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Rapid and reliable identification of bacterial pathogens directly from patient samples is
required for optimizing antimicrobial therapy. Although Sanger sequencing of the 16S
ribosomal RNA (rRNA) gene is used as a molecular method, species identification and
discrimination is not always achievable for bacteria as their 16S rRNA genes have
sometimes high sequence homology. Recently, next generation sequencing (NGS) of
the 16S–23S rRNA encoding region has been proposed for reliable identification of
pathogens directly from patient samples. However, data analysis is laborious and time-
consuming and a database for the complete 16S–23S rRNA encoding region is not
available. Therefore, a better, faster, and stronger approach is needed for NGS data
analysis of the 16S–23S rRNA encoding region. We compared speed and diagnostic
accuracy of different data analysis approaches: de novo assembly followed by Basic
Local Alignment Search Tool (BLAST), operational taxonomic unit (OTU) clustering, or
mapping using an in-house developed 16S–23S rRNA encoding region database for the
identification of bacterial species. De novo assembly followed by BLAST using the in-
house database was superior to the other methods, resulting in the shortest turnaround
time (2 h and 5 min), approximately 2 h less than OTU clustering and 4.5 h less than
mapping, and a sensitivity of 80%. Mapping was the slowest and most laborious data
analysis approach with a sensitivity of 60%, whereas OTU clustering was the least
laborious approach with 70% sensitivity. Although the in-house database requires more
sequence entries to improve the sensitivity, the combination of de novo assembly and
BLAST currently appears to be the optimal approach for data analysis.

Keywords: clinical microbiology, diagnostics, next-generation sequencing, metagenomics, OTU clustering,
mapping, de novo assembly

INTRODUCTION

Clinical microbiology strives to improve patient care by rapidly identifying and characterizing
microbial pathogens in patient samples to establish a correct diagnosis and to ensure optimal
treatment and infection prevention. The conventional culture has long been considered the gold
standard for bacterial identification. However, it can take days to weeks to successfully culture
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bacteria, as some clinically relevant bacteria are slow-growing,
difficult to grow, fastidious or sometimes even non-culturable
(Didelot et al., 2012; Salipante et al., 2013). As a complementary
approach to culture, sequencing of the 16S rRNA gene has
emerged as an accurate and faster method widely used for
bacterial identification (Petti, 2007; Srinivasan et al., 2015). The
16S rRNA gene, ∼1.5 kilobase (kb) in length, has proven to be a
useful molecular target since it is present in all bacteria, either as a
single copy or in multiple copies, and it is highly conserved over
time within a species (Petti, 2007; Sabat et al., 2017). However,
this method does not always allow to identify bacteria to the
species level due to high sequence similarities between some
species (Deurenberg et al., 2017). For example, species of the
Streptococcus mitis group, including Streptococcus pneumoniae,
are almost indistinguishable from each other on the basis of their
16S rRNA genes, having 99–100% sequence similarities (Petti,
2007; Lal et al., 2011). This method also fails to distinguish certain
species, as described for Escherichia coli and Shigella spp. the 16S
rRNA genes of which share >99% sequence identity (Devanga
Ragupathi et al., 2017). Furthermore, Sanger sequencing, which
is generally used for 16S rRNA gene sequencing, is challenging in
complex, polymicrobial samples (Deurenberg et al., 2017). With
the continuous advancements in sequencing technology over the
past decade, next-generation sequencing (NGS) offers several
advantages over Sanger sequencing, including a higher resolution
and accuracy in identifying microbial pathogens (MacCannell,
2016; Motro and Moran-Gilad, 2017). Moreover, this technology
allows culture-independent testing from complex polymicrobial
samples to detect and identify several pathogens in parallel
(Rossen et al., 2018). A diagnostic method based on NGS of PCR
amplification products of the 16S–23S rRNA encoding region
(∼4.5 kb) has been developed (Benítez-Páez and Sanz, 2017;
Kerkhof et al., 2017), showing a higher resolution and a reduced
time to results for bacterial identification compared to other
identification methods (e.g., 16S rRNA gene Sanger sequencing)
(Sabat et al., 2017). However, this method had some limitations,
including the absence of an extensive 16S–23S rRNA encoding
region database and the lack of complementary software allowing
easy and reliable species identification (Sabat et al., 2017).

Operational taxonomic unit (OTU) clustering is a widely used
tool to identify the bacterial composition of a sample based on
the 16S rRNA gene sequencing. De novo assembly followed by
BLASTN or mapping, on the other hand, are commonly used for
the analysis of whole genome sequencing data. De novo assembly
followed by BLASTN on the NCBI database has been described
as the main tool used for the bacterial identification from clinical
samples based on NGS of the 16S–23S rRNA encoding region
(Sabat et al., 2017). In a later study, where Nanopore sequencing
of the 16S–23S rRNA encoding region was performed, a mapping
based approach was used to analyze the data (Cuscó et al., 2018).
However, so far it is unclear which method is more accurate
and/or faster. Therefore, we have performed the data analysis of
16S–23S rRNA encoding region using the tools for 16S rRNA
gene sequencing and whole genome sequencing to find out the
most appropriate tool in terms of diagnostic accuracy and speed.
We first evaluated different sequencing protocols for NGS of
the 16S–23S rRNA encoding region and subsequently tested

the speed and diagnostic accuracy of three different 16S–23S
rRNA encoding region NGS data analyses, de novo assembly
followed by BLASTN, mapping and OTU clustering for the
correct assignment of bacterial species directly from clinical
samples. In order to accomplish this objective, we used culture
and 16S rRNA gene Sanger sequencing as gold standard.

MATERIALS AND METHODS

Samples
Twenty heart valve tissues and eight fluid clinical samples
(five fluids from sonicated valve tissues, three pus and liquor)
presented to the medical microbiology laboratory for routine
diagnostics (culturing and 16S Sanger sequencing) were in
parallel tested by the 16S–23S rRNA encoding region NGS
approach. The samples used for the present analyses were
collected during routine diagnostics. All procedures were carried
out according to guidelines and regulations of University Medical
Center Groningen (UMCG) concerning the use of patient
materials for the validation of clinical methods, which follow
the guidelines of the Federation of Dutch Medical Scientific
Societies (FDMSS). Every patient entering the UMCG is informed
that samples taken may be used for research and publication
purposes, unless they indicate that they do not agree to it. This
procedure has been approved by the Medical Ethical Committee
of the UMCG. All samples were used after performing and
completing conventional microbiological diagnostics and were
coded to protect patient confidentiality.

In addition, a mock community sample, i.e., the
ZymoBIOMICSTM Microbial Community DNA Standard
(Zymo Research, Irvine, CA, United States), was used for NGS
of the 16S–23S rRNA encoding region. The mock community
consisted of the following eight bacterial species: Bacillus subtilis,
Enterococcus faecalis, Escherichia coli, Lactobacillus fermentum,
Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella
enterica, Staphylococcus aureus.

Culturing
Samples were cultured on 5% sheep blood agar (BA), chocolate
agar (CHOC), Fastidious Broth (FB) and/or Brucella blood
agar (BBA) plates (Mediaproducts BV, Groningen, Netherlands).
The BA and CHOC agar plates were aerobically (with 5%
CO2) at 35◦C, and BBA and FB agar plates were anaerobically
incubated at 35◦C up to 9 days. When growth was recorded,
the identification was done by matrix-assisted laser desorption
ionization time-of-flight mass spectrometer (MALDI-TOF MS)
(Bruker, Billerica, MA, United States).

DNA Extraction From Clinical Samples
The DNA from tissues and fluid samples was extracted and
purified using the DNeasy Blood and Tissue Kit (Qiagen,
Hilden, Germany) for 16S rDNA sequencing and the PureLinkTM

Genomic DNA Mini Kit (Thermo Fisher, Bleiswijk, Netherlands)
for 16S–23S rRNA encoding region NGS, according to the
manufacturers’ protocols.
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Sanger Sequencing of the 16S rRNA
Gene
Extracted DNA from the clinical samples was amplified
by PCR using 16S rRNA gene targeting primers 8F
(5′-TGGAGAGTTTGATCCTGGCTCAG-3′) and 515R (5′-
TACCGCGGCTGCTGCTGGCAC-3′) (Biolegio, Nijmegen,
Netherlands). PCR was performed on the T100 Thermal Cycler
(Bio-Rad) with the following conditions: initial incubation for
15 min at 95◦C followed by 35 cycles of 15 s at 94◦C, 15 s at
60◦C, 30 s at 72◦C with a final incubation for 10 min at 72◦C.
In the following, DNA sequencing was performed with an
automated DNA sequencer (ABI 3130XL; Applied Biosystems
Instrument, Carlsbad, CA, United States) using the BigDye
Terminator v3.1 cycle sequencing kit. The sequencing data was
analyzed using SeqMan Pro v10.0.1 (DNASTAR, Madison, WI,
United States) by assembling the forward and reverse reads into
a consensus sequence. Subsequently, the consensus sequences
were aligned in the GenBank database using the web-based basic
local alignment tool (BLAST).

Next-Generation Sequencing of the
16S–23S rRNA Encoding Region
Extracted DNA from the clinical samples and of the mock
community sample was quantified using Qubit R© 2.0 Fluorometer
(Thermo Fisher, Bleiswijk, Netherlands) by following the
manufacturer’s instructions. PCR amplification of the
16S–23S rRNA encoding region was performed using the
forward primer 27F (5′-AGAGTTTGATCMTGGCTCAG-3′),
targeting the 16S rRNA gene and the reverse primer 2490R
(5′-GACATCGAGGTGCCAAAC-3′) (Applied Biosystems
UK, Renfrewshire, United Kingdom) targeting the 23S rRNA
gene, for extracted DNA samples as well as for the negative
control, which consisted of only RNA- and DNA-free water,
and for the positive control (containing DNA from Delftia
lacustris, DSMZ 21246). The amplification was carried out as
previously described (Sabat et al., 2017), with the following minor
modifications: for the reaction mixture, 200 µM nucleotide mix
dNTPs (Roche Diagnostics, Almere, Netherlands) was used and
35 cycles consisting of incubation at 98◦C for 30 s, followed
by incubation at 70◦C for 30 s and at 72◦C for 2 min. PCR
products were analyzed using the Agilent D500 ScreenTape
kit (Agilent Technologies Netherlands B.V., Amstelveen,
Netherlands) according to manufacturer’s protocol using the
2200 TapeStation System (Agilent Technologies). Subsequently,
PCR products were purified and quantified and NGS libraries
were prepared using the Nextera XT DNA Library Preparation
Kit (Illumina, San Diego, CA, United States). Next, each library
was normalized, pooled and loaded onto the Illumina MiSeq
platform for paired-end sequencing. For the evaluation of three
different sequencing protocols, firstly 11 of the clinical samples
were paired-end sequenced using either a 300-cycles MiSeq
Reagent Kit V2 (300_v2) (Illumina), a 500-cycles MiSeq Reagent
Kit V2 (500_v2) (Illumina) or a 600-cycles MiSeq Reagent Kit
V3 (600_v3) (Illumina). After determining the optimal protocol,
which was the 300_v2, the other clinical samples were sequenced
using the 300_v2 sequencing kit (Illumina).

16S–23S rRNA Encoding Region
Database
For the creation of the 16S–23S rRNA encoding region
sequence database, sequences of a minimum of two strains
per bacterial species were used. Sequences of each strain were
obtained as a FASTA file from the NCBI genome website1

by using the chromosome coordinates on the chromosome
NCBI Reference Sequence. If no chromosome NCBI Reference
Sequence was available, the whole-genome sequences of the
corresponding species were taken as a GenBank file and
annotated on the Rapid Annotation Subsystem Technology
(RAST) server2. After annotation, the 16S–23S rRNA encoding
region coordinates were used to download the FASTA file
from the NCBI genome website. All obtained 16S–23S rRNA
encoding region sequences were concatenated into one multiple
FASTA file using command line on Mac OS X, a Unix based
operating system.

To expand the database, 16S–23S rRNA encoding region
sequences presented in a recently published study (Benítez-
Páez and Sanz, 2017) were downloaded and merged using a
scripting language, Python (version 3.6.2) to generate our final
taxonomy and mapping database. For this, duplicate sequences
were filtered out from our FASTA file containing multiple
16S–23S rRNA encoding region sequences (mff ) (n = 176
bacterial species) by comparing it to the FASTA file of 16S–
23S rRNA encoding region sequences (ss) obtained from the
previously published database (Benítez-Páez and Sanz, 2017)
(n = 2339 bacterial species) and a multiple FASTA file with
unique sequences was created. The published database was
also curated in order to remove entries that did not contain
a bacterial species/genus or contained taxonomic errors and
remove entries that had the wrong length (e.g., length size
>10,000 and <2,500). Then, two files: (i) the taxonomy
dump file3 (accessed on 20-09-2017) and (ii) the lineage
file4 (accessed on 20-09-2017) were used to get the lineage
(taxonomy) for specific bacteria. Subsequently, the mapping
database was created using the merged taxonomy text file and
its corresponding sequencing multiple FASTA file. The database
contained 23,439 sequences from 2389 species (295 sequences
were not identified at the species level, and could represent
new species) and 896 genera. The sequencing and taxonomy
databases were annotated using the “Set up Amplicon-Based
Reference Database” tool from the CLC Microbial Genomics
Module (version 3.0). These were annotated to a similarity
percentage of 99%, creating an OTU database compatible
for OTU clustering.

Data Analysis of the 16S–23S rRNA
Encoding Region NGS
The FASTQ files containing the sequencing reads were
analyzed using the CLC Genomics Workbench version

1https://www.ncbi.nlm.nih.gov/genome/
2http://rast.nmpdr.org
3ftp://ftp.ncbi.nih.gov/pub/taxonomy/
4https://github.com/zyxue/ncbitax2lin/
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11.0 (Qiagen) (see Supplementary Table S1 describing
the parameters used for data analysis). First, the paired-
end reads were trimmed with 0.05 (corresponding to
a Phred quality score Q ≥ 14) quality scores. We also
performed adapter trimming using the Nextera XT
adapters as references.

De novo Assembly and BLAST
In the de novo assembly using CLC Genomics Workbench,
contiguous sequences are generated through de Bruijn graph
algorithms (Ekblom and Wolf, 2014). After de novo assembly,
the generated contigs are assigned a taxonomic classification
by alignment using the nucleotide Basic Local Alignment
Search Tool (BLASTN) against the nucleotide collection database
(NCBI database).

Following quality trimming, trimmed paired end reads were
de novo assembled into contigs5. The contigs with a total read
count of >1,000 reads were chosen and were aligned to (i) the
nucleotide collection database on NCBI, using the web-based
nucleotide BLAST and (ii) an in-house developed 16S–23S rRNA
encoding region database for bacterial identification.

(i) The alignment on NCBI was manually performed by
submitting contigs’ sequences via the website6. According
to the similarity score defined previously (Sabat et al., 2017),
bacteria could be assigned to a species or genus when
the similarity score was ≥99% and between 90 and 99%,
respectively. An identity score of <90% was interpreted as
an unidentified microorganism. Furthermore, the contigs
aligned on the NCBI database were filtered by setting
the Expect value (E) to 0, and by excluding pathogens
found in the negative control. If more than one contig
was generated for the same species, the reads of all contigs
belonging to the same species were added up and the
relative abundance of that particular bacterial species in
each sample was calculated by dividing the total read
count of the corresponding contigs by the total number of
reads in the sample.

(ii) For the alignment using the local nucleotide database,
the in-house developed 16S–23S rRNA encoding region
database was uploaded to CLC Genomics Workbench.
Then the BLAST analysis was performed for the contigs
with a total read count of >1,000 reads. Further analysis of
the results was performed as stated above.

The data for the evaluation of the three different
sequencing protocols was analyzed using only the de novo
assembly approach followed by a BLAST using the NCBI
database. To assess the optimum sequencing workflow for
bacterial identification, the sequencing results of the three
different paired-end sequencing chemistries were evaluated
based on time to result, and bacterial species identified,
considering their abundance and identity level (similarity score
≥99% or <99%).

5https://figshare.com/s/729b346eda670e9daba4
6https://blast.ncbi.nlm.nih.gov/Blast.cgi

OTU Clustering
OTU clustering groups the reads into OTUs, which consist
of representative sequences of pseudo-species, based
on sequence similarities and assigns taxonomy to them
(OTU, 2017).

The reads after trimming were analyzed using the CLC
Microbial Genomics Module (version 3.0) for OTU clustering.
Reference based OTU clustering was performed using an in-
house developed 16S–23S rRNA encoding region database
with a similarity score of 99%, closed reference OTU picking
was selected and, the minimum occurrences was set to 10.
Further analysis was done manually by aggregating all the
generated OTU’s by their species name and by excluding the
results found in the negative control from clinical samples.
Then, the percentage of the total abundance was calculated
by dividing the combined abundance of the species with the
total reads in OTU’s.

Mapping to an In-House Developed
16S–23S rRNA Encoding Region
Database
The mapping consists of aligning reads to reference sequences
based on a predefined length and similarity fraction (CLC, 2017).

Trimmed reads were analyzed using the Map Reads to
Reference tool with the default settings (similarity fraction
0.8; length fraction 0.5; minimum consensus length 200 bp)
by aligning the reads against the in-house developed 16S–23S
rRNA encoding region database. After alignment, the results
were filtered based on total number of reads >1,000. Further
analysis was done manually by excluding the species found in
the negative control and then by aggregating each reference
sequence to its species’ name. Afterward, the proportion of
mapped reads was calculated by summing up the total read count
for each species and dividing it by the total of mapped reads of
the given sample.

Statistical Analysis
During the data analysis, the species found in the negative
control were excluded from the clinical samples in all three
approaches, and were considered as potential contaminating
species. Then a cut-off value was determined for each method
to define whether the bacterial species identified should be
accounted as infectious causing pathogens (e.g., Cutibacterium
acnes) or as contamination. For each method, the cut-off value
was determined by calculating the mean (µ) and standard
deviation (SD) of the proportion of reads belonging to each
species in samples which were negative by both culturing and
Sanger sequencing using the confidence interval method (Singh,
2006). The results of the three data analysis approaches were
compared based on the number of the species identified, the
relative abundance (number of reads for a specific species),
and time to result.

Statistical analysis was performed for all three data analysis
approaches using the software package SPSS version 23 (IBM
Corporation, New York, NY, United States) in which sensitivity
and specificity of each approaches was determined.

Frontiers in Microbiology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 620

https://figshare.com/s/729b346eda670e9daba4
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00620 April 12, 2019 Time: 17:34 # 5

Peker et al. 16S–23S rRNA Encoding Region Bioinformatics Analyses

RESULTS

Evaluation of Three Different Sequencing
Protocols
All sequencing protocols showed similar identification results
at the species level. The proportion of reads corresponding to
bacteria identified at the genus level and at the species level
is shown in Figure 1. The remaining non-identified reads are
belonged to other taxonomies (mainly human). The proportion
of reads identified at the genus level was 91%, 95%, and 96%,

FIGURE 1 | Proportion of reads corresponding to bacteria identified at the
genus level and at the species level using three different sequencing protocols.

and at the species level 39%, 38%, and 37% for the 600_v3 kit,
500_v2 kit, and 300_v2 kit, respectively (Figure 1). Despite the
slightly lower proportion of reads identified at the species level,
the 300_v2 kit identified the infection causing pathogen in all
samples also identified using the other two sequencing kits. The
main differences between sequencing kits were due to differences
in the detection of contaminating species. On the other hand,
compared to the 300_v2 kit (24 h) sequencing with the 600_v3
kit (56 h) took at least two times longer. Taking everything into
account, sequencing using the 300_v2 kit was chosen as the
sequencing protocol for the rest of the following samples.

Data Analysis of All Clinical Samples
The processing of the sequencing reads obtained by the 16S–23S
rRNA encoding region NGS method is illustrated in Figure 2.
After removing the low-quality nucleotides by trimming, an
average of 1,367,822 reads (99.9%) remained for analysis.
Subsequent data analysis using the three different approaches
shown in Figure 2 identified bacterial species in the negative
control (Supplementary Table S2), and these species were
considered to be contaminating species. If these species were
found in clinical samples, they were excluded from further
analysis unless they were above the cut-off level defined for each
tool (Supplementary Tables S2–S4 and Tables 1, 2). From this
point on, the samples identified with clinically relevant bacteria
using either 16S Sanger sequencing or culturing were named
conventional positive samples and those identified by using

FIGURE 2 | The workflow used for processing of the NGS data.

Frontiers in Microbiology | www.frontiersin.org 5 April 2019 | Volume 10 | Article 620

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00620 April 12, 2019 Time: 17:34 # 6

Peker et al. 16S–23S rRNA Encoding Region Bioinformatics Analyses

TABLE 1 | Comparison of BLAST analysis results for NGS positive samples using the local database and the NCBI database.

BLAST on local database BLAST on NCBI database

Sample % of reads against contig Species % Identity Species % Identity

1# 0.5% Cutibacterium acnes 100% Cutibacterium acnes 100%

2# 0.4% Cutibacterium acnes 100% Cutibacterium acnes 100%

10# 0.4% Cutibacterium acnes 100% Cutibacterium acnes 98%

0.7% Enterococcus faecium 100% Enterococcus faecium 100%

11# 0.4% Cutibacterium acnes 100% Cutibacterium acnes 99%

15## 0.4% Cutibacterium sp. 93% Cutibacterium sp. 93%

17# 0.7% Cutibacterium acnes 100% Cutibacterium acnes 99%

18# 95.8% Streptococcus sp. 100% Streptococcus sp. 99%

0.32% Bordetella sp. 96% – –

20## 74.3% Ureaplasma parvum 100% Ureaplasma parvum 100%

21## 61.1% Ureaplasma parvum 100% Ureaplasma parvum 99%

25# 88.9% Streptococcus dysgalactiae 100% Streptococcus dysgalactiae 100%

26# 80.2% Streptococcus sanguinis 100% Streptococcus sanguinis 99%

2.0% – – Undibacterium oligocarboniphilum 100%

27## 10.0% Actinotignum sp. 97% Actinotignum sp. 97%
6.2% Aerococcus urinae 100% Aerococcus urinae 99%
1.4% Actinotignum schaalii 99% Actinotignum schaalii 99%
1.0% Cutibacterium acnes 99% Cutibacterium sp. 96%

Time∗ CLC analysis ∼1 h 20 min ∼1 h 20 min

Hands on ∼45 min ∼4 h

Total ∼2 h 5 min ∼5 h 20 min

∗Analysis time is for all 30 samples (including positive and negative control). #Tissue sample; ##Fluid sample; Cutibacterium acnes had been formerly referred to as
Propionibacterium acnes.

NGS of the 16S–23S rRNA encoding region were named NGS
positive samples.

Bacterial Identification on NCBI Database and Local
16S–23S rRNA Encoding Region Database Using
BLAST Analysis
Bacterial identification results obtained by BLASTN analysis
using both NCBI database and the local database are shown in
Table 1. The same bacteria were identified at the genus and
species level in all samples with two exceptions in samples 18
and 26. In sample 18, the contig with 454 bp (Supplementary
Table S2) was identified as Herbaspirillum sp. using the NCBI
database and was matching the partial sequence of the 16S
rRNA gene with a similarity score of 96.47%, whereas the same
contig was identified as Bordetella sp. (96% similarity score)
using the local database. Likewise, in sample 26, the contig with
623 bp (Supplementary Table S2) was assigned as Undibacterium
oligocarboniphilum in the NCBI database, could not be identified
in the local database. The bacterial species in most of the samples
were found with a slightly higher similarity score in the local
database than in the NCBI database. We concluded that the
local database was accurate enough to identify and distinguish
clinically relevant species. Moreover, the time to complete the
analysis of 30 samples was about 3 h more with BLAST on
the NCBI database than the BLASTN on the local database
(Table 1). Therefore, the other two approaches (OTU clustering
and mapping) were performed using the local database.

Conventional Methods Versus 16S–23S rRNA
Encoding Region NGS
Table 2 shows the bacterial identification results obtained by
conventional methods (culture and 16S rRNA gene Sanger
sequencing) and by 16S–23S rRNA encoding region NGS. The
conventional methods identified bacterial species in 12 out of
28 samples. Among them, two samples (samples 2 and 33) were
positive only by culturing and nine samples (samples 10, 17, 18,
20, 21, 24, 25, 26, and 27) were positive only by 16S rDNA Sanger
sequencing. The 16S–23S rRNA encoding region NGS method
identified the same bacteria in 42% (5/12) of the conventional
positive samples, at the species level (samples 18, 20, 21, 25,
and 27) and one sample at the genus level (sample 26) using
the three data analysis approaches (Table 2). A C. acnes strain
identified by conventional methods in sample 24 could not be
detected by 16S–23S rRNA encoding region NGS using any of
the bioinformatics tools. Also, Tropheryma whipplei could not be
identified in samples 10 and 17 using the 16S–23S rRNA encoding
region NGS method. By comparing the primers with the 16S–23S
rRNA encoding region sequences of this species, we realized the
primers did not align with the target region. Therefore, these two
samples were excluded from further statistical analysis.

The de novo assembly and subsequent BLASTN analysis on
the local database identified clinically relevant bacteria in 10
out of 26 samples with a sensitivity and specificity of 80%
and 88%, respectively (Table 3) in comparison to conventional
methods. The same bacteria were identified at species level in
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TABLE 2 | Bacterial species identified by NGS of 16S–23S rRNA encoding region using three different data analysis approaches and 16S rRNA gene Sanger
sequencing and culturing.

NGS of 16S–23S rRNA encoding region Conventional methods

De novo assembly+BLAST
(cut-off: 0.3%)

OTU clustering
(cut-off: 0.2%)

Mapping
(cut-off: 0.4%)

16S rRNA gene
Sanger sequencing

Culturing

Sample
number

Bacteria
(relative abundance, %)

Bacteria
(relative abundance, %)

Bacteria
(relative abundance, %)

Bacteria Bacteria

1# Cutibacterium acnes (0.5%) Negative Negative Streptococcus sp. Cutibacterium
acnes + <1

saccharolyticusU

3# Negative Negative Gemella sp. (0.5%) Negative Negative

6## Negative Variovorax paradoxus (0.3%) Negative Negative Negative

10# Enterococcus faecium (0.7%) Enterococcus faecium (1.9%) Negative Tropheryma whipplei Negative

Cutibacterium acnes (0.4%)

11# Cutibacterium acnes (0.4%) Negative Negative Negative Negative

15## Cutibacterium sp. (0.4%) Negative Negative Negative Negative

17# Cutibacterium acnes (0.7%) Negative Negative Tropheryma whipplei Negative

18# Streptococcus sp. (95.8%) Streptococcus sp. (52.4%) Streptococcus sp. (48.1%) Streptococcus sp. Negative

Bordetella sp. (0.32%) Streptococcus pneumoniae (9.2%) Streptococcus australis (15.1%)

Streptococcus australis (8.4%)

Streptococcus mitis (7.7%)

Streptococcus suis (6.1%)

Streptococcus parasanguinis (5.4%)

Streptococcus agalactiae (3.0%)

Streptococcus anginosus (2.5%)

Streptococcus ictaluri (2.1%)

Streptococcus cristatus (1.6%)

Streptococcus intermedius (1.2%)

20## Ureaplasma parvum (74.3%) Ureaplasma parvum (79.8%) Ureaplasma parvum (69.1%) Ureaplasma parvum Negative

Ureaplasma urealyticum (16.6%) Ureaplasma urealyticum (8.5%)

21## Ureaplasma parvum (61.1%) Ureaplasma parvum (78.9%) Ureaplasma parvum (60.6%) Ureaplasma parvum Negative

Ureaplasma urealyticum (15.9%) Ureaplasma urealyticum (8.0%)

23# Negative Negative Negative Negative Cutibacterium
acnes<< 1

24# Negative Negative Negative Cutibacterium acnes Negative

25# Streptococcus dysgalactiae
(88.9%)

Streptococcus dysgalactiae (85.3%) Streptococcus Streptococcus Negative

dysgalactiae (81.4%) dysgalactiae

Streptococcus pyogenes (7.7%) Streptococcus

pyogenes (6.6%)

Streptococcus agalactiae (6.5%) Streptococcus canis (1.5%)

Streptococcus suis (0.8%)

Streptococcus ictaluri (0.5%)

26# Streptococcus sanguinis
(80.2%)

Streptococcus sanguinis (75.9%) Streptococcus sanguinis (65.8%) Streptococcus mitis Negative

Streptococcus anginosus (8.6%) Streptococcus gordonii (1.9%)

Streptococcus cristatus (3.8%) Streptococcus parasanguinis
(1.1%)

Streptococcus parasanguinis (3.6%) Streptococcus sp. (1.0%)

Streptococcus agalactiae (2.6%) Streptococcus anginosus (0.9%)

Streptococcus pneumoniae (1.6%) Streptococcus constellatus (0.9%)

Streptococcus constellatus (0.8%) Streptococcus cristatus (0.9%)

Streptococcus gordonii (0.4%) Streptococcus infantis (0.5%)

(Continued)
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TABLE 2 | Continued

NGS of 16S–23S rRNA encoding region Conventional methods

De novo assembly+BLAST
(cut-off: 0.3%)

OTU clustering
(cut-off: 0.2%)

Mapping
(cut-off: 0.4%)

16S rRNA gene
Sanger sequencing

Culturing

Sample
number

Bacteria
(relative abundance, %)

Bacteria
(relative abundance, %)

Bacteria
(relative abundance, %)

Bacteria Bacteria

27## Actinotignum schaalii (1.4%) Actinotignum schaalii (17.5%) Actinotignum schaalii (14.2%) Actinotignum schaalii Negative

Actinotignum sp. (10.0%) Aerococcus urinae (13.9%) Aerococcus urinae (7.4%)

Aerococcus urinae (6.2%)

Cutibacterium acnes (1.0%)

Time∗ CLC analysis ∼1 h 20 min ∼3 h ∼2 h 30 min

Hands on ∼45 min ∼1 h ∼4 h

Total ∼2 h 5 min ∼4 h ∼6 h 30 min

∗Analysis time is for all 30 samples (including positive and negative control) using a i7-6700 CPU @ 3.40 GHz, 32 GB RAM, 64-bit operating system computer. U In later
analysis, Cutibacterium acnes was identified. #Tissue sample (heart valve); ##Fluid sample; Cutibacterium acnes had been formerly referred to as Propionibacterium acnes.

5 (samples 18, 20, 21, 25, 27) out of 10 NGS positive samples
and at genus level in one sample (sample 26) between Sanger
sequencing and 16S–23S rRNA encoding region NGS. Apart
from them, de novo assembly and following BLASTN analysis
identified low abundant C. acnes in sample 1 as it was detected
by culturing (Table 2). This approach identified C. acnes in
sample 2, in which Staphylococcus saccharolyticus was detected
by culturing. However, by doing further analysis, we found that
in a subsequent sample taken from the same patient, C. acnes
was identified. Furthermore, BLAST analysis of 16S–23S rRNA
encoding region NGS identified additional bacterial species in
samples 18 and 27.

The OTU clustering approach detected bacterial species
in eight out of 26 clinical samples (Table 2) with a
sensitivity of 70% and a specificity of 94% compared
to conventional methods (Table 3). In sample 6, OTU
clustering identified a low abundant (0.3%) Variovorax
paradoxus, a species that was not detected by the other two
approaches and by conventional methods. Additionally,
there were more, closely related bacterial species, identified
in six of the NGS positive samples using the OTU
clustering method.

A total of seven samples were positive using the mapping
approach (Table 2). The sensitivity and specificity of the
approach were 60% and 94%, respectively (Table 3). As
mentioned above, bacteria identified in five of the samples
(samples 18, 20, 21, 25, 27) coincided with the results of
conventional methods at the species level and in one sample
(sample 26), at the genus level. On the other hand, sample
3 was identified as Gemella sp. with an abundance of 0.5%
using the mapping approach while it was negative using
conventional methods.

Comparison of Three Approaches
The 16S–23S rRNA encoding region NGS data analysis results
using the three different approaches are presented in Table 2
for NGS positive samples, and in Supplementary Tables S2–S4
for all samples. In six NGS positive samples, the same species

was identified as the most abundant one with all three
data analysis approaches. Different from BLASTN analysis,
the OTU clustering and mapping approaches exhibited poor
discrimination power in identifying closely related species in
five of those NGS positive samples (samples 18, 20, 21, 25,
26) (Table 2). On the other hand, only de novo assembly
and BLASTN analysis could identify low abundant C. acnes
in samples 1, 2, 10, 11, 15, and 17 where, OTU clustering
identified C. acnes only in sample 2. Furthermore, de novo
assembly and BLASTN analysis showed higher positive rate (80%
vs. 60–70%) in bacterial identification compared to the other two
approaches (Table 3).

The time to complete the analysis for de novo assembly and
BLAST using the local database was about 2 h for all 30 samples
(including positive and negative control) while it took around 4 h
including 1 h of hands-on-time for the OTU clustering and about
6 h and 30 min including 4 h of hands-on-time for mapping.

All the species present in the mock community sample were
identified by both the OTU clustering and de novo assembly and
BLAST approaches, whereas mapping did not identify two of
the bacterial species (Supplementary Table S5). In addition, the
OTU clustering and de novo assembly and BLAST approaches
identified one more bacterial genus/species (Fusobacterium sp.
and Bacillus amyloliquefaciens, respectively), which are not
present in the mock community. Mapping identified several
additional species that were not present in the mock community
sample (Supplementary Table S5).

TABLE 3 | Sensitivity and specificity for all three data analysis approaches∗.

Sensitivity in
% (95% CI)

Specificity in
% (95% CI)

De novo
assembly+ BLAST

80 (44.4–97.5) 88 (61.6–98.5)

OTU clustering 70 (34.7–93.3) 94 (69.8–99.8)

Mapping 60 (26.2–87.8) 94 (69.8–99.8)

∗Statistical analysis performed using 26 clinical samples. CI, confidence interval.
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DISCUSSION

Until now, the main tool used for bacterial identification
based on NGS of the 16S–23S rRNA encoding region was
de novo assembly followed by BLASTN on NCBI database
(Sabat et al., 2017), however, there was no evidence that it
would be the most accurate and/or fastest method available.
The de novo assembly and BLASTN is the only approach
of the three that works at the contig level, and both the
OTU clustering and mapping are performed at the read level.
Using the NCBI database for these two last approaches would
have resulted in odd results, since the NCBI database includes
sequences that do not belong to the 16S–23S rRNA encoding
region, but that due to the small read length, would have
homology with our reads and would have resulted in the
creation of bizarre OTUs and mapping results. The OTU
clustering and mapping approaches are usually used when
a database containing the sequences of interest are known,
hence the need for the creation of a 16S-ITS-23S rDNA
database. Therefore, in this study, we first assessed the use of
an in-house developed and curated 16S–23S rRNA encoding
region database for the NGS data analysis compared to the
NCBI database. Secondly, we compared three different NGS
data analysis approaches, de novo assembly and BLAST, OTU
clustering, and mapping in terms of their capacity to accurately
and efficiently identify bacterial species using the in-house
developed 16S–23S rRNA encoding region database. The results
show that the de novo assembly and subsequent BLASTN
analysis using the in-house developed database was the superior
approach to obtain results faster compared to the other two.
Additionally, the 16S–23S rRNA encoding region NGS-based
method was superior in distinguishing bacterial species and in
the identification of additional species per sample, not detected
by conventional methods.

The initial evaluation study of the sequencing protocols
demonstrated the potential use of a shorter read length
sequencing kit compared to the longer ones. Even though the
number of sequencing reads generated was lower with the 300-
cycles kit than the 600-cycles kit, it provided a similar resolution
at the bacterial species identification level as the other two
kits, with the advantage of being much faster. The use of a
faster sequencing workflow may improve the implementation
of the appropriate antimicrobial therapy by providing a faster
diagnostic answer. Therefore, this approach was chosen for the
sequencing of the following samples.

The data analysis of the mock community sample
(Supplementary Table S5) showed that the mapping approach
was much less sensitive and specific than the other two data
analysis approaches. The lower specificity might be explained by
the nature of the mapping approach, which allows for a lower
degree of homology (80% similarity in at least 50% coverage).
This could be improved by changing to more stringent analysis
parameters, however, this would have affected the sensitivity of a
method that already underperformed, as two species could not
be identified. The OTU clustering and de novo assembly followed
by BLAST approaches performed the species identification with
the same accuracy.

During the analysis, the main challenge was the presence
of contaminating species. All species detected in the negative
controls (Supplementary Tables S2–S4) have been previously
described as contaminants of sequencing-based analysis
stemming from DNA extraction kits and other laboratory
reagents (Salter et al., 2014). These species were highly abundant
in samples with low abundant infectious microorganisms and
in negative samples, whereas they were identified in relative
lower abundancy in true positive samples (conventional positive
samples). This suggests that highly abundant contaminants
might be masking low abundant infectious microorganisms in
some samples. C. acnes was found in the majority of samples in
low abundancy, especially when using the de novo assembly and
BLAST approach (samples 1, 2, 10, 11, 15, 17). In addition to
being a common bacterium of the human skin and a contaminant
from laboratory reagents or the environment (Salter et al., 2014;
Mollerup et al., 2016), C. acnes has been also described as a
cause of infective endocarditis (IE) (Sohail et al., 2009), and
prosthetic joint infections (Zeller et al., 2007). Most of our
samples (n = 25) were from patients with a diagnosis of IE
established by an expert panel, taking into consideration all
information available, and therefore, we did not immediately
filter out the C. acnes from the clinical samples, in order not
to disregard this pathogen as a cause of infection. Instead, we
defined cut-off values to distinguish contaminants introduced
during sample handling from an infectious microorganism.
Only C. acnes found in abundancies above the calculated
cut-off level were included, while others below the cut-off
level were discarded. Yet, like in our study, we would like to
highlight that these results should be interpreted in light of other
clinical data available.

Another challenge of 16S–23S rRNA encoding region NGS
data analysis was the absence of a database specific for the 16S–
23S rRNA encoding region. By creating an in-house developed
database, we aimed to overcome the bias of data analysis
introduced by using the public 16S rRNA gene databases. On
the other hand, the database should be as complete as possible
to identify all relevant bacterial pathogens. For this reason,
we compared the sequences present in our database with the
emerging infectious diseases and pathogens in the Netherlands
published by the Dutch National Institute for Public Health and
the Environment (RIVM) (de Gier et al., 2017) and emerging
diseases and pathogens published by the National Institute of
Allergy and Infectious Diseases (NIAID) in the United States
(NIAID, 2018). Emerging Infectious Diseases/Pathogens | NIH:
National Institute of Allergy and Infectious Diseases) (see
Supplementary Table S6). This demonstrated that our database
contains pathogens that are common in the Netherlands, while
as for pathogens that are common in the United States,
some species are missing (e.g., Rickettsia prowazekii, Anaplasma
phagocytophilum, Borrelia miyamotoi, Ehrlichia chaffeensis, and
Ehrlichia ewingii). We also looked at the number of occurrences
(≤20) per species found in the database and compared it
with the NCBI genome database to see how many genome
assemblies were available for a specific species. This revealed
that many species with few occurrences in our local database
also had few genome assemblies available. The NCBI genome
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database provides completely sequenced genomes and also
sequences that are incomplete, and these can be at the contig-
, scaffold- or chromosome-level (Kitts et al., 2016). This has
the disadvantage of not always being possible to find a 16S–23S
rRNA encoding region amplicon due to incomplete sequencing
assemblies available. On the other hand, some species had many
genome assemblies available which means that more 16S–23S
rRNA encoding region sequences can still be added to the
database, despite the considerable number of sequences (23,439
entries) already present. As new species are identified, especially
from anaerobes, more and more sequences need to be added
and updated, as well. Also, the same species might have different
number of 16S–23S rRNA encoding regions and different ITS
sequences, hence the database should be broad enough to
represent different strains of the same species. A comparison
of the in-house developed local database to the NCBI database
revealed that the BLASTN analysis on the local database was
at least as accurate as the BLASTN analysis on the NCBI
database in identifying bacterial species despite the differences
in identification for sample 18 and 26, which demonstrated
a technical challenge and an interpretation challenge for de
novo assembly and BLAST. With de novo assembly, the contigs
generated are sometimes too short (<1 kb) and only include
part of the 16S or 23S rRNA genes. In sample 18, the contig
with 454 bp was identified as Herbaspirillum sp. using the
NCBI database and was matching the partial sequence of
the 16S rRNA gene with a similarity score of 96.47%. In
the same analysis, second and third hit matching the same
contig was Massilia sp. and Bordetella sp. with a similarity
score of 96.25% and 96.03%, respectively. As Herbaspirillum
sp. is a potential contaminant (Salter et al., 2014), and its
association to human infection has not been described so
far, we discarded it in our analysis. On the other hand, the
same contig was identified as Bordetella sp. (96% similarity
score) using the local database and this species could be a
potential pathogen. The limitation of our local database is that
we do not have as much sequences as NCBI has, since our
local database contains only entire sequences of the 16S–23S
rRNA encoding region whereas the NCBI database contains
also partial sequences of the 16S rRNA or 23 rRNA regions.
This explains the difference between the two methods, since
the closest reference in our database was the Bordetella sp.
which was only identified as third hit in NCBI. However, one
cannot discard the potential presence of this species in the
sample, since the similarity scores were very similar (all around
96%). Furthermore, mapping approach also identified Bordetella
species but with a very low abundance, below the cut-off value
and OTU clustering did not identify Bordetella species at all.
To confirm the presence of the pathogen, one should use
another methodology, e.g., Bordetella specific PCR. In sample
26, an additional species Undibacterium oligocarboniphilum,
which has been described as a common contaminant of DNA
extraction kits and other laboratory reagents (Salter et al.,
2014), could not be identified as the local database was
lacking the corresponding 16S–23S rRNA encoding region
sequences for this species. Thus, this gap has no negative
clinical consequences.

Conventional microbial diagnostic methods of culturing and
16S rRNA gene Sanger sequencing were used as reference to
evaluate the results of all three approaches and differences
between them. In this analysis, the 16S rRNA gene Sanger
sequencing identified sample 26 as Streptococcus mitis although
the 16S–23S rRNA encoding region NGS identified this sample
as Streptococcus sanguinis in all three data analysis approaches.
S. sanguinis belongs to the “mitis group” of the Streptococcus
genus (Jensen et al., 2016). Based on the 16S rRNA gene,
species of the S. mitis group display considerable sequence
similarity making it difficult to distinguish them from each
other (Lal et al., 2011; Jensen et al., 2016). Since the 16S–
23S rRNA encoding region provides higher sequence variability,
this approach exhibited higher resolution in distinguishing
species having high sequence similarities on their 16S rRNA
gene. Furthermore, mapping and OTU clustering not only
identified the S. sanguinis as the most abundant species yet also
other Streptococcus spp. (Table 2). This suggests that the OTU
clustering and mapping approaches were less discriminative
at the species level compared to the de novo assembly and
BLAST approach. Whilst chimeric assemblies can be created
when more than one species of a certain genus is present
in one sample (as in sample 26). However, there is still no
objective way to overcome this problem. One way would be to
do supervised assemblies, however that would require previous
information about the taxonomic content of the sample and it
would still not completely overcome the problem if two species
are highly similar. On the other hand, the OTU clustering
approach overcome the limitation introduced by the lack of
well-characterized reference sequences at the species level. Given
that OTU clustering does not require prior information of a
reference taxonomy to cluster query sequences into OTUs, it
is particularly advantageous to analyze less well characterized
microbes (Chen et al., 2013).

The mapping approach identified the low abundant Gemella
sp. in sample 3 while OTU clustering, de novo assembly and
conventional methods did not. Gemella sp. are facultative human
bacterial pathogens, causing fatal infections related to IE both
in pediatric and adult individuals (Purcell et al., 2001; Yang
and Tsai, 2014; Jayananda et al., 2017). As sample 3 is a tissue
sample taken from a patient suspected of having IE, it seems
reasonable to find the Gemella sp. in this sample. However,
it should be considered that the default similarity and length
fraction parameters defined to assign a read to a specific species
were 0.8 and 0.5, respectively, meaning that at least 50% of the
alignment had at least 80% sequence similarity. These default
parameters were much more flexible than the ones defined for
BLASTN and OTU clustering, in which the reads were assigned
to a specific species only with a similarity score of 99%. This
might be the reason why the Gemella sp. identified by mapping
could not be detected by the OTU clustering nor the de novo
assembly. However, changing the similarity score for the last two
approaches would have resulted in lower specificity, which is not
desirable either.

Besides Gemella sp., there are other bacterial species known
to cause IE, namely Staphylococcus spp., Streptococcus spp.,
and Enterococcus spp., which are considered as the top three
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most frequent etiologic agents in both native and prosthetic
valve IE (Munita et al., 2012). As described before, in sample
10, the 16S–23S rRNA encoding region NGS approach could
identify a low abundant Enterococcus faecium (Table 2). Also
T. whipplei, which is the causing agent of an often predominantly
gastrointestinal illness, Whipple’s disease, has been shown to
cause IE (Goldenberger et al., 1997; Gubler et al., 1999;
Geissdörfer et al., 2012). In an observational study, T. whipplei
was reported as the fourth most common pathogen causing
6.3% of culture-negative endocarditis cases, determined by
the 16S rRNA gene amplification and subsequent sequencing
(Geissdörfer et al., 2012). In the present study, 16S rRNA
gene Sanger sequencing identified T. whipplei in samples 10
and 17, that are tissue samples taken from patients with IE,
while the 16S–23S rRNA encoding region NGS could not.
Even though there were 12 sequences of the 16S–23S rRNA
encoding region of this species present in the local database.
When we aligned the PCR primers to those sequences, we
observed that the primers did not target the 16S–23S rRNA
encoding region of T. whipplei, meaning that amplification
and subsequent sequencing of the 16S–23S rRNA encoding
region of this species did not occur. This is a pitfall of the
current method to diagnose T. whipplei-associated diseases from
patients’ samples (CSF, blood, joint fluid/synovia, potentially
gut mucosa) and could only be overcome by designing new
and/or adding primers. Another solution would be to sequence
the whole microbial DNA directly from patient samples
by shotgun metagenomics, overcoming the primer-associated
challenges of a targeted NGS approach. Nonetheless, analysis
of the large metagenomics data, more complicated than the
targeted NGS, requires further technological and bioinformatics
developments to be implemented in diagnostic laboratories
(Deurenberg et al., 2017).

Although the number of samples tested in this study
was too low to statistically evaluate the significance of these
approaches compared to conventional test results, it did
provide similar results in most cases (80% concordance with
conventional methods) or even superior in other cases. The
identification of additional species per sample, not detected by
conventional methods, demonstrates the potential of the 16S–
23S rRNA encoding region NGS-based method in characterizing
multiple bacterial species, particularly in polymicrobial samples.
Additionally, the 16S–23S rRNA encoding region NGS-based
method was superior in distinguishing bacterial species.
This is most likely due to the fact that the 16S–23S rRNA
encoding region has a higher resolution and more sequence
variability compared to the 16S rRNA gene. Faster and
less laborious bioinformatics analysis provided by de novo
assembly and BLAST approach using an in-house database
argues for the implementation of the 16S–23S rRNA encoding
region NGS-based method for improved diagnostics by
means of reducing the time until administration of the
appropriate antimicrobials. Additionally, fast growing long-
read sequencing platforms, have the potential in the future to
reduce even further the time for diagnosis, by providing the
possibility for real-time sequencing and probably reducing the
need for assembly.

CONCLUSION

The higher resolution at the species level identification
provided by 16S–23S rRNA encoding region NGS makes its
use in routine diagnostic microbiology potentially attractive.
Particularly, data analysis is one of the most important steps
of a diagnostic workflow, which requires an optimal pipeline
for the interpretation of the sequencing data in a short
time. This study demonstrates that de novo assembly and
subsequent BLASTN analysis using an in-house developed
database compared to OTU clustering and mapping approaches
is the most accurate and fastest approach for identification of
bacterial pathogens. Yet, OTU clustering should be considered
as a second approach if no pathogen species are identified.
Although the in-house developed publicly available database has
been shown to be robust enough to identify and distinguish
relevant bacterial species, it should be continuously updated to
represent more currently relevant or emerging pathogens. In
conclusion, advancements of the 16S–23S rRNA encoding region
NGS-based method along with the subsequent data analysis of
de novo assembly and BLAST using a 16S–23S rRNA encoding
region database has the potential to be integrated into the routine
diagnostic workflow by providing a more accurate and rapid
microbial diagnosis.
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