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Approaches to Computational Strain
Design in the Multiomics Era
Peter C. St. John and Yannick J. Bomble*

National Renewable Energy Laboratory, Golden, CO, United States

Modern omics analyses are able to effectively characterize the genetic, regulatory, and
metabolic phenotypes of engineered microbes, yet designing genetic interventions to
achieve a desired phenotype remains challenging. With recent developments in genetic
engineering techniques, timelines associated with building and testing strain designs
have been greatly reduced, allowing for the first time an efficient closed loop iteration
between experiment and analysis. However, the scale and complexity associated with
multi-omics datasets complicates manual biological reasoning about the mechanisms
driving phenotypic changes. Computational techniques therefore form a critical part of
the Design-Build-Test-Learn (DBTL) cycle in metabolic engineering. Traditional statistical
approaches can reduce the dimensionality of these datasets and identify common
motifs among high-performing strains. While successful in many studies, these methods
do not take full advantage of known connections between genes, proteins, and
metabolic networks. There is therefore a growing interest in model-aided design, in
which modeling frameworks from systems biology are used to integrate experimental
data and generate effective and non-intuitive design predictions. In this mini-review, we
discuss recent progress and challenges in this field. In particular, we compare methods
augmenting flux balance analysis with additional constraints from fluxomic, genomic,
and metabolomic datasets and methods employing kinetic representations of individual
metabolic reactions, and machine learning. We conclude with a discussion of potential
future directions for improving strain design predictions in the omics era and remaining
experimental and computational hurdles.

Keywords: constraint-based methods, kinetic metabolic models, machine learning, multiomics,
strain engineering

INTRODUCTION

The biorefinery concept involves the development of sustainable and low-impact production
routes for major commodity chemicals and fuels from biomass (Bozell and Petersen, 2010).
Biomanufacturing using engineered microbes is a critical component of many production
pathways, and offers the opportunity for high selectivity and yield (Nielsen and Keasling, 2016).
However, optimizing microbial metabolism for a given process is time intensive and costly, limiting
microbial bioconversions at present to only a few commercially successful compounds (Van Dien,
2013; Chubukov et al., 2016). This difficulty is primarily due to the complex relationship between
genotype and phenotype, involving regulation at the metabolic, translational, and transcriptional
levels. In recent years, the procedure of strain engineering has been formalized through the
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Design-Build-Test-Learn (DBTL) cycle, which takes advantage
of recent improvements in genetic engineering and high-
throughput characterization in the Build and Test stages,
respectively, to efficiently screen larger libraries of strain
modifications (Liu et al., 2015). The Learn and Design stages use
computational techniques to interpret experimental results and
suggest further modification targets. The Learn step is perhaps
the most weakly developed step of the DBTL cycle, and can
take the form of a wide range of computational techniques
from statistical analysis to detailed simulations (Nielsen and
Keasling, 2016). In this minireview, we discuss recent research
in methodology for integrating biological data – particularly in
the form of multiomics analyses – into developing new and
efficient strain designs. We first review relevant experimental
considerations from the Test stage and summarize the types
of data available for informing strain designs. We next cover
constraint based methods, kinetic simulations, and machine
learning approaches, as well as recent studies that have used
these methods in strain design. Lastly, we finish by discussing
available software implementations and future directions for
tackling the Learn step.

EXPERIMENTAL INPUTS

A number of recent reviews have covered the growing
usefulness of omics approaches in characterizing cell physiology
(Petzold et al., 2015; Nielsen, 2017; Becker and Wittmann,
2018; Yurkovich and Palsson, 2018), and therefore we only
briefly cover the relevant data generated in typical strain
characterization experiments. Frequently used omics data
include transcriptomics, proteomics, metabolomics, and
fluxomics, which measure gene expression, protein expression,
metabolite concentrations, and intracellular fluxes, respectively.
Transcriptomics is typically performed using next-generation
sequencing methods that quantify relative differences in RNA
expression within a given biological sample (Petzold et al.,
2015). Relative comparisons between samples are also possible
using statistical techniques (Wagner et al., 2012). Due to the
similar physical nature of RNA transcripts, transcriptomics
approaches are among the easiest to perform at the genome-
scale, but their distance from metabolic networks by several
layers of regulation makes direct understanding of metabolic
function using these data difficult. Proteomics is one step
closer to the determination of metabolic fluxes and uses mass
spectrometry to quantify protein expression through the amino
acid sequences of digested peptides (Kolker et al., 2006).
Similar to transcriptomics, proteomics experiments typically
measure relative protein expression within a sample, although
statistical and experimental methods for comparing relative
protein expression between samples are possible (Petzold et al.,
2015). Absolute quantification of protein expression is feasible
but more difficult, with a range of accuracies depending on
the method used (Arike et al., 2012). While more involved
than transcriptomics due to protein’s 3D structure and lack
of amplification techniques, proteomic analyses are still able
to survey a similar fraction of the protein-coding genome

(Haider and Pal, 2013). Metabolomics poses an even greater
challenge, as the high turnover of metabolites requires fast
quenching and processing of samples (Petzold et al., 2015). As a
result, the scope of metabolomic analyses are typically restricted
to a smaller fraction of the organism’s metabolism. Similar to
transcriptomics and proteomics, metabolite concentrations are
typically measured as relative quantities in high-throughput
exploratory experiments (Lei et al., 2011). Absolute metabolite
quantifications are possible in targeted metabolomic studies
using external or isotope-labeled standards. Lastly, fluxomics
is concerned with accurately measuring internal fluxes of key
metabolic reactions directly using isotopic labeling. While an
excellent indicator of metabolic state, fluxomics is performed
with less frequency than the previously discussed methods
due to its experimental difficulty (Blank, 2016). In addition to
careful cell culture and sample processing, fluxomics requires an
accurate mathematical model that tracks atom transitions during
metabolic reactions (Wiechert, 2001). This mathematical model
is used in conjunction with 13C isotope labeling patterns to
infer fluxes through each reaction, and as a result, inferred fluxes
have typically been restricted to the main reactions in central
carbon metabolism. However, extensions of MFA to include
genome-scale flux analysis have been proposed (Gopalakrishnan
and Maranas, 2015). Some genome-scale MFA methods leverage
metabolism’s bow-tie structure to constrain fluxes through
peripheral pathways with a high degree of confidence (García
Martín et al., 2015; Ando and Garcia Martin, 2018).

Even with access to direct measurements of activity for a
wide range cellular machinery components, using these data
to enhance metabolic flux for a desired pathway remains
challenging. We next discuss Learn techniques that synthesize
these vast data sources together with generalized knowledge of
biological function.

LEARN METHODOLOGY

The goal of the Learn and Design steps is to use the
characterization of previously engineered strains to develop
improved strain designs. In its most basic form, this step can be
accomplished by examining biological features (i.e., differentially
expressed genes) correlated with improved strain performance,
and overexpressing those likely involved in the pathway of
interest (Yoshikawa et al., 2012). Designs based on rational
consideration of omics data have proven successful (Guan et al.,
2017), validating the human-in-the-loop approach. However,
model driven designs will likely be critical to speeding up the
DBTL cycle and revealing non-intuitive targets (Vickers, 2016).
In the next sections, we review several lines of research into
model-driven interpretation of omics data. A schematic of these
approaches is shown in Figure 1.

Constraint-Based Methods
Constraint-Based Reconstruction and Analysis (COBRA)
methods use biological knowledge and data to place constraints
on intracellular fluxes, and in recent years have expanded to
consider a wide range of recent omics techniques. Here we
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FIGURE 1 | Overview of computational techniques in the Learn step. Omics datasets in Test can be interpreted through a number of different computational
strategies.

focus on extensions of COBRA methods that pertain to guiding
strain designs from omics data, while a number of recent reviews
have covered COBRA methods in greater depth (O’Brien et al.,
2015; Campbell et al., 2017; Stalidzans et al., 2018). A central
technique to COBRA methods is flux balance analysis (FBA),
which assumes that metabolite concentrations in the cell reach a
pseudo steady-state when compared to the time scales associated
with substrate uptake and cell division (Orth et al., 2010). This
assumption allows fluxes to be constrained by mass balance
equations developed from databases of biochemical reaction
stoichiometry. Mass balance constraints alone (in the absence
of 13C isotope labeling or other product data) are often not
sufficient to determine a unique vector of metabolic fluxes. By
assuming a cellular objective such as maximizing biomass or ATP
production, unique flux vectors can be predicted. The accuracy of
these predicted flux values are dependent on the objective chosen,
and some objective functions have shown good correlation with
experimental omics data (Lewis et al., 2010). Since such models
can be simulated quickly and rely primarily on well-curated
databases of metabolic reactions, many genome-scale models
(GEMs) of microbial metabolism have been created (Henry et al.,
2010; King et al., 2015). While useful in understanding metabolic
functionality and predicting the results of gene manipulation,
these assumptions are not sufficient to fully incorporate the
phenotypic observations resulting from omics analyses.

Extensions to the COBRA framework have therefore been
proposed to impose additional constraints from experimental
observations. One of the earliest such studies used transcriptomic
data to block flux through reactions where gene expression
for required enzymes was not observed (Åkesson et al., 2004).
This method considered gene product expression through
boolean logic, however, more recent studies have explicitly
included gene product expression in the constraint-based
framework (Becker and Palsson, 2008; Shlomi et al., 2008).
Metabolism and gene-expression models (ME-models) explicitly
model reactions involved in transcription and translations to
build a quantitative model of enzyme production and usage
(Lerman et al., 2012). These models therefore allow direct
comparison of model predictions with transcriptomic and
proteomic data (O’Brien et al., 2014, 2015). In a similar
method, genome-scale models with protein structures (GEM-
PROs) include structural information about each enzymatically
catalyzed reaction (Chang et al., 2013). Such models allow

the explicit simulation of the proteome fraction devoted to
different cellular activities (Basan et al., 2015), and therefore
might also be used to add additional constrains from proteomic
analyses. The GECKO method combines literature knowledge
of enzyme kinetics with proteomics data to constrain metabolic
fluxes (Sánchez et al., 2017). However, while many enzymes
have been kinetically characterized for well-studied species,
these data are typically not available for non-model microbes
(Nilsson et al., 2017).

Metabolomics data are typically incorporated in constraint-
based models through the explicit consideration of reaction
thermodynamics. If absolute metabolite concentrations are
available, thermodynamic metabolic flux analysis can provide
more condition-specific information on irreversible reactions
(Henry et al., 2007). These principles have been successfully
applied to select the most promising pathways for the synthesis
of a variety of products (Averesch et al., 2017). Further extensions
to the COBRA framework will likely include even more cellular
functionality. Toward this goal, whole-cell models that integrate
gene expression, protein production, and cell cycle have been
constructed (Karr et al., 2012).

Constraint-Based Reconstruction and Analysis methods
therefore represent an extensible and computationally efficient
framework for connecting omics data of different types and
have been used to successfully interpret omics data and improve
strain designs in a number of studies (Wisselink et al., 2010;
Brunk et al., 2016). An advantage of COBRA methods is their
limited number of parameters that must be fit from experimental
data, and therefore they are often able to suggest strain designs
without substantial experimental support. In particular, these
methods are especially efficient in determining metabolic changes
that couple product production to cell growth (Long et al.,
2015). The accuracy of constraint-based models in predicting
de novo experimental results has not been rigorously evaluated
and would serve a useful study in measuring the progress
in our understanding of cellular behavior. However, even
modest success rates from predictive tools are useful in guiding
experimental efforts where the search space is vast. A limitation
of constrained-based methods is that they are often less suitable
for suggesting improvements to fine-tune the enzyme expression
of an existing pathway. Such a task typically requires a kinetic
description of the reactions in question, which we discuss in
the next section.
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Kinetic Metabolic Models
The goal of kinetic metabolic models is to capture the dynamic
behavior of individual enzymes and integrate these expressions
into the behavior of the full metabolic network. These models
allow the direct prediction steady-state flux distributions as a
function of enzyme expression, which typically serve as the
most reliable experimental data for validation. However, models
that explicitly incorporate enzyme kinetics (if parameterized
correctly) are capable of predicting finer details of pathway
dynamics, including the effect of slight changes in enzyme activity
on metabolic flux. In constraint-based models, metabolite pools
are assumed to be in a pseudo steady-state, and thus the rate
rules governing flux through each reaction can be ignored.
While the steady-state assumption may be justified, the specific
steady-state reached inside the cell is determined, among a
multitude of factors, both by external metabolite conditions
as well as the kinetics and expression levels of metabolic
enzymes. Kinetic modeling frameworks therefore seek to estimate
these reaction rate rules from observed metabolic phenotypes
to predict how enzyme perturbation will affect steady-state
concentrations and fluxes.

Small-scale kinetic models of core carbon metabolism can
leverage enzyme kinetics in vitro and time-course metabolite
concentration measurements in fitting parameter values
(Chassagnole et al., 2002). However, transient cellular responses
are difficult to measure at the genome-scale, and direct enzyme
kinetic measurements are sparser for peripheral pathways.
Large-scale dynamic metabolic simulations are therefore
largely based on steady-state flux and concentration data
(Vasilakou et al., 2016). Because of these limited data, quantifying
parameter uncertainty is therefore a critical challenge in large-
scale kinetic models (Tummler and Klipp, 2018). Metabolic
ensemble modeling addresses this challenge directly by finding
distributions in parameter values that all reproduce the observed
experimental data (Tran et al., 2008). This approach has been
used to suggest subsequent enzymes in a linear pathway for
overexpression (Contador et al., 2009), and an ensemble-
based kinetic model of Escherichia coli has demonstrated
superior predictive ability of steady-state flux distributions
(Khodayari et al., 2014).

Smaller-scale, hand-curated kinetic models can use rate rules
for individual enzymes with experimentally validated functional
forms. However, traditional rate rule expressions (such as
Michaelis–Menten kinetics) become difficult to construct for
reactions with many participating species. Accordingly, larger-
scale kinetic models typically choose a generalizable framework
for constructing rate rule expressions. These frameworks range
in computational complexity and faithfulness to the underlying
enzyme-substrate system, and we leave a detailed comparison
of these approaches to a number of recently published reviews
(Heijnen, 2005; Hadlich et al., 2009; Du et al., 2016; Saa and
Nielsen, 2017). Software available for kinetic modeling has
continued to improve, and typically allows the user to specify
reaction stoichiometry and rate rules independently from the
chosen simulation algorithm. Such software includes COPASI
(Hoops et al., 2006), CellDesigner (Funahashi et al., 2008), and
MATCONT (Dhooge et al., 2003).

Regardless of the framework chosen, a major hurdle in
using kinetic models for interpretation of omics data is
the computational effort required in parameter estimation.
In metabolic ensemble modeling, parameters are sampled at
random and retained in the final ensemble only if they match
all the considered experimental data (Tran et al., 2008). As
a result, as more data is added or the model expanded,
the computational costs increase substantially. Methods for
improving the computational speed of the approach have been
developed (Greene et al., 2017), but calculating steady states of the
dynamic model remains a computational bottleneck. Ensemble-
based inference approaches are therefore typically applied to
smaller, core-carbon metabolic networks (Khodayari et al., 2014).
A recent genome-scale kinetic modeling study optimized only
a single parameter set due to the added cost of ensemble-
based parameter estimation (Khodayari and Maranas, 2016).
However, this single parameter set demonstrated a superior
ability to reproduce a wide range of experimental observations
compared with constraint-based methods (Khodayari and
Maranas, 2016). The ensemble modeling sampling approach
has been recently formalized as a form of Bayesian inference
(Saa and Nielsen, 2016), demonstrating that detailed posterior
distributions in parameter estimates and model predictions could
be found. Kinetic models therefore offer a promising future
direction for incorporating vast quantities of omics data in
metabolic reconstructions if computational bottlenecks can be
circumvented (St. John et al., 2018). While difficult to fit, the
added parameters from kinetic representations give these models
more expressive power in fitting experimental data.

A factor complicating the analysis of experimental data with
kinetic models is the stochasticity introduced by low cell volumes
and small copy numbers of several key enzymes (Levine and
Hwa, 2007; Kiviet et al., 2014). Cell to cell heterogeneity therefore
imposes unique challenges in understanding microbial kinetics
that might be resolved through the use of explicit stochastic
simulation algorithms (Gillespie, 1977) as implemented in a
variety of software packages (Hoops et al., 2006; Sanft et al., 2011;
Abel et al., 2016) In the subsequent section we discuss machine
learning approaches that add even more parameters to be fit,
but may prove useful as high-throughput strain construction and
characterization techniques improve.

Machine Learning
Machine learning methods for interpreting omics data have
taken a wide range of forms, largely due to the many varied
biological questions that can be asked. In this section, we focus
on methods that predict future targets for strain engineering.
Integrative omics analyses attempt to draw connects between
disparate omics data sources, either with or without prior
biological knowledge (Berger et al., 2013; Bersanelli et al., 2016).
These methods have been used to predict key regulatory genes
correlated with metabolic productivity (Larsen et al., 2018), and
inferred regulatory networks have also been incorporated into
FBA models (Chandrasekaran and Price, 2010). Other studies
have used machine learning to understand and predict metabolic
performance from hyperparameters associated with cell growth.
Wu et al. (2016) explored methods for machine learning in
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meta-analysis to predict likely pathway success as a function of
the complexity of the engineered pathway and other factors. In
Kim et al. (2016), machine learning methods are used both for
data reconciliation between omics sources, as well as to directly
map the genotype-phenotype relationship. Another interesting
study used machine learning methods as a replacement for
the traditional rate equation frameworks discussed in the
previous section (Costello and Martin, 2018). In that study, rate
equations were learned directly from time-series metabolomics
and were successful in predicting medium-producing strains
given high and low-producing varieties. Costello and Martin
(2018) also quantified the amount of data required for
accurate rate determination at approximately 10 strains. Given
the rapid advancement of machine learning methods and
biological data collection, these approaches may offer flexible
and efficient ways of directly incorporate biological data in
new strain designs.

DISCUSSION

Since Learn lags behind the rest of the DBTL methodology in the
development of validated and standardized techniques, feasible
computational techniques are still being explored and improved
upon. As a result, software libraries for performing the analyses
described in this minireview are relatively scarce. As the most
mature method of the three, COBRA methods have relatively
strong software support in both the MATLAB (Heirendt et al.,
2017) and Python (Ebrahim et al., 2013) ecosystems. Dependent
packages have also been created for a number of the COBRA
extensions for integrating or predicting omics-level data. Kinetic
models, alternatively, have relatively poor support in the software
landscape. This is likely due to the multitude of kinetic
frameworks available as well as their slow (but parallelize-
able) convergence, requiring hardware-dependent simulation
strategies. For machine learning, several actively developed
packages are available that implement common approaches.
Scikit-Learn for Python implements a variety of machine learning
strategies under a consistent API (Pedregosa et al., 2011).

Deep learning frameworks such as Tensorflow or PyTorch
simplify the process of constructing deep neural networks
and training them on specialized hardware. Compared to the
availability of general-purpose machine learning, omics-specific
machine learning analyses have substantially fewer libraries
under active development. However, creating and distributing
standardized Learn work flows will be critical to enabling the
reproducible analyses required of the iterative DBTL cycle. Such
standardized approaches will necessarily require the development
and maintenance of software and best practices in the metabolic
modeling community.
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