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The electron shuttling process has been recognized as an important microbial
respiration process. Because the incubation temperature can influence both the
reactivity of electron mediators and cell growth, it may also affect the electron-shuttle-
mediated extracellular electron transfer (EET) process. Here, the effect of incubation
temperature (22–38◦C) was investigated in a bioelectrochemical system (BES) using
Shewanella oneidensis MR-1 and 50 µM of 9,10-anthraquinone-2-sulfonate (AQS). We
found that current generation increased as the temperature was increased from 22
to 34◦C and then decreased sharply at 38◦C. The biofilm biomass, as indicated by
the total protein extracted from the electrode, increased as the temperature increased
from 22 to 34◦C and then decreased at 38◦C, mirroring the current generation results.
These results were further confirmed by increasing the temperature slowly, step-by-
step, in a single BES with a constant biofilm biomass, suggesting that the EET rates
could be substantially influenced by temperature, even with the same biofilm. The
effects of temperature on the AQS bioreduction rate, c-type cytochrome (c-Cyts)-
bound-cofactor-mediated EET, the AQS mid-point potential, and the AQS diffusion
coefficient were studied. From these results, we were able to conclude that temperature
influenced the EET rates by changing the c-Cyts-bound-cofactor-mediated EET process
and the AQS bioreduction rate, and that the change in biofilm formation was a
dominant factor influencing the overall EET rates. These findings should contribute
to the fundamental understanding of EET processes. Moreover, optimization of the
operating parameters for current generation will be helpful for the practical application
of bioelectrochemical techniques.

Keywords: extracellular electron transfer, temperature, redox transformation, mediator, biofilm

INTRODUCTION

Extracellular electron transfer (EET) is a key process of extracellular respiration, which is an
important part of microbial anaerobic metabolism (Lovley et al., 1987; Shi et al., 2007, 2009,
2016; Calandra et al., 2016; Light et al., 2018). As this process is active in the epigeosphere, it
has an impact on the fate of trace metals and nutrients and on the degradation of organic matter
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(Ohtsuka et al., 2013; Zhou et al., 2016; Han et al., 2018).
Owing to the EET ability of microbes, microbial fuel cells
can be constructed to generate bioelectricity (Logan, 2009).
Because some organic materials, such as quinone compounds,
can act as electron shuttles to facilitate electron transfer in
bioelectrochemical systems (BESs) (Klüpfel et al., 2014; Yuan
et al., 2017), extensive attention has been paid to quinone-
compound-mediated EET processes (Watanabe et al., 2009;
Niedźwiecka et al., 2017; Wu et al., 2018; Yamamura et al., 2018).

Quinone-compound-mediated EET includes two steps,
namely, bioreduction of quinone to hydroquinone and chemical
oxidation of hydroquinone to quinone (Wu et al., 2014). The
dynamics of the redox transformations of quinone compounds
may directly affect EET rates (Li et al., 2013, 2014), thus
indirectly affecting cell growth, by changing the metabolic
rates of carbon sources (Gralnick and Newman, 2007). Hence,
the biofilm in the BES, which determines current generation,
may also be influenced by the dynamics of the quinone
redox transformations. In addition, the understanding of the
mechanism of c-type cytochrome (c-Cyts)-bound-cofactor-
mediated EET has become better in recent years. It has been
reported that flavins secreted by Shewanella oneidensis MR-1
primarily act as c-Cyts-bound cofactors the accelerate EET,
rather than as free soluble shuttles (Okamoto et al., 2013;
Xu et al., 2016). Hence, the effects of environmental factors
on c-Cyts-bound-cofactor-mediated EET also need to be
properly understood.

Temperature is an important environmental factor that affects
microbial activity, and its effects on microbial growth have
been extensively reported. For example, it has been shown that
S. oneidensis MR-1 can survive in a wide temperature range (3–
35◦C) (Abboud et al., 2005), that the metabolism of Shewanella
(i.e., fatty acid biosynthesis) changes with temperature (Wang
et al., 2009), and that its iron bioreduction rate decreases when
the temperature decreases from 37 to 4◦C (Picard et al., 2014).
However, few previous studies have considered the impact of
temperature on the specifics of quinone-compound-mediated
EET. It has been recognized that changes in environmental
factors, such as pH, significantly impact biofilm growth and
the quinone redox potential (Wu et al., 2016), resulting in
large changes in the produced current. Nevertheless, it remains
unclear whether, or how, transient or longer-term temperature
differences affect the formation and redox properties of the
biofilm, which could in turn influence the quinone-compound-
mediated EET process.

Thus, to investigate these issues in detail, a BES was
constructed with S. oneidensis MR-1 as a model strain. A quinone
compound (9,10-anthraquinone-2-sulfonate, AQS), which has
a similar structure to anthraquinone-2,6-disulfonate (AQDS),
was chosen as the model mediator because our previous studies
(Li et al., 2013, 2014; Wu et al., 2014) demonstrated that
the enhancing effects of AQS on EET were higher than those
of AQDS. The objectives of this study were to (1) clarify
how transient temperature changes and long-term temperature
differences affect current generation in a BES with AQS; (2)
quantitatively investigate the factors that influence the AQS-
mediated EET process; and (3) determine the underlying

mechanism responsible for the temperature effect on AQS-
mediated EET.

MATERIALS AND METHODS

Materials and BES Setup
Shewanella oneidensis MR-1, purchased from the Marine Culture
Collection of China (China), was aerobically incubated in
lysogeny broth (LB) medium, at 30◦C while being continuously
shaken at 180 rpm. When the cell suspension was in the
logarithmic phase, it was centrifuged, washed, and then diluted to
the target concentration for the following experiments. Each BES,
equipped with a carbon cloth (2 cm × 2 cm) working electrode,
titanium counter electrode, and calomel reference electrode, was
incubated anaerobically at a constant potential of 441 mV vs.
Standard Hydrogen Electrode (SHE). Phosphate was used as
the pH buffer (pH = 7.0). A solution of AQS (AR, 98.0%) was
obtained from Acros (China). All other chemicals were purchased
from the Guangzhou Chemical Reagent Factory (China).

Spectral Measurements
By using UV-visible diffuse-transmittance absorption
spectroscopy, AH2QS can be directly detected in living cell
suspensions. A sealed cuvette was used as the reactor, to which
AQS (50 µM), MR-1 (OD600 = 1.0), and lactate (50 mM) were
added. The spectra of AH2QS were recorded in situ using a
diffuse-transmittance spectrophotometer (UV-2600, Shimadzu)
equipped with an integrating sphere. A standard solution of
AH2QS was prepared in an anaerobic chamber, with sodium
hydrosulfite used to reduce AQS to AH2QS. To calibrate the
AH2QS concentration, AH2QS spectra (0–50 µM), with excess
sodium hyposulfite as reducer, were collected, and each AH2QS
concentration was determined from the absorbance peak at
382 nm. The standard AH2QS curve had a slope of 153.4
(R2 = 0.9996). For the treatment with cell suspensions and
AQS, the AH2QS concentration was determined according to
the difference between the spectrum of MR-1 with AH2QS and
that of MR-1 only.

Electrochemical Measurements
An electrochemical workstation (Autolab PGSTAT 302N,
Metrohm, Switzerland) was used for electrochemical impedance
spectroscopy (EIS) measurements. EIS spectra of the BESs were
obtained by applying sinusoidal perturbations of ±10 mV over
the open circuit voltage at frequencies from 10−2 to 105 Hz.
Cyclic voltammetry (CV) and differential pulse voltammetry
(DPV) tests were conducted using a potentiostat (CHI660D,
Chenhua Co., Ltd., China). CV of AQS was performed
at various scanning rates (50–400 mV s−1). Carbon cloth
(2 cm × 2 cm) electrodes were used as working electrodes in the
electrochemical systems.

Biofilm Characterization
The morphologies of the biofilms on the electrodes were
characterized using scanning electron microcopy (SEM; S-
3000N, Hitachi, Japan) and fluorescence microscopy (Axio Scope

Frontiers in Microbiology | www.frontiersin.org 2 March 2019 | Volume 10 | Article 464

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00464 March 4, 2019 Time: 17:28 # 3

Liu et al. Influence of Temperature on EET

A1, Carl Zeiss, Germany). The carbon cloth electrodes with
biofilms were removed after incubation for 3 days, gently washed
in water, and then treated with glutaraldehyde (2.5%), osmic acid,
and ethanol. After freeze-drying and coating with evaporated
platinum, the washed biofilm samples were imaged using SEM.
The cells were then dyed with 4′,6-diamidino-2-phenylindole
before fluorescence microscopy imaging.

The biofilm was then quantified by extracting the total biofilm
protein with a boiling 0.2 M NaOH solution (Zhao et al., 2013).
A carbon cloth sample (2 cm × 0.66 cm) was placed into
a 2 mL sealed tube, together with 0.5 mL NaOH and some
glass beads, and the tube was then subjected to a super high-
speed vortex (6.5 m s−1, 45 s) using a homogenizer (FastPrep-
24, MP, United States). The mixture was then centrifuged at
8000 g for 3 min, and finally, the supernatant was collected
for protein quantification. The supernatant was then quantified
by Coomassie blue staining via a protein quantification kit
(C503041-1000 Modified Bradford Protein Assay Kit, Sangon
Biotech, China).

RESULTS

Electricity Generation at Different
Temperatures
Electricity generation in the BES was examined at different
temperatures. As shown in Figure 1A, the current in each
treatment (22–34◦C) started increasing after a hysteresis period
of approximately 5 h, reaching a maximum value within 72 h.
Electricity generation was extremely low at 38◦C, lasting for 40 h
before decreasing to near zero. The total charge (Q) for each
treatment is shown in Figure 1B. The Q, which was only 41◦C at
22◦C, increased gradually to 257◦C at 34◦C, and then decreased
substantially to 5◦C at 38◦C. As the current and charge changed,
the rate of lactate consumption must have changed (Pinchuk
et al., 2011; Saito et al., 2016).

Because the concentration of lactate can influence the
physiology of S. oneidensis MR-1, the effect of lactate
concentration (10, 20, 30, 40, and 50 mM) on current generation
was examined in the BES at 34◦C. The results (Supplementary
Figure S1) suggested that the generated current was very
similar for all lactate concentrations between 10 and 50 mM.
It has previously been reported that the current generated
without AQS is much lower than that generated with AQS
(Wu et al., 2016). The treatments with and without exogenous
AQS are very different. The main purpose of this study is to
investigate the influence of temperature on the AQS-mediated
EET process quantitatively.

Biofilm Formation at Different
Temperatures
The SEM and fluorescence microscopy images of the biofilm
sample at 30◦C (Figures 2a,b) showed that the electrode surface
was fully covered with biofilm cells. To determine the amount of
biofilm formed under different temperatures, the total protein on
the electrode was extracted and then quantified using Coomassie

FIGURE 1 | (A) Current (I, mA) in BESs against time at different temperatures
(22–38◦C); (B) total charge as a function of temperature. Testing conditions:
50 µM AQS, 50 mM lactate, 200 mM phosphate as pH buffer (pH = 7.0),
OD600 = 1.0, and external potential of 421 mV vs. SHE.

blue staining via a protein quantification kit. The results
(Figure 2c) showed that the total biofilm protein amount on the
electrode increased gradually as the temperature rose from 22 to
34◦C and then sharply decreased as the temperature increased
further (from 34 to 38◦C). The low concentration of protein at
38◦C implied that the cells were dead at this temperature. Thus,
this temperature is not suitable for the anaerobic survival of MR-1
cells (Abboud et al., 2005).

Electricity Generation at Different
Temperatures With a Constant Biofilm
To examine the effect of temperature on electricity generation
with the same biofilm, current generation was examined in a
BES as the temperature was quickly reduced from 34 to 22◦C
and then gradually increased back to 34◦C over a period of
3 h. As shown in Figure 3A, the current decreased sharply
after the initial temperature decrease, suggesting that the BES
electron transfer ability was very sensitive to temperature. Then,
as the temperature was gradually restored back to 34◦C, the
current increased, step-by-step, with the increasing temperature.
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FIGURE 2 | Biofilm morphology at 30◦C: (a) SEM image and (b) fluorescence
microscopy image. (c) Total biofilm protein at different temperatures.

The percentage by which the current intensity decreased was
consistent with the increased current intensity, which suggested
that the temperature-dependent change in the current output was
reversible. To confirm this phenomenon, this test was repeated
twice. The results in Figure 3B show that the percentage by which
the current increased with the step-by-step temperature increase
was similar for each.

Quantitative Analysis of the Effect of
Temperature on Current Generation
To quantify the influence of each factor on total current
production, the maximum current at 34◦C was defined as
100%, meaning that the current decreased by 58% when
the temperature was rapidly reduced from 34 to 22◦C
(Figures 3A,B). As the biofilm biomass remained constant
during this period, the decrease in current generation was
mainly caused by a change in the redox reactivity of AQS
and the metabolic activity of the cells. However, after long-
term incubation, the maximum current intensity decreased to
31% when the temperature decreased to 22◦C (Figure 1A).
The biomass changed substantially during this period, indicating
that the extra current decrease was caused by the decrease in
biofilm biomass.

Electrochemical Properties of the Biofilm
at Different Temperatures
To examine the redox properties of the biofilms, electrochemical
characterizations were performed after potentiostatic incubation.
The DPV results (Figures 4A,B) allow various processes
occurring in the biofilm to be distinguished. The peaks
around −227 to −245 mV and −70 mV correspond to

FIGURE 3 | (A) Current generation in a BES when the temperature was
quickly decreased from 34 to 22◦C, and then gradually increased back to
34◦C over 3 h; (B) replicates of (A).

free AQS and c-Cyts-bound cofactor, respectively (Wu
et al., 2016; Xu et al., 2016), whereas the peaks at 73 and
300 mV reflect direct c-Cyts redox reactions (Okamoto
et al., 2013, 2014b; Xu et al., 2016). When the incubation
temperature was reduced from 34 to 22◦C, the peak potential
of free AQS increased slightly from −245 to −227 mV, and
the peak shapes of the c-Cyts-bound cofactor (−70 mV)
and free c-Cyt (73 and 300 mV) showed obvious changes
(Figure 4A). However, the shapes of these peaks remained
stable when the temperature decreased from 34 to 22◦C
instantaneously (Figure 4B).

Using CV analysis, the catalytic current generated by
each process could be studied and the contribution from
each process to the catalytic current could be distinguished.
From the CV results in Figures 4C,D, two significant
current increases were observed at −245 and −70 mV,
representing the free AQS mediation process and the c-Cyt-
bound cofactor associated transport, respectively. Meanwhile,
free c-Cyt (+73 mV) exhibited a very weak contribution
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FIGURE 4 | (A,B) DPV and (C,D) CV characterizations of biofilms cultured at different temperatures. In (B,D), the temperature was suddenly lowered
from 34 to 22◦C.

to the catalytic current. As shown in Figure 4C, as the
temperature was decreased, the peak at −70 mV decreased
significantly, whereas the peak at −245 mV decreased only
slightly from 34 to 26◦C before decreasing much more
as the temperature decreased further (from 26 to 22◦C).
As shown in Figure 4D, the peak corresponding to the
mediation process only decreased slightly when the temperature
was suddenly lowered from 34 to 22◦C, whereas the peak
corresponding to c-Cyts-bound cofactor associated transport
decreased significantly. This phenomenon was verified in
triplicate. These results indicated that both the mediation process
and c-Cyts-bound cofactor associated electron transfer were
changed by temperature after long-term incubation, whereas
only c-Cyts-bound cofactor associated electron transfer was
changed significantly when the temperature decreased quickly
from 34 to 22◦C.

Electrochemical impedance spectroscopy tests performed
before and after the temperature changing operation (Figure 5)
showed that the impedance also increased as the temperature
decreased. This observation also implied that factors other than
the biofilm biomass, such as the AQS redox properties, the
properties of the c-Cyt-bound cofactor, and the metabolic activity
of the microbes, may also be temperature dependent, causing
current generation in the BES with a fixed biofilm to change
with temperature.

FIGURE 5 | Electrochemical impedance spectroscopy spectra before (34◦C,
orange squares) and after (22◦C, black dots) the temperature changing
operation. Test conditions: 50 µM AQS, 50 mM lactate, 200 mM phosphate
as pH buffer (pH = 7.0), OD600 = 1.0, and external potential
of 421 mV vs. SHE.

Redox Transformation of AQS at
Different Temperatures
It has been documented that electron transport during AQS-
mediated EET processes occurs via the redox cycling of AQS,
including the reduction of AQS to AH2QS by MR-1 and the
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electrochemical oxidation of AH2QS to AQS on the surface of the
electrode. The in situ kinetics of quinone compound reduction
can be studied in living bacterial suspensions using diffuse-
transmittance spectroscopy (Nakamura et al., 2009; Han et al.,
2016; Liu et al., 2017). Therefore, the bioreduction of AQS and
the electrochemical oxidation of AH2QS were investigated at
different temperatures.

For the bioreduction of AQS to AH2QS without an electrode,
similar patterns were observed for the spectral kinetics at
different temperatures de (Figures 6A–D). The peaks at 330 and
382 nm were attributed to AQS and AH2QS, respectively. To
demonstrate the kinetics of AQS reduction to AH2QS clearly,
the concentrations of AH2QS at different temperatures were
plotted as a function of time. As the concentration of lactate
(50 mM) in the system was much higher than that AQS (50 µM),
the reduction of AQS can be considered a pseudo-first-order
reaction. As shown in Figure 7A, the rate constants increased at
temperatures of 22–26◦C and then slightly decreased at higher
temperatures (30–34◦C).

After bioreduction of AQS to AH2QS, electrochemical
oxidation of AH2QS will ultimately result in current generation.
To examine the differences in the AQS redox reactions on
the electrode surface at different temperatures, CV of AQS
was conducted at various scan rates (50–400 mV s−1). As
shown in Figures 8A–D, an increase in the current as the
scan rate increased was accompanied by, a positive shift of the
oxidation peak and a negative shift of the reduction peak. The
midpoint potential (Figure 7B) decreased slightly, from −232.5
to−242 mV, with increased temperature (22–34◦C).

DISCUSSION

Role of Temperature-Dependent Biofilm
Formation
The biofilm, as the driving force for EET, has been observed
to be affected by the incubation temperature (Tango et al., 2018;

FIGURE 6 | In situ spectral kinetics of AQS reduction at different
temperatures: (A) 22◦C, (B) 26◦C, (C) 30◦C, and (D) 34◦C. The
concentrations of AH2QS were calculated from the absorbance peak at
382 nm. Test conditions: 50 µM AQS with MR-1 (OD600 = 1.0)
and 50 mM lactate.

FIGURE 7 | (A) Calculated rate constants for AQS bioreduction at different
temperatures. (B) CV midpoint potentials (Em) of AQS at different
temperatures.

Zhang et al., 2018), and the changes in biofilm biomass may
significantly influence the EET process. To examine the effect
of temperature-dependent biofilm formation on electricity
generation, the linear regression of total charge (Q) as a function
of total biofilm protein was analyzed. A good linear relationship
(R2 = 0.91) was observed between the Q values and total biofilm
protein, which implied that biofilm cell growth is an essential
factor that affects EET at different temperatures. The amount
of total biofilm protein increased as the temperature rose from
22 to 34◦C, indicating a corresponding increase in the lactate
consumption rate. As shown by Rxn. 1, high lactate consumption
rates could increase the amount of available electrons, which
would be favorable for AQS reduction (Rxn. 2 and Figure 8)
and current generation (Rxns. 3 and 4). In addition, if the
maximum current at 34◦C was defined as 100% as shown in
Supplementary Figure S3a, the maximum current decreased
to 31% when the biofilm was incubated at a temperature of
22◦C (Supplementary Figure S3c). This current intensity was
almost two times lower than that obtained when the temperature
was changed instantaneously (Supplementary Figure S3b). This
difference in behavior might be caused by changes in the biofilm
biomass in the former system. Notably, the current also decreased
when the temperature was reduced from 34 to 22◦C in a
single BES with the same biofilm (Supplementary Figure S3b).

FIGURE 8 | Cyclic voltammetry results for AQS at different scan rates
(50–400 mV s−1) and temperatures: (A) 22◦C, (B) 26◦C, (C) 30◦C,
and (D) 34◦C.
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Therefore, factors other than the biofilm must contribute to the
changes in current generation at different temperatures.

Free AQS-Mediated EET Processes in
BESs
It is known that the reduction of an electron acceptor (i.e.,
AQS) can be coupled to an oxidizing electron donor (lactate)
during current generation by MR-1 (Coursolle and Gralnick,
2010; Pinchuk et al., 2011), with the diffusion of reduced AQS to
the anode electrode resulting in current generation. The potential
losses can drive electron flow from the electron donor to the
anode. For lactate oxidation, the following half-cell reaction (Rxn.
1) determines the electron production rates and the concomitant
anode potential.

C3H5O−3 + 2H2O→ C2H3O−2 +HCO−3 + 5H+ + 4e− (Rxn.1)

According to the Nernst equation, the specific
theoretical redox potential of the electron donor can be
determined using Eq. 1.

EC3H5O−3
= E0

C3H5O−3
−

RT
4F

ln
[C2H3O−2 ][HCO−3 ][H

+
]
5

[C3H5O−3 ]
(1)

As a result of the oxidation of lactate, the electrons generated
can be captured by AQS to produce AH2QS (Rxn. 2).

AQS+ 2H+ + 2e− ↔ AH2QS (Rxn.2)

The redox potential of AQS (EAQS) can be
calculated using Eq. 2.

EAQS = E0
AQS −

RT
2F

ln
[AH2QS]
[AQS][H+]2

(2)

Hence, at a fixed pH, the driving force for lactate oxidation
and AQS reduction (1E=EC3H5O−3

−EAQS ) can be influenced by

both the temperature and the concentrations of lactate and AQS,
which is why the peak potentials of AQS changed, as shown in
Figures 4A,B, 7B.

However, as a metabolic process determined by microbial
activity, the oxidation of lactate by MR-1, as well as the biofilm
biomass, was sensitive to temperature. The peak of the free AQS-
mediated process at −245 mV exhibited a noticeable decrease
when the temperature decreased gradually from 34 to 22◦C
(Figure 4C), but this only showed a slight decrease when the
temperature was decreased rapidly (Figure 4D). This difference
suggested that the change in the AQS bioreduction rate likely
has an important effect on current generation in the long-term
incubation system. The change in the AQS bioreduction rate
constant (Figure 7A) showed a similar tendency as the change
of the peak in Figure 4C, which confirmed the importance of the
AQS bioreduction process.

After AQS was reduced to AH2QS, it then diffused
to the electrode surface and concomitantly transferred

electrons to the anode, resulting in the generation of current
(Brutinel and Gralnick, 2012).

AH2QSred + Anode→ Anode · AH2QS (Rxn.3)

Anode · AH2QS→ AQS+ e− (Current) (Rxn.4)

The peak current (Figures 8A–D) exhibited a linear
relationship with the square root of the scan rate (v1/2)
(Supplementary Figure S2), indicating that a diffusion process
(Rxn. 3) was the rate-determining step in the electrochemical
oxidation of AH2QS on the electrode (Richter et al., 2009).

The transport of soluble AH2QS to the anode (Rxn. 3) is a
diffusion process governed by Fick’s law (Torres et al., 2009).
As the diffusion coefficient at different temperatures follows
the Einstein relation (D = KT/6πηr), Fick’s law can be written
as shown in Eq. 3.

j=nF
(
KT1[AH2QS]

6πηr1z

)
(3)

where j is the current density (A m−2), nF is a conversion
factor from moles to coulombs, K is Boltzmann’s constant, T
is the absolute temperature, 1[AH2QS] is the concentration
gradient of AH2QS (mol m−3), π is the circumference ratio,
η is the coefficient of viscosity of the solution (Pa s), r is the
hydrodynamic radius (m), and 1z is the transport distance (m).
Hence, it is clear that the current density (j) can be positively
affected by temperature. However, based on the Einstein relation,
a 1.05-fold change in the value of D should be observed between
22 and 38◦C (295 K/311 K). Notably, we observed a larger
difference in our current production values, indicating that the
changes in the diffusion process probably have a very limited
influence on current generation.

Cytochrome-Bound-Co-factor-Mediated
EET in BESs
In addition to the free AQS-mediated process, the c-Cyts-
bound cofactor can also be involved in electron transfer.
As reported previously, low concentrations of flavin can
be bound to c-Cyts, and as the c-Cyts-bound cofactor
is obviously different from free flavin, it can be used
to regulate the extent of EET processes (Okamoto et al.,
2013, 2014a,c). Hence, the roles of temperature-dependent,
c-Cyts-bound-cofactor-mediated electron transfer processes are
considered further below.

Figures 4A,B exhibit peaks at −245 and −70 mV
corresponding to free AQS and the c-Cyts-bound cofactor,
respectively. Thus, the catalytic currents generated at −245 and
−70 mV, as depicted in Figures 4C,D, were contributed from
the free AQS-mediated process and the c-Cyts-bound-cofactor-
mediated process, respectively. In the long-term incubation
experiments, the catalytic current from both the free AQS-
mediated process and the c-Cyts-bound-cofactor-mediated
process decreased as the temperature decreased from 34 to 22◦C
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(Figure 4C). However, in the instantaneous temperature
change experiments, the catalytic current from the c-Cyts-
bound-cofactor-mediated EET process decreased significantly,
whereas that from the free AQS-mediated process only
decreased slightly (Figure 4D). These results suggested
that the current variation in the instantaneous temperature
change experiment was mainly caused by a decline in
c-Cyts-bound-cofactor-mediated EET, whereas both weaker
AQS-mediated and c-Cyts-bound-cofactor-mediated EET
contributed to the total current decrease during the long-term
incubation experiment.

The bioreduction rate of AQS is mainly limited by the
metabolic rate of microbes. As changes in the rate of microbial
metabolism probably require a certain period of time, the
AQS reduction rate did not change much in the short-term
incubation and instantaneous temperature change experiments.
Hence, as shown in Figure 7A, the rate constants of AQS
reduction only changed slightly. However, flavin as a bound
cofactor for accelerating EET is involved in a biochemical
process on the outer surface of the cell. It has been reported
that this process can be regulated by the properties of c-Cyts,
and S. oneidensis MR-1 has the capacity to use flavin as a
regulator to control the extent of EET processes (Okamoto
et al., 2013). Hence, the response of this biochemical process
to changes in temperature may be faster than that of
microbial metabolism, resulting in the c-Cyts-bound-cofactor-
mediated EET process being more susceptible to sudden
temperature changes.

Although MR-1 has been shown to grow slower at 34◦C
than at 30◦C, the reported optimum temperature for manganese
reduction by MR-1 is 35◦C (Myers and Nealson, 1988). Hence,
the optimum temperature of MR-1 in different system can be
different. In this study, 34◦C was the optimum temperature,
probably because in the presence of exogenous AQS, the
change in temperature not only changes the physiology of
MR-1 but also changes the electron shuttling properties of
AQS. Specifically, it can influence the AQS midpoint potential,
the AQS bioreduction process, the AQS diffusion coefficient,
and c-Cyts-bound-cofactor-mediated EET. These factors might
contribute to the observation of a lower optimum temperature of
34◦C in this study.

Here, the EET capacity increased as the temperature rose
from 22 to 34◦C and then decreased sharply at 38◦C. Besides
the cell death observed at 38◦C, five key factors, namely,
the biofilm biomass, c-Cyts-bound-cofactor-mediated EET,
the AQS bioreduction rate, the AQS midpoint potential,
and the AQS diffusion coefficient, could be affected by
changing the incubation temperature. The temperature-
dependent AQS midpoint potential and the AQS diffusion

coefficient contributed little to the variations in total
electricity generation at different temperatures, whereas
the temperature-dependent biofilm biomass, c-Cyts-bound-
cofactor-mediated EET, and the AQS bioreduction rate
dominated the observed electricity generation variation.
As the ambient temperature changes often in natural
environments, it is an important environmental factor
that influences natural microbial processes such as biofilm
formation and microbe-mineral electron transfer. Thus, our
findings provide an improved fundamental understanding
of EET processes and will aid in the practical application
of bioenergy techniques via optimization of the operating
parameters for current generation in relevant BESs such as
microbial fuel cells.
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