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Species of the genus Nostoc (Cyanobacteria) can form large colonies of up to several
centimeters in diameter that may represent a unique habitat for bacteria in freshwaters.
Bacteria inside the colony are probably segregated from the surrounding water and
largely dependent on the metabolism of this primary producer. However, the existence
of a specific bacterial community associated with free-living representatives of Nostoc
from lakes and streams is unknown. Here, we studied large Nostoc spp. colonies (ca. 2—
10 cm in diameter) from two adjacent, high altitude aquatic environments and assessed
the diversity, and community composition of the bacterial community associated with
the inner gelatinous matrix (GM). Further, we compared this community with that of
the lake’s littoral zone where the colonies live or with the outer layer (OL) of the colony
in samples collected from a stream. Alpha bacterial diversity in the inner GM of the
colonies from both sites was lower than in the littoral zone or than in the OL. Significant
differences in community composition were found between the inner and the OL, as
well as between the inner GM, and the littoral zone. Further, these differences were
supported by the putative metabolic processes of the bacterial communities. Our results
indicate the existence of a specific bacterial community inside macrocolonies of Nostoc
spp. and also imply that the inner environment exerts a strong selection. Finally, these
large colonies represent not only a unique habitat, but probably also a hotspot of
bacterial activity in an otherwise oligotrophic environment.

Keywords: cyanobacteria, bacterial diversity, Lake Chungara, Culco, 16S rRNA gene, lllumina, PICRUSt

INTRODUCTION

Interactions between bacteria and other organisms have been extensively studied in aquatic
environments (e.g., Egan et al., 2013; Deveau et al., 2018; Mayali, 2018). Some well-known bacterial
interactions described for the littoral zone of lakes include biofilms growing on different kind of
surfaces. For example, the growth of epilithic bacteria is enhanced by the organic carbon produced
and released by periphytic primary producers (Bruckner et al., 2008) and therefore, epiphytic
bacterial production is substantially higher than that of planktonic bacteria (Theil-Nielsen and
Sondergaard, 1999). Cyanobacteria are one of the most common primary producers found in
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biofilms such as in those from high elevation lakes of
the temperate region (Bartrons et al, 2012), as well as
in the water column of eutrophic lakes around the world
(Dokulil and Teubner, 2000).

In the littoral zone of lakes and in streams, the cyanobacterium
Nostoc sp. form colonies sometimes in high abundance (e.g.,
Moeller and Roskoski, 1978; Ward, 1985) that can tolerate
extreme conditions such as low and high temperatures,
desiccation, salt stress, and freezing (Tamaru et al., 2005; Sand-
Jensen and Sand, 2012; Suradkar et al,, 2017). This genus is
cosmopolitan and found not only in a wide range of aquatic
ecosystems, but also in terrestrial ones with some species
inhabiting extreme habitats (Dodds et al., 1995; Potts, 2000;
Lopez-Cortés et al., 2001). Nostoc sp. is characterized by having
unbranched heterocystous filaments and by the formation of
gelatinous aggregates containing trichomes that, in some species,
form macroscopic colonies with a range of shapes, texture and
sizes (Stainer and Cohen-Bazire, 1977; Dodds et al.,, 1995).
For example, the macroscopic colonies of Nostoc pruniforme
Agardh can reach up to 25 cm in diameter (Potts, 2000) and
form spherical colonies with an envelope of densely entangled
trichomes (Dodds and Castenholz, 1987). The outer layer (OL)
and inner gelatinous matrix (GM) of the colony in Nostoc spp. are
composed of a mixture of polysaccharides (Bertocchi et al., 1990;
De Philippis et al., 2000; Sand-Jensen, 2014) that protect it from a
variety of environmental hazards, including high solar radiation,
and that are essential for the moisture absorption and retention
capacity of cells (Sand-Jensen, 2014).

Some Nostoc species live in symbiosis with fungi and plants
(Enderlin and Meeks, 1983; Meeks, 1998; Paulsrud et al., 1998;
Costa et al., 2001). For example, Nostoc representatives living
in symbiosis with bryophytes often represent the dominant
members of the N,-fixing bacterial community (Adams et al.,
2012). Different species of Nostoc also establishes associations
with heterotrophic bacteria such as in the case of Nostoc
flagelliforme Calvo-Pérez & Guiry and Nostoc commune Bornet,
E. & C. Flahault living in soils (Graham et al., 2014; Han et al.,
2015; Inthasotti and Pathom-aree, 2015). For example, colonies
of N. commune found in moist soils have a high diversity of
associated Actinobacteria (Inthasotti and Pathom-aree, 2015).
Whether such a specific bacterial community composition is
found inside large free-living Nostoc colonies from lakes and
streams is unknown. However, bacteria from the surrounding
water are probably included during colony’s morphogenesis and
if it remains intact, then the original community may shift in
composition. This is plausible considering that formation of large
colonies takes months (Deng et al., 2008) and that heterotrophic
bacteria inside the colony would then largely depend on resources
provided by this primary producer. Further, the environment
inside the colony (e.g., light irradiance) is different from that
in the surrounding water. For example, differences in light
conditions inside colonies of Nostoc sphaeroides are evident when
comparing the photosynthetic performance of filaments of the
inner layer with those of the OL (Deng et al., 2008).

In this study, we assessed the bacterial community
composition and diversity associated with macroscopic colonies
of Nostoc spp. collected from two adjacent freshwater ecosystems

located at high elevation (>4100 m above sea level) in the
Andean plateau. This plateau is a region characterized by high
incident UV radiation, negative water balance, and large daily
temperature changes (Risacher et al., 2003; Cordero et al., 2016).
First, we characterize the bacterial community composition
in the inner GM of colonies found in the littoral zone of a
lake and test for differences in composition with that from the
surrounding littoral water. Second, we describe the bacterial
community from the inner GM of colonies collected in a stream
and compare it with that of the OL. We hypothesized that the
different environmental conditions (e.g., light intensity and
source of nutrients) between the inner part of the colony and the
surrounding habitat or OL will results in a different community
composition. Finally, to indirectly assess the physiology of the
bacterial communities, we included a prediction analysis of their
main putative metabolic processes.

MATERIALS AND METHODS
Sampling Site

Water samples and macroscopic colonies of Nostoc spp. (ca.
10 cm in diameter) were collected from the littoral zone in
Lake Chungara (Supplementary Figure S1A). This large lake
(22.5 km?) is located in the Andean plateau (18°14'9.67 S,
69°10'53.81 W) at 4520 m above sea level and belongs to
the Lauca National Park, a Unesco World Biosphere Reserve
(Miihlhauser et al., 1995; Dorador et al., 2003). The littoral zone of
this lake has an extensive area of macrophytes (e.g., Miriophyllum
elatinoides) providing a habitat for a wide range of organisms
including the endemic fish Orestias chungarensis Vila & Pinto
and birds (e.g., Fulica gigantea Eydoux & Souleyet) that depends
on this area for feeding and breeding (McFarlane, 1975; Vila and
Pinto, 1986; Andrew, 1987). The colonies of Nostoc sp. are usually
found at the surface of the dense submerged macrophyte belt in
the littoral zone.

Samples for molecular analyses were collected from the inner
part (homogenous GM) of the colony (Supplementary Figure
S1B) using a sterile syringe and scalpel. A sample was obtained
from one colony collected during the dry season (DS) in 2013
(sample Chungard_DS2013) and three samples were collected
from three different colonies during the DS in 2016 (samples
Chungara_DS2016_1, DS2016_2, and DS2016_3). A composite
water sample (i.e., same volume pooled from 0.1, 0.6, and
1 m) from the littoral zone was collected with either a 2 L
glass bottle (0.1 m depth) or with a 2 L Van Dorn sampler
(for the other two depths) during the DS in 2013 (sample
DS2013) and the wet season (WS) in 2014 (sample WS2014).
Finally, one water sample was collected in 2016 during the
WS (sample WS2016) and in triplicate during the DS (samples
DS2016_1, DS2016_2 and DS2016_3). In addition, six colonies
were collected during the DS in 2016 from the bed of a tributary
stream of the Lauca River (Supplementary Figure S1C), located
in “Quebrada Culco” (18°34/52.76 S, 69° 3/40.57 W, hereafter
referred as to Culco stream) to compare the bacterial community
of the inner GM with that of the OL. Due to the difficulty in
sampling the two matrices without contamination, the sampling
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was done in separate colonies. Thus, three colonies were
used to obtain the GM with the same methodology described
above (samples Culco_DS2016_1, DS2016_2, and DS2016_3)
and three other colonies were used to obtain the OL (samples
Culco_DS2016_4, DS2016_5, and DS2016_6).

Samples Processing

Water samples were kept in cold boxes and afterward (within ca.
2 h) were filtered onto 0.22 pm pore size filters (47 mm, Millipore
GPWP), until clogging was observed. Filters and samples from
Nostoc were placed in Eppendorf tubes with RNAlater (Qiagen,
Germantown, MD). All samples were maintained at —20°C until
further analysis.

DNA Extraction and lllumina Sequencing
Genomic DNA was extracted using PowerBiofilm DNA Isolation
kit (Mo Bio Laboratories Inc.) following the manufacturer’s
protocol. The concentration and quality of DNA were
measured with a Nanodrop spectrophotometer (Nanodrop
8000, Thermo Scientific). Illumina Miseq sequencing was
used with two different set of primers. First, total DNA
from samples in 2013 and 2014 was used as a template for
the V4 region amplification of the 16S SSU rRNA with the
primers 515F (GTGCCAGCMGCCGCGGTAA) and 806R
(GGACTACHVGGGTWTCTAAT) (Caporaso et al., 2011), done
at the Research and Testing Laboratory Genomics (Lubbock,
Texas, United States). Second, samples from 2016 were used
to amplify the V4-V5 region of the 16S SSU rRNA with the
primers 515F-Y (GTGYCAGCMGCCGCGGTAA) and 926R
(CCGYCAATTYMTTTRAGTTT) (Parada et al., 2016), done
at LGC Genomics Gmbh (Berlin, Germany). The 515F-Y/926R
primer improves the underestimation of SARI1 clade and
the overestimation of Gammaproteobacteria produced by the
515F/806R primer (Parada et al, 2016). Raw amplicons reads
were deposited in the sequence read archive (SRA) of NCBI
under accession number SRP136789 and SRP136788.

Reads Data Processing

Raw reads from 16 samples were analyzed using Mothur (v.
1.35.1) following the standard operating procedure (Schloss et al.,
2011). Briefly, paired-end reads obtained with the primers 515F-
Y/926R and 515F/806R were assembled using the USEARCH
v.7 (Edgar and Flyvbjerg, 2014) and make.contig command,
respectively. After pooling all samples and trimming the reads
to the same region (V4), reads were aligned to the SILVA
v.132 database using the align.seqs command. Chimeras were
detected and removed using UCHIME. The SILVA v132 database
was used to classify reads with a confidence threshold of 80%.
The remove.lineage command was used to identify and remove
mitochondrial, chloroplasts, Archaea, Eukarya, and unknown
contaminants. Reads were assigned to operational taxonomic
units (OTU) at the 1% level of divergence using the cluster.classic
command. All OTUs with less than six reads across all
samples were discarded. Samples were normalized by randomly
subsampling to the same size according to the sample with the
smallest number of reads. After quality control, all samples were

normalized to 27157 reads. The final OTU table and sequences
are available in https://doi.org/10.6084/m9.figshare.7314875.v2.

To assess alpha diversity of the bacterial communities, the
Simpson and Shannon indices that combine measures of richness
and abundance were calculated on equal-sized samples using
the INEXT package in R (Chao et al, 2014; Hsieh et al,
2016). A Kruskal-Wallis test was made to check for significant
differences (P < 0.05) in alpha diversity among samples grouped
by sampling site. The VEGAN package (Oksanen et al., 2013)
was used to do the ordinations (metaMDS) based on Bray
Curtis distance using the Wisconsin square transformation of the
OTU relative abundances and to test for significant differences
among samples grouped by sampling site in the ordinations
using ANOSIM. A maximum likelihood phylogenetic tree, using
the general time reversible model (with gamma distribution and
bootstrap), was constructed in RAXML v0.6.0 (Kozlov et al., 2018)
with the Nostoc reference species (with available 16S rRNA gene)
present in the database Taxonomy from the National Center for
Biotechnology Information (NCBI) including one sequence from
Nostoc sp. (Llayta) reported for the Andean plateau. Then, the
short reads (OTUs) belonging to Nostoc spp. were mapped onto
the phylogenetic tree. We also repeated the phylogenetic analysis
using the database CyanoPhy (cyanobact.000webhostapp.com),
however, we obtained the same results (data not shown) and thus,
we present only those from the first analysis.

Calculations of the OTUs relative abundance were made
excluding the OTUs classified as Nostoc. Samples were grouped
according to the littoral water, OL from Culco and inner GM
from Lake Chungara and Culco stream. A Venn diagram was
created to compare genera among samples grouped by site and
sample origin, based on a presence/absence matrix and visualized
by the package VennDiagram in R (Chen, 2018).

The functional prediction of the bacterial communities
was assessed using Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States (PICRUSt; Langille
et al, 2013) using the galaxy server'. Briefly, the raw reads
were re-analyzed in Mothur (v. 1.35.1) using the Greengenes
v.13.5 database. All OTUs were used in downstream analyses,
without including those classified as Nostoc. A biom file was
produced with the final data and used as input for PICRUS,
where normalization by copy number, metagenome prediction
and categorization by function was done. Further, the nearest
sequenced taxon index (NSTI) was calculated to quantify
the availability of nearby genome representatives for each
microbiome sample. A low NSTI value (<0.1) indicates that
the samples are highly supported by the reference microbial
genome dataset (Langille et al.,, 2013). A principal component
analysis of the predicted functions was made using STAMP v.
2.1.3 (Parks et al., 2014).

Physico-Chemical Parameters

In situ measurements of water temperature and pH were
done with a portable pH meter and coupled thermometer
(HI9126, Hanna Instruments), whereas electrical conductivity
was measured with a portable conductivity meter (Orion Star

'http://galaxy.morganlangille.com/
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FIGURE 1 | NMDS analysis of the OTUs in the samples of the littoral zone of Lake Chungara [gelatinous matrix (GM) and water] and Culco stream (GM) and outer
layer (OL) with (A) and without (B) including OTUs classified as Nostoc. GM, gelatinous matrix; OL, outer layer.

A322, Thermo Scientific). Samples were also collected in parallel
for the analysis of major cations (potassium, sodium, calcium,
and magnesium) by ion chromatography, and the anion, chloride
was performed by the argentometric method, and sulfate by
the gravimetric method (Gros, 2003). During 2013 and 2014 in
L. Chungard, samples were collected in precombusted (4 h at
450°C) glass bottles for the analysis of dissolved organic carbon
(DOC) and dissolved nitrogen (DN). These samples were filtered
in situ through two pre-combusted GF/F filters (Whatman). The
filtrate was acidified with HCI (pH 2) and analyzed later at the
laboratory in Innsbruck, Austria with a Shimadzu TOC-Vc series
equipped with a total nitrogen module. The instrument for DOC
analysis was calibrated with potassium hydrogen phthalate, while
calibration for the DN was done with potassium nitrate. Three
to five subsamples were analyzed for each sample and for a

consensus reference material (CRM) for DOC (batch 5 FS-2005:
0.57 mg; provided by RSMAS/MAC, University of Miami) that
was run in parallel on each occasion. Results differed from the
CRM given value by 5%, and the coefficient of variation among
subsamples was <2%.

RESULTS AND DISCUSSION

Bacterial Diversity and Community

Patterns

Both alpha diversity metrics (Supplementary Figure S2)
were higher for the littoral water (Shannon = 39.3 + 13.5;
Simpson = 139 £ 6) and for the OL (Shannon = 25 + 4;
Simpson = 12.7 & 2.2) than for the inner GM (Lake Chungara:
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Shannon = 2.8 &+ 1.1; Simpson = 1.5 £ 0.05 and Culco stream:
Shannon = 3.6 £ 3; Simpson = 1.6 £ 0.8). Further, Shannon
and Simpson indexes were significantly different between the GM
and the littoral water (Kruskal-Wallis test, P = 0.004), as well
as between the GM and the OL (P = 0.011). In contrast, no
significant differences in diversity were found when samples of
the GM were compared between Lake Chungard and the Culco
stream (Kruskal-Wallis test, P > 0.05). An ordination analysis
(based on Bray-Curtis dissimilarity) revealed that bacterial
communities from the colonies collected in the Culco stream
(GM and OL) were grouped close together and that differences
among samples from the littoral water and the inner GM of the
colonies collected from both sampling sites existed (Figure 1A).
Significant differences in OTUs relative abundance (ANOSIM;
R? =0.985, P < 0.001) were found among all samples. This was
also true (ANOSIM; R? = 0.875, P < 0.001) even after the OTUs
classified as Nostoc were removed from the ordination analysis
(Figure 1B). Overall, these results imply that the environment
inside the colony selects for the bacteria probably originated
from the littoral zone and included in the colony during its
morphogenesis. Further, the community in the inner GM of
Nostoc sp. from Lake Chungara appeared to be stable over time,
at least at the level of taxonomic resolution analyzed (Figure 1),
implying that environmental conditions inside the colony are
relatively constant.

One environmental factor that is obviously different inside
and outside the colony is light intensity and probably also its
spectral quality. In fact, in N. sphaeroides, adaptation to low light
levels inside the colony is clear when pigments concentration and
photosynthetic performance of filaments from the inner and OL
are compared (Deng et al., 2008). For example, inner filaments
have a lower light saturation point, lower photosynthetic rates
and efficiency, but higher chlorophyll a and phycobiliproteins
concentrations than those from the OL (Deng et al., 2008). The
large size of Nostoc colonies, such as those from Lake Chungara
imposes constraints in the uptake of external resources and
concentrations of inorganic carbon are probably also limiting
inside the colony (Sand-Jensen, 2014). It remains to be tested how
these differences affect the associated bacterial community.

Bacterial Community Composition

A total of 379 bacterial genera (24 phyla) were identified, but
only 36 were shared among the littoral water, the OL and GM
(Figure 2). Further, the littoral water showed the highest number
of unique genera (n = 120) and a high number of shared
genera (n = 98) with the GM matrix from Lake Chungara.
However, few genera (n = 5) were shared between the GM from L.
Chungard and Culco stream supporting the finding that colonies
of Nostoc spp. from these ecosystems hold also different bacterial
communities (Figure 1). This could be related with the probable
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FIGURE 3 | Relative abundance of the most abundant genera (>1%) in each sample. Nostoc was not included.
existence of two different Nostoc species (see below discussion on  of  Porphyrobacter sp. (Alphaproteobacteria; 2.6-22.3%),

identity) or with differences in bacterial community composition
between the lake and the stream water included in the colony
during morphogenesis, although, this needs to be tested.
Unclassified sequences members within the
Rhodobacteraceae (Alphaproteobacteria) and Burkholderiaceae
(Betaproteobacteria) families were abundant (3.2-20% of
relative abundance) among samples obtained from the
GM and OL (Figure 3). Further, all samples from the
GM of Lake Chungard showed a high relative abundance

Flavobacterium sp. (Bacteroidetes; 7-25.1%) and Emticicia sp.
(Bacteroidetes; 2.6-7.4%).

The GM of Culco samples showed a high relative abundance
of Sphingorhabdus sp. (Alphaproteobacteria; 10.6-35%),
Rhizorhapis  sp.  (Alphaproteobacteria;  5.6-26.7%) and
unclassified Rhizobiales (Alphaproteobacteria; 2-13%). The
Burkholderiaceae Family (abundant in all Nostoc spp. samples),
Rhizorhapis sp. and members of Rhizobiales include an
extremely diverse group of Betaproteobacteria capable of
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TABLE 1 | Taxonomical classification of OTUs (classified as Nostoc PCC 73102) using Genbank.

Taxonomical classification (Genbank)

First hit Coverage (%) Identity (%) Type strain Coverage (%) Identity (%)
Otu00001 Nostoc commune HK-02 (AP018326) 100 100 Nostoc commune HK-02 (AP018326) 100 100
Otu00002  Nostoc sp. BEA_0956 (MG543678) 100 100 Nostoc sp. strain 5183 (CP026692) 100 99
Otu00542 Nostoc commune HK-02 (AP018326) 100 99 Nostoc commune HK-02 (AP018326) 100 99
Otu00822  Nostoc sp. BEA_0956 (MG543678) 100 98 Nostoc sp. strain 5183 (CP026692) 100 97
Otu00838  Nostoc sp. BEA_0956 (MG543678) 100 98 Nostoc sp. strain 5183 (CP026692) 100 97

nitrogen fixation (Coenye, 2014). In addition, some of the
bacterial taxa detected in the inner GM have been described for
aquatic environments along the Andean plateau. For example,
the order Rhodobacteriales, in our study represented by the
Family Rhodobacteraceae, has been detected in association with
other microorganisms in microbial mats and water samples
(Dorador et al., 2013).

The main difference between the GM and OL from Culco
colonies, was given by the high relative abundance of the
Alphaproteobacteria FukuN57 (4.5-17.8%) in samples from the
OL and the high relative abundance of the Alphaproteobacteria
UKL13-1 (3.1-4.2%) in the inner GM. Interestingly, the bacterial
taxa associated with Nostoc spp. were also common to those
found in other cyanobacterial associations. For example, in
Microcystis, a bloom-forming genus that produce mucilaginous
colonies, Porphyrobacter, Rhodobacterales, Sphingomonadales,
and Burkholderiales are also typically associated (Shi et al., 2009,

2012). Further, cyanobacterial associations with Flavobacterium
and members of Sphingomonadaceae, Burkholderiales and
Rhizobiales have been described from metagenomes of culture
collections belonging to different cyanobacterial genera (Cornet
et al, 2018). Similarly, Porphyrobacter and some members
of the Family Rhodobacteraceae are known from associations
with the cyanobacteria Microcoleus sp. (Sanchez et al., 2005),
Cylindrospermopsis sp. (Shi et al, 2009) and Oscillatoria
brevis Kitzing (Hube et al, 2009). One of the groups
found in all colonies of Nostoc spp. was an unclassified
Burkholderiaceae. This family includes Burkholderia, which is
not only found in association with other cyanobacteria, but
also with Mimosa species (Angiosperm) in a nitrogen fixation
symbiosis (Bontemps et al., 2010).

Despite that in the littoral water from Lake Chungara,
there were no clear differences in the main physicochemical
variables among seasons (Supplementary Table S1), community
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composition changed among samplings, though it was always
clearly different from that in the inner GM (Figures 1, 3).
The Hgcl clade (Actinobacteria; 3.6-13.8%) and Flavobacterium
sp. (Bacteroidetes; 1.8-14.5%) were the predominant (high
relative abundance) groups in all water samples. In addition,
a high relative abundance of Algoriphaghus sp. (Bacteroidetes;
16.7-34%) was observed in water samples from 2016 and
unclassified Burkholderiaceae (Betaproteobacteria; 10.3-10.4%)
in water samples during 2013 and 2014. Comparing with the
bacterial community composition from the pelagic zone of Lake
Chungard, the same predominant phyla were found (Aguilar
et al., 2018), though differences were observed at the genus
level. For example, while Flavobacterium sp. (Bacteroidetes) was
the dominant genus in the pelagic zone only during the DS
(Aguilar et al., 2018), it was always abundant (1.8-14.3% of
relative abundance) in all seasons at the littoral zone. Further,
Algoriphagus sp. was the most relative abundant taxa in the
littoral zone of Lake Chungara during the DS in 2016, but it has
not been detected in the pelagic zone (Aguilar et al., 2018). Only
Actinobacteria (hgcl clade) occurred in both pelagic and littoral
zones at a high relative abundance.

Predicted Metabolic Functions

The PICRUSt analysis showed a low mean NSTI value for all
samples (NSTI = 0.07 £ 0.02) indicating that the predicted
metabolic functions in our study were highly supported by the
reference microbial genome dataset (Langille et al., 2013). The
mean predicted metabolic functions of the bacterial community
from the littoral zone in Lake Chungard separated well from
those of the community in the inner GM (Figure 4). Thus,
these results support the idea that bacteria inside and outside the
colony of Nostoc spp. differ not only in their composition, but
probably also in their physiology. However, the predictions made
by PICRUSt has clear limitations (Langille et al., 2013), namely,
that they are made based on the comparison between short-reads
and reference genomes and thus, their interpretation should be
done with caution.

Identity of Nostoc

The Otu00001 and Otu00542 found in Lake Chungard were
classified as Nostoc commune, whereas Otu00002, Otu00822 and
Otu00838 found in the Culco stream were classified as Nostoc sp.
indicating that they correspond to different species (Table 1). The
Otu00001 and Otu00002 were most abundant (up to 98.5%) in
Lake Chungara and Culco stream, respectively (Supplementary
Table S2). The existence of two different species is also supported
by the phylogenetic analysis, namely, that colonies from Lake
Chungard are tentatively assigned to Nostoc commune, whereas
those from Culco to N. flagelliforme (Supplementary Figure S3).
Surprisingly, the sequence of Nostoc spp. from our study were
not related to Nostoc sp. (Llayta), a sequence retrieved from the
Andean plateau (no clear isolation source) and reported as the
typical species in this area (Galetovic et al., 2017). Although the
16S rDNA gene is valid for phylogenetic studies of Cyanobacteria
(Oksanen et al., 2004) and the Nostoc species separate well
with other close cyanobacterial taxa (Svenning et al.,, 2005),

we cannot confirm the species only based on a partial short
sequence (253 bp).

CONCLUSION AND PERSPECTIVES

Our results indicate that the bacterial communities associated
with Nostoc spp. significantly differ in diversity and composition
from those of the littoral zone. Overall, this study identifies these
macroscopic colonies as a unique habitat for bacteria in lakes
and streams and probably also as hotspots for nitrogen cycling
in these aquatic ecosystems known to be N-limited (Wurtsbaugh
etal., 1985). Finally, the unique bacterial community found inside
large colonies of Nostoc spp. offers the possibility to test how
autotrophic and heterotrophic microbial production are coupled.
Future studies should test whether this “microcosm” is also a
habitat for a unique microbial food web including predators, such
as found in the balloon-like chlorophycean macroalga Codium
bursa (Vaqué et al., 1994).
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