 fold compared to the
growth in GM17.

Increase of gene dose is another means to enhance the
production of biomolecules (Nijland et al., 2010). In the present
study, we observed a 4-fold increase in bacteriocin production
when a plasmid carrying the entire gak locus was introduced
into the native producer. Interestingly, when we attempted to
increase gene dose by introducing the structural genes only (using
the plasmid pABC), no transformed cells were obtained. One
possible explanation for this negative outcome is that expression
of genetic determinants involved in bacteriocin biosynthesis is
often highly fine-tuned to secure immunity and efficient export.
The extra gene dose of the structural genes alone might override
either immunity and/or transporter proteins, leading to toxicity
and cell death. It is worth mentioning that most bacteriocins are
expressed with a leader sequence which is necessary not only
for export but also to keep the bacteriocins in an inactive form
before export. For leaderless bacteriocins, such as GarKS, they
are produced in mature active forms before export, therefore
an intracellular dedicated protection mechanism (immunity) is
crucial for cell survival.

We and others have observed that bacteriocin production
by a certain strain is unstable, and dependent on the culture
conditions applied (Diep et al., 2000; Criado et al., 2006).
Consequently, different growth parameters were examined to
optimize the production of GarKS. LAB are well known for
reducing culture pH due to lactic acid production (Bartkiene
et al., 2015) and this is also true for the GarKS producer.
We found that culture conditions with constant pH 6 favors
the cell growth and a high level of GarKS production.
Similarly, optimal nisin production has been reported at constant
pH 6.5 (Gonzalez-Toledo et al., 2010). The availability of
oxygen also has a great influence on microbial cell growth
and metabolic activities (Garcia-Ochoa and Gomez, 2009).
Microorganisms vary with respect to their requirements and
tolerance toward molecular oxygen. L. garvieae is a facultative
anaerobic microorganism and its metabolic activities have been
reported to differ between aerobic and anaerobic conditions
(Delpech et al., 2017). We observed that the controlled aeration
had a positive effect on the cell growth and bacteriocin
production. Similar results have also been observed for other
bacteriocins. For example, nisin A production by L. lactis
UL719 was enhanced with aeration (Amiali et al., 1998).
On the other hand, aeration has also been reported to
be antagonistic to the production of lactosin S (Mortvedt-
Abildgaard et al., 1995) and LIQ-4 bacteriocin (Kuhnen et al.,
1985), suggesting that the effect of aeration on bacteriocin
production is strain-dependent.

In terms of cost-effectiveness, the medium PM-T contained
tryptone which is a relatively costly component; therefore we
are searching for alternatives to replace tryptone. In preliminary
studies, we have tested a chicken hydrolysate (processed from
a waste product from meat industry) as an alternative low-
cost protein source to produce GarKS. We found that the
recombinant producer grew well in a medium based on
Pasteurized milk and chicken hydrolysate (PM-CH), yielding
a cell density of 30 × 108 cells/ml. However, although GarKS
production in PM-CH was 8 times better than in the complex
media GM17, the production was 8 times less than in PM-T.
Thus, further studies are necessary to optimize a PM-CH-
based medium in order to achieve high and cost-effective
bacteriocin production.

Low bacteriocin production is often a bottle-neck in
large-scaled production of bacteriocins for commercial use.
Optimization of bacteriocin production is therefore an important
research field to better exploit the antimicrobial potential of
bacteriocins, especially with regard to the decreasing effects of
antibiotics in infection treatments due to the global emergence of
antibiotic resistance. In the present study we have achieved a very
high level of GarKS production, amounting to 164,000 BU/ml,
by combining medium optimization, increased gene dose and
culture condition optimization. This amount is about 2,000
times higher compared to the initial production in GM17
(80 BU/ml). A production of 164,000 BU/ml is equivalent
to 1.2 g GarKS per liter. This estimation was based the
activity of synthetic GarKS peptides which have an activity
comparable to the biological ones (Ovchinnikov et al., 2016).
Ideally, the activity should be purified and quantified directly
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by chromatography or immuno-detection approach. However,
purification was a challenging task due to their relatively small
sizes (32-34 aa), an inherent high hydrophobicity (especially
GarA), the multi-peptide property, and not the least, the
presence of milk particles in growth medium (PM-T). In fact,
purification of GarKS in a previous work was heavily assisted
by genetic data to help identity the peptides of GarKS
(Ovchinnikov et al., 2016). Immuno-detection was also difficult
due to their small sizes and lack of antigenic property (i.e.,
too hydrophobic). However, given that this estimation is
correct, the production of 1.2 g GarKS per liter is, to our
knowledge, one of the highest bacteriocin production achieved
so far. In comparison, nisin production has been reported to
0.40–0.80 g/L by L. lactis grown in a medium composed of
equal volume of skim milk and complex media GM17 (de Arauz
et al., 2009). Finally, our study and others’ have shown that
optimization of bacteriocin production is an empirical and multi-
factorial process and that it is highly strain-dependent. Only
by systematic evaluation of different aspects influencing growth
and gene regulation one can find conditions suitable for high
levels of production.
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