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Springs hosted in ophiolites are often affected by serpentinization processes. The
characteristically low DIC and high CH4 and H2 gas concentrations of serpentinizing
ecosystems have led to interest in hydrogen based metabolisms in these subsurface
biomes. However, a true subsurface signature can be difficult to identify in surface
expressions such as serpentinizing springs. Here, we explore carbon and nitrogen
resources in serpentinization impacted springs in the tropical climate of the Zambales
and Palawan ophiolites in the Philippines, with a focus on surface vs. subsurface
processes and exogenous vs. endogenous nutrient input. Isotopic signatures in spring
fluids, biomass, and carbonates were examined to identify sources and sinks of
carbon and nitrogen, carbonate geochemistry, and the effect of seasonal precipitation.
Seasonality affected biomass production in both low flow and high flow spring systems.
Changes in meteorological precipitation affected δ13CDIC and δ13CDOC values of the
spring fluids, which reflected seasonal gain/loss of atmospheric influence and changes
in exogenous DOC input. The primary carbon source in high flow systems was variable,
with DOC contributing to biomass in many springs, and a mix of DIC and carbonates
contributing to biomass in select locations. However, primary carbon resources in low
flow systems may depend more on endogenous than exogenous carbon, even in
high precipitation seasons. Isotopic evidence for nitrogen fixation was identified, with
seasonal influence only seen in low flow systems. Carbonate formation was found to
occur as a mixture of recrystallization/recycling of older carbonates and rapid mineral
precipitation (depending on the system), with highly δ13C and δ18O depleted carbonates
occurring in many locations. Subsurface signatures (e.g., low DOC influence on Cbiomass)
were most apparent in the driest seasons and lowest flow systems, indicating locations
where metabolic processes divorced from surface influences (including hydrogen based
metabolisms) are most likely to be occurring.
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INTRODUCTION

Recent interest in the terrestrial deep biosphere has been fueled
by estimates of biomass (Kallmeyer et al., 2012; Lomstein
et al., 2012; McMahon and Parnell, 2014) and reports of
unique microbial communities and ecosystem functions (Biddle
et al., 2012; Parkes et al., 2014; Solden et al., 2016). The
overall impact of the deep biosphere on global biogeochemical
cycling remains unknown (Menez et al., 2012), and direct
access remains expensive with non-trivial logistics. Surface
connected expressions of the terrestrial deep biosphere such
as caves, wells, and springs are convenient and less expensive
(compared to drilling based endeavors), but elicit questions about
authenticity of a subsurface signature. Evidence of subsurface
biosphere diversity and function may be overprinted or masked
by the oxygenated, photosynthesis-driven, surface biosphere to
an unknown degree.

Several studies have attempted to isolate a subsurface signature
from terrestrial locations. Arguably the most success has come
from studies with direct access to subsurface sampling. These
works have relied on comparative metagenomics (e.g., Lau
et al., 2014), geochemical modeling integrated with statistical
analyses (e.g., Osburn et al., 2014), and innovative culturing
techniques (e.g., Rowe et al., 2017) to distinguish subsurface
contributions to nutrients, energy, diversity, and biomass.
Isolating a subsurface signature when samples are obtained
within the surface biome (i.e., springs and seeps) poses additional
challenge. More frequently, only individual processes can be
linked to the subsurface. For example, the widespread ability to
fix nitrogen (Hamilton et al., 2011) or carbon (Osburn et al.,
2011; Urschel et al., 2015) using non-photosynthetic pathways
in terrestrial hydrothermal systems suggests these traits are
maintained due to a general lack of reliable nutrient input from
the surface biome.

Stable isotope chemistry of nutrient pools and resident
biomass is a useful tool for deep subsurface biosphere
applications. Kinetic isotope fractionation associated with
biosynthetic machinery discriminates broadly against heavy
isotopes, producing 13C and 15N- depleted biomass relative
to sources. Fractionation varies by process for both carbon
and nitrogen isotopes and much can be learned or inferred
by comparing isotopic ratios of sources and resulting biomass.
For example, it has been shown that different carbon fixation
pathways fractionate carbon to differing degrees (Berg et al., 2010;
Pearson et al., 2016), and the isotopic composition of nitrogen
in biomass is affected by how the organism participates in the
nitrogen cycle (Brunner et al., 2013; Mobius, 2013; Frey et al.,
2014; Zhang et al., 2014). While there is still much to learn
concerning the fractionation of carbon or nitrogen by specific
groups of organisms under varying environmental conditions, as
well as abiotic considerations (McCollom et al., 2010; Li et al.,
2012; Wunderlich et al., 2012; Schrenk and Brazelton, 2013;
Zhang et al., 2014) a holistic approach of comparing isotopic
ratios of bulk carbon, nitrogen, and biomass can reveal broad
ecosystem patterns.

This study focuses specifically on surface expressions (springs
and seeps) of the deep biosphere sourced in ultramafic rock

units in the Philippines. Springs and seeps emanating from
ophiolites represent subsurface fluids produced from the process
of “serpentinization” that are mixed with fluids of other
sources. Briefly, serpentinization is the aqueous alteration of
ultramafic rocks (part of the ophiolite body). In terrestrial
ophiolites, the process is often recharged by groundwaters,
and provides alteration products including mineralogically
altered solids, fluids of distinctive geochemistry, gasses such
as H2 (and possibly CH4), and chemical energy abundant
enough to fuel chemosynthetic metabolism. Other resources
have thoroughly described and reviewed this process and
the resulting potential subsurface habitats (McCollom and
Bach, 2009; Schrenk and Brazelton, 2013). Serpentinization
has been discussed as a possible process fueling life on
other planetary bodies (e.g., Mars and icy ocean worlds –
Ehlmann et al., 2010; Vance et al., 2016; Deamer and Damer,
2017), as well as a potential platform for the development
of life on Earth (Sleep et al., 2011; Russell et al., 2014). In
both of these extensions, it is assumed that serpentinization-
driven life support is divorced from potential carbon and
energy sources supplied from photosynthetic processes. Further,
serpentinizing springs and seeps are often noted to have
low dissolved organic or inorganic carbon (e.g., Morrill
et al., 2013; Szponar et al., 2013). The production of H2
gas from the serpentinization process has indicated the
potential for hydrogen driven metabolic processes in impacted
environments, with an overlying assumption that the presence
of hydrogen gas may indicate a more subsurface “signal.”
Therefore, separating a true subsurface signal from complicating
surface influence at modern, terrestrial, serpentinizing seeps
is essential for understanding their utility as a “portal”
into the deep subsurface biosphere of modern, ancient, and
astrobiological environments.

The isotopic ratios of carbon in total or dissolved inorganic
carbon (TIC/DIC) and dissolved organic carbon (DOC)
can be compared to that of biomass, allowing conclusions
concerning the source of the carbon fueling the biomass
production. This approach has been used many times in
other terrestrial environments (e.g., Lang et al., 2012; Schubotz
et al., 2013; Pearson et al., 2016). There have been several
reports from terrestrial serpentinizing seeps and springs that
highlight potential carbon and nutrient sources. Both DOC
and TIC have been reported in low concentrations in springs
located in the Tablelands (Newfoundland, Canada) and The
Cedars (CA, United States) areas, with δ13CDOC ranging
from −22 to −13h, and δ13CTIC ranging from −33 to
−2h (Brazelton et al., 2013; Morrill et al., 2013; Szponar
et al., 2013). Isotopic composition of carbon from both
DIC and DOC in the Yanartaş/Chimera site in Turkey are
comparable, although concentrations of both are higher than
other reported locations (50 and ∼5 ppmC, respectively,
Meyer-Dombard et al., 2015). Carbon isotopic compositions
of biomass are seldom reported in general for these locations
(however, see Meyer-Dombard et al., 2015), but that of the
carbonates found in these systems has been widely reported and
summarized. The comparison of δ13Ccarbonate and δ18Ocarbonate
is useful for determining the sources of carbon and oxygen
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that formed the carbonates as well as processes involved in
that mineral precipitation, and several reports give useful
comparisons of carbonates found in serpentinizing seeps from
Oman, Costa Rica, Italy, and the western United States
(e.g., Szponar et al., 2013; Mervine et al., 2014; Sanchez-
Murillo et al., 2014; Falk et al., 2016). The δ13Ccarbonate
and δ18Ocarbonate in carbonates from serpentinizing seeps
range from ∼ −33 to ∼ +3h δ13C and ∼ −20 to ∼
+5h δ18O. This wide range of isotopic compositions makes
it clear that the formation and history of carbonates in
serpentinizing systems can follow a varied path, which can
sometimes be clarified using “clumped isotope” techniques
(e.g., Eiler, 2007).

Among the studied examples of terrestrial serpentinizing
seeps, few data are from tropical biomes (Beccaluva et al., 1999;
Sanchez-Murillo et al., 2014; Cardace et al., 2015; Woycheese
et al., 2015). Tropical surface biomes that deliver significant

meteorological precipitation and cover field locations in dense
foliage may complicate the isolation of the deep subsurface
signal from surficial components. Frequent or heavy precipitation
may facilitate the incorporation of exogenous nutrients into
the surface exposed seeps and springs, and impact the nutrient
availability to the subsurface biosphere. Conversely, addition of
meteoric water to the serpentinizing fluids associated with the
seeps and springs may locally dilute endogenous nutrient or
energy resources, changing the fluid-rock interactions happening
in the subsurface. Either scenario could cause fluctuations
in sources of energy and carbon between seasons, ultimately
affecting the ability to identify true subsurface-driven processes
such as hydrogen based metabolisms. While this may incur
difficulty in separating a “true” subsurface signal in serpentinizing
systems hosted in ophiolites located in tropical biomes, it
also provides an opportunity to explore a largely unrecognized
exchange between the surface and subsurface biosphere.

TABLE 1 | Fluid geochemistry including DIC and DOC concentrations and carbon isotopic ratios from 2017 samples during the very dry season.

Sample Location Notes Fluid Season Temp. pH DIC, δ13C, DOC, δ13C,

(outflow depth ◦C ppmC DIC h ppmC DOC h

distance, m) sampled

ML1 Manleluag Cistern pool (0 m) 80 cm 2012, dry 34.36 10.89 0.6 −12.8 0.85 −26.8

2013, wet 34.35 10.86 0.9 −15.42 0.34 −29.63

January 26th 2017, v. dry 34.39 11.11 0.2 −14.74 0.1 −23.6

January 27th 2017, v. dry 34.37 10.69 0.2 −11.23 0.2 −23.9

ML2 Manleluag Source pool (0 m) 30 cm 2012, dry 34.45 10.85 0.5 −16.5 0.4 −26.0

2013, wet 34.44 10.83 0.4 −11.0 0.12 −26.0

2017, v. dry 34.45 10.08 0.4 −17.66 0.6 −28.2

Spill Pool (1.5 m) 20 cm 2012, dry 34.31 10.85 0.8 −15.0 0.81 −25.5

2017, v. dry 34.22 10.12 0.3 −14.81 bdl −20.8

Outflow (10 m) 10 cm 2012, dry 33.84 10.81 1.5 −18.7 0.5 −27.0

2017, v. dry 33.51 10.25 nd nd 0.1 −22.1

Outflow (18.3 m) 5 cm 2013, wet 32.55 10.23 4.4 −21.13 0.73 −29.14

2017, v. dry 31.29 10.58 1.7 −20.71 0.7 −27.4

PB1 Poon Bato Pool 1, main (0 m) 10 cm 2012, dry 31.46 11.27 1.3 −25.4 0.3 −23.0

2013, wet 30.38 11.25 3.0 −13.0 0.3 −27.0

PB2 Poon Bato Pool 2, “ice cube” 30 cm 2012, dry 26.76 10.43 6.0 −17.5 1.15 −24.4

Pool 2, “waterfall” 2 cm 2013, wet 29.68 8.74 22.5 −13.76 1.2 −25.8

PB3 Poon Bato Pool 3, minor 5 cm 2012, dry 28.58 11.31 nd nd 0.2 −21.0

PBR Poon Bato River∗ 50 cm 2012, dry 27.88 8.64 18.5 −12.1 0.28 −27.8

River∗ 50 cm 2013, wet 26.36 8.3 21.3 −8.15 0.61 −23.55

MF1 Mainit Falls Source (0 m) 5 cm 2012, dry 40.56 9.68 28.1 −15.3 0.29 −26.4

SS1 San Isidro Cistern pool (0 m) 147 cm 2017, v. dry 48.0 10.53 0.08 −7.48 bdl −20.9

GS Governor’s Sp. Source (0 m) 15 cm 2017, v. dry 38.83 11.08 0.2 −14.5 bdl −19.3

Outflow (5 m) 2 cm 2017, v. dry 38.14 11.13 0.4 −17.4 bdl −19.5

Outflow (10.3 m) 2 cm 2017, v. dry 37.8 11.13 0.6 −19.99 2.7 −50.8

NWD NW Dugout Main pool (0 m) 30 cm 2017, v. dry 29.27 9.91 2.2 −22.52 1.1 −25.7

DH-4 NWD, well∗ 200 cm 2017, v. dry 32.78 9.50 10.9 −14.78 7.8 −24.8

PF1 Pinaduguan Falls ‘”Pig” pool (0 m) 10 cm 2017, v. dry 35.66 10.95 0.2 −11.45 bdl −21.6

PF2 “Apron” pool (0 m) 25 cm 2017, v. dry 35.62 10.8 1.3 −20.83 0.2 −23.7

PFR River∗ 50 cm 2017, v. dry 30.0 8.4 81.3 −18.85 1.1 −28.8

Data for samples during the dry (2012) and wet (2013) seasons have been previously reported (Cardace et al., 2015; Table 2), and are repeated here for seasonal
comparison. Carbon isotope ratios expressed as compared to VPDB. nd, not determined; bdl, below detection limit. ∗Data for rivers and well are provided as points of
reference to the local water table. The rivers are immediately proximal to the sample locations, in both cases. The well “DH-4” was drilled ∼200 m from the NWD pool.
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Our interest lies in investigating the effect of seasonal
meteorological precipitation on the deep subsurface signature
from spring locations in the Zambales and Palawan ophiolites in
the Philippines. Geologic and geochemical descriptions of both
ophiolite exposures and springs have been reported previously
(Abrajano et al., 1989; Abrajano and Sturchio, 1990; Cardace
et al., 2015; Ilao et al., 2018). Here, we look at carbon isotopic
signatures in fluids and solid materials (sediments, biomass,
and carbonates), and nitrogen isotopic signatures of biomass,
over three precipitation-defined periods. Both the Zambales and
Palawan ophiolites are located in Monsoon climatic regimes,
with defined wet and dry seasons. In addition, we categorize
our sample locations based on the flow rate of subsurface fluids
emanating from the springs. The driving questions in this work
concern whether increased seasonal precipitation will increase
exogenous nutrient input to the surface expressions [springs],
or conversely, dilute the available metabolic resources derived
from subsurface processes. We hypothesized that seasonal
precipitation would differentially impact systems with low flow
vs. high flow of subsurface fluids, which is supported by the
results given here.

MATERIALS AND METHODS

Description of Field Locations
Both field locations are within the monsoon climate zone
of the Philippines. Locations were visited in October 2012
during the beginning of the dry season (193 mm/month
average precipitation), September 2013 at the end of the wet
season (346 mm/month average precipitation), and January
2017 when the least precipitation is received in our field areas
(<20 mm/month average precipitation). Several sites in the
Zambales and Palawan ophiolites were sampled, although not
all sites were sampled in all three seasons. Table 1 notes
the season each location was sampled, and Tables 1, 2 note
the depth below fluid surface and distance down the outflow
channel, where applicable. In general, both fluids and solids
were sampled when they were both accessible/removable. Solids
included loose sediments, obvious biofilms, or carbonate features
(not all were available at every sample location). Table 2 also
provides details on sample name and the type of sample collected.
For example, at 10m down the outflow at site ML2, three
different solid materials were collected in 2012; “gray sediment,”
“carbonate mound,” and “rimstone” (Table 2). Samples with
identical names and notations between multiple sample years
were taken from the same location, as exactly as possible,
based on photographic records of previous sampling efforts. We
were unable to sample precipitation during the time that we
were in the field.

Images of the sampling areas are provided in Figure 1 with
more detailed images and descriptions given in Supplementary
Figure S1 for reference. Discharge was estimated by catching
runoff into a 500 ml wide mouthed bottle over a 30 s interval,
repeated in triplicate and averaged. Where relevant, discharge
was measured at multiple points. Sample sites are regarded as
being high flow (>2 L/min), with discrete pools and runoff

channels, or low flow (<2 L/min) with individual pools or a
series of pools and associated carbonate terraces and similar
features, but run off channels limited or not present. All locations
featuring actively flowing run off channels were estimated to have
a discharge rate of >2 L/min. In addition, low flow areas are
also designated as “capped” or “uncapped,” where “capped” refers
to the presence of a carbonate film on the top of the pool. In
such cases, the bottom of the pool is not visible, although the
caps may be transient and potentially broken by meteorological
precipitation or animal (including human) interaction. Examples
of capped and uncapped pools are shown in Figure 1. High
flow systems are expected to have an abundance of input from
subsurface fluid and gas, and increasing interaction with surface
conditions and atmospheric exchange as the fluids progress
down the outflow channel. Low flow systems are expected
to have slower fluid and gas input from the subsurface, and
the degree of interaction with surface conditions depends on
the presence of absence of a carbonate cap. We expect that
pools with carbonate caps will have more limited atmospheric
exchange, as the cap functions as a physical barrier at the
surface of the pool.

Concentration and Isotopic Analysis of
Dissolved Inorganic Carbon (DIC) and
Dissolved Organic Carbon (DOC) in
Spring Fluids
Amber I-CHEM vials and septa were pre-washed and pre-
treated as previously described (Cardace et al., 2015). A glass
media bottle was used to collect sample from the springs, after
being triple rinsed with sample. Once collected, sample was
filtered through a Millipore Sterivex GV 0.22 µm filter unit
for sterilizing aqueous solutions (Cat. No. SVGVL10RC/Lot No.
1515/00631) into the sample bottle. Some samples required
pumping for efficient collection, and a Geotech Environmental
Geopump peristaltic pump was used to fill the glass collection
bottle. Viton Masterflex tubing (Cole Parmer, Vernon Hills,
IL, United States) was used for pumping when collecting DIC
samples, at a slow pumping rate of <100 ml/min and as
short a pumping distance as possible to minimize gas loss.
DOC bottles were filled only after the filter was conditioned
with several liters of sample. Both DIC and DOC bottles were
filled to the top with sample to exclude air bubbles, and were
stored at 4◦C.

Samples were analyzed by the University of California,
Davis, Stable Isotope Laboratory. Carbon isotopic ratios of
carbon in DOC was analyzed with a O.I. Analytical Model
1030 TOC analyzer (Xylem Analytics, College Station, TX,
United States), interfaced to a PDZ Europa 20–20 isotope ratio
mass spectrometer (Sercon Ltd., Cheshire, United Kingdom)
with a GD-100 Gas Trap Interface (Graden Instruments).
Several replicates of reference materials were interspersed
with samples, including IAEA-600, USGS-40, USGS-41, and
Elemental Microanalysis reference materials.

Dissolved inorganic carbon samples were analyzed on a
GasBench II system interfaced to a Delta V Plus IRMS (Thermo
Fisher Scientific, Bremen, Germany). The fluids were added to
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FIGURE 1 | General locations and images of select sample areas. Additional sample area images and site descriptions can be found in Supplementary Figure S1.
(a) Map of the Philippines with sample regions. Marine Geoscience Data System (MGDS; www.marine-geo.org). (b) Cistern pool ML1, Manleluag area. Images of
location ML2 and associated outflow sites can be found in Supplementary Figure S1. (c) Source pool of “Governor’s Spring.” Small white scale bar noted. White
arrow at top right indicates flow direction. (d) North West Dugout Pool. White arrow indicates location of spring in (c). (e) Pinaduguan Falls. Inset shows close up of
“Pig Pool” (PF1). (f) Poon Bato “PB2” location, with major features noted. Car battery for scale. (g) Poon Bato “PB1” location. Note calcite “cap” on top of the low
flow pool (arrow). (h) Close up image of “Star Pool” in (f). Note lack of calcite “cap” (bottom of pool is visible).

a sealed, He-purged exetainer, and acidified to liberate all of the
DIC as CO2. Reference materials for DIC analyses were lithium
carbonate (Acros-1, Acros-2 Li2CO3, lots measuring δ13C −13.4
and −3.85, respectively, Thermo Fisher Scientific, St. Louis,
MO, United States) dissolved in degassed deionized water and
a deep seawater (both calibrated against NIST 8545). Final δ13C
values are expressed relative to the international standard VPDB
(Vienna PeeDee Belemnite).

Determination of Endmember
Composition and Contributions
An estimation of subsurface endmember δ13CDIC was calculated
following the method of Miller and Tans (2003), where δ13CDIC

∗[DIC] is plotted as a function of [DIC], for each field area,
and the slope of the resulting linear regression indicates an
estimated δ13CDIC for the endmember fluid at that field site.
These endmember values of δ13CDIC were then used to estimate
the fraction of the subsurface endmember remaining following
select microbial metabolic processes on the measured δ13CDIC
pool. Here, a Rayleigh distillation model was used;

δ13Cobserved = δ13Csource + 103(α− 1)ln(f)

Where δ13Cobserved is the measured δ13CDIC in the samples,
and δ13Csource is either the estimated δ13CDIC−subsurface, or
δ13CDOC, as specified below. Fractionation factors, α, were
chosen for individual microbial processes. For chemoautotrophic
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pathways, namely the acetyl Co-A and rTCA cycles, a range
of α = 0.964–0.996 as reported in Hayes, 2001 was used. For
bacterial photoautotrophy, a range of α = 0.978–0.99 as reported
in Hayes, 2001 was used. For hydrogenotrophic methanogenesis,
α = 0.945 from carbonate to methane (Waldron et al., 1998)
and α = 0.942 from CO2 to methane (Krzycki et al., 1987) were
used. For each of the above processes utilizing the DIC pool as a
carbon source, the δ13Csource used was the estimated subsurface
endmember δ13CDIC as calculated for each location as in Miller
and Tans, 2003. Processes that produce CO2, such as acetoclastic
methanogenesis (α = 0.976, Waldron et al., 1998) and methanol
methanogenesis (α = 0.932, Rosenfeld and Silvermann, 1959;
Silverman and Oyama, 1968) were also considered. For these
latter processes, the δ13Csource used was the measured δ13CDOC.

Carbon and Nitrogen Isotopic Ratios in
Solid Materials
Solid samples, consisting of sediments, carbonate terrace
materials, and any resident microbiota or biofilms, were collected
using sterile technique into Whirlpac bags, and kept frozen
at −20◦C until analysis. Samples were freeze dried, and then
ground to a fine powder in glass or agate mortars. Mortars and
Pestles were baked at 550◦C overnight prior to use. Samples
were analyzed in the Osburn Isotope Geobiology Laboratory at
Northwestern University.

Carbonate content, assayed as mg CO2 and its respective
δ13C value (hereafter δ13CCO3) was determined simultaneously
via continuous flow on a Thermo Fisher Scientific GasBench
II, coupled to a Delta V Plus isotope ratio mass-spectrometer
(CF-IRMS) at the Northwestern Stable Isotope Facility.
Prior determination of the CO3

2− content from gravimetric
quantification guided the sample amount used for analysis,
aiming for ∼10 µmol CO2. Samples were weighed into
12 mL Exetainer R© vials, which were subsequently septum-
sealed and purged with UHP He for 7 min. Approximately
200 µL of 103% H3PO4 was injected into each vial, and
the samples placed into a thermos-stated block at 70◦C to
allow CO2 to evolve overnight. The isotopic composition,
δ13CCO3 is corrected using the periodic sampling of
CO2 from the H3PO4-acidified CaCO3 standards NBS18
(δ13CVPDB = −5.014h) and NBS19 (δ13CVPDB = 1.95h), and
samples reported on the VPDB scale. Estimated precision (1 s.d.)
on δ13CCO3 is± 0.06h.

For the determination of wt% organic C and organic N,
acidified and decarbonated samples were weighed into tin
capsules and combusted online in a Costech 4010 Elemental
Analyzer, coupled to a Thermo Fisher Scientific Delta V
Plus mass-spectrometer via a ConFloIV. Briefly, ∼10–
30 mg of powdered decarbonated samples were weighed,
then combusted online in a column containing chromium
(III) oxide and silvered cobaltous chloride, held at 980◦C.
Product gasses were carried over hot Cu reduction column
held at 705◦C to removed excess O2 and convert nitrogen
oxides to N2. Product CO2 and N2 were separated by a
molecular sieve 5A GC column. The gasses were analyzed
via CF-irms, and size corrected. Tank corrections were done
by regular calibration against organic standards supplied

by Indiana Biogeochemical laboratories (IU acetanilide
and IU urea), and placed on the δ13CVPDB and δ15NAIR
scales respectively.

Carbonate Mineralogy
An Olympus Terra X-ray diffractometer1, with the specifications
equivalent to the CheMin tool developed for Mars exploration as
described in Blake et al. (2012), was used for X-ray diffraction
(XRD) analysis. The Terra engages a Co X-ray source and
a cooled charge-coupled device (CCD) detector arranged in
transmission geometry with the sample, with angular range of 5◦
to 50◦ 2θ with <0.35◦ 2θ resolution (Blake et al., 2012). X-ray
tube voltage is typically 30 kV, with a power of 10 W, a step size of
0.05◦, and an exposure time of 10 s per step. A minimum of 250
exposures were recorded prior to diffractogram interpretation.

Dry samples were powdered using an agate mortar and pestle,
cleaned with isopropyl alcohol between samples. Powder was
passed through a standard 150 µm sieve (100-mesh) prior to
analysis. Powdered, sieved material was transferred with a spatula
to the input hopper of the vibration chamber sample cell, and
shaken into the space between two mylar window, to be agitated
during analysis, presenting all planes with the mineral sample to
the x-ray beam.

The resulting diffractogram was interpreted using XPowder
software2, which is a commercially available peak search-and-
match program that queries the PDF2 database for reference
mineral peak information (see text footnote 2). XPowder allows
for identification of major minerals; trace minerals can be
missed or masked by peaks of other minerals. Diffractograms
convey mineral fingerprint information customarily by plotting
of diffracted signal intensity on the y-axis against ◦2θ on
the x-axis. An intensity peak is the result of constructive
interference when Bragg’s law (nλ = 2d sin θ, where n is
the “order” of reflection, λ is the incident X-rays wavelength,
d is spacing between atomic planes in a crystal structure,
and θ is the incidence angle) is fulfilled by the incoming
x-rays. For reference, for data collected using a Co x-ray tube,
the three most prominent d-values for minerals of interest
are as follows: serpentine (var. lizardite) Mg3Si2O5(OH)4, D1:
7.12 Å, D2: 2.379 Å, D3: 3.56 Å; serpentine (var. antigorite)
(Mg,Fe++)3Si2O5(OH)4, D1: 7.29 Å, D2: 2.53 Å, D3: 3.61
Å; brucite Mg(OH)2, D1: 2.365 Å, D2: 4.77 Å, D3: 1.794 Å;
hydrotalcite Mg6Al2(CO3)(OH)16·4(H2O), D1: 7.69 Å, D2: 3.88
Å, D3: 2.58 Å; portlandite Ca(OH)2, D1: 2.628 Å, D2: 4.9 Å, D3:
1.927 Å; calcite CaCO3, D1: 3.035 Å, D2: 2.285 Å, D3: 2.095 Å;
magnesite MgCO3, D1: 2.742 Å, D2: 2.102 Å, D3: 1.700 Å; artinite
Mg2(CO3)(OH)2·3(H2O), D1: 2.736 Å, D2: 5.34 Å, D3: 3.69 Å;
chlorite (var clinochlore) (Mg,Fe++)5Al(Si3Al)O10(OH)8, D1:
7.16 Å, D2; 4.77 Å, D3: 3.58 Å; and smectite (var beidellite)
Na0.5Al2(Si3.5Al0.5)O10(OH)2·n(H2O), D1: 2.55 Å, D2: 2.61
Å, D3: 4.52 Å.

In order to interpret co-occurring minerals in association with
spring water, an Eh-pH diagram was constructed in Geochemist’s
Workbench Act 2. The system was modeled at a temperature

1https://www.olympus-ims.com/en/xrf-xrd/mobile-benchtop-xrd/terra/#!
2http://www.xpowder.com/
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of 25◦C, at a pressure of 1.013 bars, with log activity HCO3
−

set at −2.699, log activity Ca2+ set at 2, log activity Fe2+ set
at −3, and unit activity of Mg2+ and water. The log activity
HCO3

−is based on high CO2 in to water mixture as low DIC
spring water encounters high DIC surface water. The log activity
Ca2+ set at 2 represents generally observed molalities of [Ca2+]
near 100 m, which correspond to activities of ∼100, thus log
100 = 2. The log activity Fe2+ set at −3 represents generally
observed molalities of [Fe2+] near 1 mmolal, which correspond
to activities of∼0.001, thus log 0.001 =−3. Unit activity of Mg2+

conveys the Ca dominance of the aqueous system, about two
orders of magnitude greater than Mg, thus Mg activity taken as
one. Unit activity of water is appropriate for most lower salinity,
low temperature waters (activity coefficients not impacted by
high levels of solutes).

RESULTS

Dissolved Carbon (DIC and DOC)
Results of the analysis of DIC and DOC can be found in Table 1.
Figures 2, 3 display the carbon isotopic ratios and concentrations
of DIC and DOC, separated by flow regime (high flow in Figure 1,
low flow in Figure 2) and season. Data are grouped in Figure 2 by
samples that are in or near the source pools, vs. those that are part
of the extended outflow channel. Calculated estimates of potential
subsurface endmember δ13CDIC are shown in Supplementary
Figure S3, and are ∼ −21.8h for ML, ∼ −22.7h for GS,
∼ −12.8h for NWD, ∼ −13.26h for PB, and ∼ −22.5h
for PF locations. The ratio of DOC:DIC at each major field
area is considered in Supplementary Figure S4. We are lacking
δ13CDIC from precipitation during the time periods that we
were in the field, so estimates of input from this source of DIC
were not considered.

DIC in High Flow Systems (ML, GS, MF)
General trends in DIC (Figure 2) in high flow systems
include low concentrations of DIC (e.g., <1 ppmC) in source
pools, continuing downstream to end with an often higher
concentration signal (1–10 ppmC). The δ13CDIC at the source
pools was more enriched relative to downstream locations at
all sites and varied between −11 to ∼ −18h at ML, but ∼
−14 to −22h in high flow Palawan ophiolite locations. At
the high flow system ML2, a sample was taken 1.5 m beyond
the mouth of the source pool in 2012 and 2017, and the
δ13CDIC became briefly more enriched than the source pool
across that distance. Discrete source pools associated within
a larger spring system [e.g., ML1-ML2 or GS-NWD] had
highly variable δ13CDIC, with as much as a 7–8h difference in
δ13C between them (Figure 2). Precipitation (meteorological)
did not influence DIC concentration, but may influence the
δ13CDIC in the high flow ML systems (the only high flow
systems where data from multiple seasons are available). The
δ13CDIC at ML1 was more 13C enriched in drier seasons relative
to the wet season, while the δ13CDIC at ML2 became more
13C depleted in drier seasons relative to the wet season. The
highest concentration of DIC in a high flow system was found

in MF (dry season). It was concluded previously that this
site is influenced in part by non-serpentinizing hydrothermal
fluids (Cardace et al., 2015).

Subsurface endmember δ13CDIC for sites at ML and GS are
depleted by ∼13h relative to atmospheric DIC. A Rayleigh
distillation model (Supplementary Table S3) predicts a wide
range of potential δ13CDIC from the subsurface endmember for
both areas (∼6–91%) after fractionation by microbial processes
that consume DIC, after DIC production and fractionation by
acetoclastic and methanol methanogenesis (54–93%). In contrast,
the predicted remaining subsurface endmember at NWD is
0% for DIC consuming microbial processes, but 28–86% for
acetoclastic and methanol methanogenesis.

DIC in Low Flow Systems (PB, PF)
Two DIC datapoints are available for each of the two low flow,
uncapped sites (Figure 3). The data range from <1 to ∼ 30
ppmC, and δ13CDIC ∼ −11 to −21h. This isotopic signature is
comparable to that of the high flow systems, although DIC was
more abundant in these lower flow, uncapped pools.

While limited data availability makes it difficult to identify
broad patterns, there was a notable difference in the δ13CDIC
between the wet (∼ −13h) and dry season (∼ −25h) in the
low flow, capped systems (Figure 3). This was the most negative
δ13CDIC found. Concentrations of DIC for both low flow, capped
samples was 1–10 ppmC.

The subsurface endmember sources of δ13CDIC were predicted
to be−13.26h to the PB area, and−22.5h to the PF area. These
calculated endmembers are considered with caution, as they are
based on very few data.

DOC in High Flow Systems (ML, GS, MF)
DOC concentrations in the high flow systems were highly
variable and range from 0 to 2.7 ppmC (Figure 2). Carbon
isotopic signatures were typically <−25h although several
samples taken in the very dry season had more positive values
(see ML and GS, Figure 2). Notable outliers to these general
trends included a groundwater well associated with site NWD
with 7.8 ppmC, and the highly 13C depleted DOC (−50.8h,
relative to the DOC at all other locations) found 10.3 m down the
outflow of GS. There was little apparent effect of meteorological
precipitation on the concentration of DOC in the high flow
systems, however, lack of rain may be linked to the most positive
δ13CDOC values found (−19 to −22h) which occurred in the
very dry season in both ML and GS systems.

DOC in Low Flow Systems (PB, PF)
The DOC in the fluids of the low flow, uncapped systems
(Figure 3) had a more narrow isotopic range than that in the
high flow systems. However, the DOC was 13C enriched relative
to that of many sites (−21 to −26h), resembling the range for
the very dry season samples at high flow ML and GS. No direct
seasonal comparison could be made for these sites, due to lack of
data from multiple seasons for identical locations. However, the
spring systems sampled in the very dry season (PF) had an order
of magnitude less DOC than the spring system sampled in the
dry season (PB).
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FIGURE 2 | Ranges of concentrations and δ13C isotopic composition of dissolved carbon (DIC, DOC), and solid carbon (C-org, C-carbonate) in the high flow
systems. Concentration ranges are given by the size of the circle for each value (key at right). Samples are grouped as pool sources plus sample locations within 2 m
in one vertical column, and samples farther down the outflow channel are given as a second vertical column. The pool source is distinguished from the other samples
by a bold outline around the circle. Refer to Table 1 for full sample names and distances along the outflow. Circles are offset along the horizontal for clarity only. Data
are also separated by seasonal sampling, and sample names correspond to the names in the sample location pictures (Figure 1 and Supplementary Figure S1)
and Table 1. Dashed lines separate discrete samples within a season. Data can also be found separated by discrete samples in Supplementary Figure S2.

Concentrations of DOC from the low flow, capped systems
were between 0.1 and 0.3 ppmC, and the δ13C was −23 to
−27h (Figure 3), more 13C depleted than the uncapped, low
flow counterparts. In the dry season, DOC was more 13C enriched
than in the wet season, possibly representing the “leftover” pool
in the reservoir, which was not refreshed by new material brought
in by meteorological precipitation.

Geochemistry of Solids/Mineralogy
Organic Carbon (Biomass) in High Flow Systems (ML,
GS, NWD, MF)
The carbon isotopic signature of organic carbon in solids
(biomass) from high flow systems was in the range of ∼
−21 to −28h, across all seasons and locations (Figure 2
and Table 2). The samples from high flow systems also had
the largest range in fractionation between biomass, DIC, and
DOC (Figure 4) of all the systems investigated. Biomass in

the high flow systems was slightly 13C depleted relative to
DOC (Table 2 and Figures 2, 4). There were exceptions,
usually from samples near the end of the runoff channel which
broaden the range of fractionation from DOC. The biomass
samples in these systems were the most 13C enriched relative
to DOC of all the systems considered (Figure 4). In general,
the abundance of biomass increased downstream. In addition,
biomass was far less abundant in the very dry season, and more
abundant in the wet season (Figure 2). The GS system outflow
channel presented an atypical case compared to other high flow
systems. While the relationship between the biomass and the
DOC in the source pool at GS was similar to the other high
flow systems, the biomass was as much as 10h 13C enriched
relative to other sites. In addition, the δ13Cbiomass and δ13CDOC
in the outflow channel of GS were dissimilar, casting doubt
that DOC was the source of the carbon for the biomass in
the outflow sites.
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FIGURE 3 | Ranges of concentrations and δ13C isotopic compositions of dissolved carbon (DIC, DOC), and solid carbon (C-org, C-carbonate) in the low flow
systems. Concentration ranges are given by the size of the circle for each value (key at right). In locations where samples included both a pool source and addition
samples in and around the same pool, the pool source is distinguished from the other samples by a bold outline around the circle. Refer to Table 1 for full sample
names. Circles are offset along the horizontal for clarity only. Data are also separated by seasonal sampling, and sample names correspond to the names in the
sample location pictures (Figure 1 and Supplementary Figure S1) and Table 1. Dashed lines separate discrete samples within a season. Data can also be found
separated by discrete samples in Supplementary Figure S2.

FIGURE 4 | Ranges of measured δ13Corganic in each of the three types of sample systems (vs. VPDB), and calculated 113C of organic carbon in solids relative to
DIC and DOC. Gray bars note the δ13Corganic range, and number of analyses per sample type. The sample types are also broken into seasons, key at right. The
brown arrow indicates a single outlier data point of ∼ + 24h.

Organic Carbon (Biomass) in Low Flow Systems
(PB, PF)
The δ13Cbiomass with the most negative values were found in
the low flow, uncapped systems. All samples were >4h 13C
depleted relative to the DOC, and there was very little seasonal
variability (Figures 3, 4). These samples also had the most
depleted δ13Cbiomass relative to DIC of all the systems sampled,
with samples from the very dry season as much as ∼ −18h
depleted relative to DIC (Figure 4). Biomass from the low flow,
capped systems had a similar δ13Cbiomass as that from the high
flow systems (between∼−24 to−29h), with the more negative
δ13Cbiomass in samples from the dry season.

Carbonates
In the pH range of the spring locations, speciation of DIC is
expected to vary as a function of pH; at pH ∼10.3 we can
expect about equal proportions of bicarbonate and carbonate
components of DIC, below pH = 10.3 bicarbonate will dominate
over carbonate, and above pH = 10.3 carbonate is the dominant
ion. Fractionation between the two species occurs, but is expected
to be small across the temperature and pH ranges studied here.
Fractionation as carbonate minerals precipitate will also vary with
precipitation rate. Fractionations due to pH and temperature
differences between samples/seasons are expected to be minimal,
on the order of <2h when considering fractionation between
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FIGURE 5 | δ13C (vs. VPDB), and δ18O (vs. VPDB) of carbonates, given in h.
Black symbols = dry 2012 season, gray symbols = wet 2013 season, and red
symbols = very dry 2017 season. Data are found in Table 2. Fields indicate
formation and fractionation processes discussed in Clark et al. (1992) and Falk
et al. (2016). Dashed boxes indicate the position of fields outlining formation
and fractionation processes as discussed in Clark et al. (1992) and Falk et al.
(2016) for Oman serpentinization-associated carbonates. Shaded boxes show
adjusted positions accounting for the up to ∼5h difference in δ18O of
seasonal and annual rainfall for our study areas. Isotopic data for precipitation
were obtained from the Online Isotopes in Precipitation Calculator and are
found in Supplementary Table S2 (Bowen and Revenaugh, 2003; Bowen
et al., 2005; Bowen, 2019). (a,b) These fields represent the expected isotopic
ranges for carbonates formed in equilibrium with soil CO2, and atmospheric
CO2, respectively (purposefully no data in the “b” fields). (c) This field is
interpreted by Falk et al. (2016) as containing carbonates that result from
mixing of endmember fluids, or recrystallization and/or isotopic exchange in
older carbonates. (d) Fossil travertine crusts from Oman (Clark et al., 1992),
interpreted as shifting toward equilibrium values during secondary
recrystallization of more depleted travertine. (e) Field containing modern
crusts from Oman (Clark et al., 1992), blue triangles, provided for reference.
(f) Carbonates potentially formed by the CO2 hydroxylation process.

H2O and CO2 due to pH (Halas et al., 1997, Table 4), and <1
to ∼2h between bicarbonate and carbonate in our temperature
range (Emrich et al., 1970; Table 1). The fractionation due to
precipitation rates is also expected to be <1h (Turner, 1982).
There are no reports that consider all three of these variables
on fractionation of DIC or carbonate minerals in the range of
conditions of our study sites.

The δ13C of solid inorganic carbon (carbonates) were typically
only slightly fractionated relative to DIC, showing the most
similarity in the wet season and the most fractionation from
DIC in the dry and very dry seasons (Table 2 and Figures 2, 3).
Again, there were exceptions to this pattern. For example, the
carbonates in wet season samples from the PB location (2013),
which was low flow and capped, were nearly 15h 13C depleted
relative to the DIC (Figure 3). In these samples, δ13Ccarbonate
was more isotopically similar to the δ13Cbiomass and δ13CDOC.
A similar landscape of carbonates 13C depleted relative to DIC
was found at the GS site, both near the source and farther down
the outflow (Figure 2).

FIGURE 6 | Eh-pH diagram illustrating likely carbonate mineralogy of GS area
spring waters, which are Ca-dominated waters with near surface DIC values
due to interaction with atmosphere, and bear low concentrations of dissolved
Mg and very low concentrations of dissolved Fe. The system was modeled at
a temperature of 25◦C, at a pressure of 1.013 bars, with log activity HCO3

−

set at –2.699, log activity Ca2+ set at 2, log activity Fe2+ set at –3, and unit
activity of Mg2+ and water. Note that artinite is a hydrated magnesium
carbonate mineral [Mg2(CO3)(OH)2·3H2O], and calcite is taken to be pure
CaCO3. For relevant high pH, low Eh environmental conditions (lower right
plotted area), one expects mineral precipitation of artinite, grading to calcite as
pH drops (possibly due to organic acid production by microbiology or influx of
atmospheric CO2).

Carbonates from the Philippines had some of the most
depleted δ13C and δ18O values reported from terrestrial
serpentinizing environments (Table 2 and Figure 5). Values of
δ13C in our carbonates range from −28.1 to −9.3h VPDB,
and values of δ18O range from −24.6 to −4.8h VPDB (5.5–
23.4h VSMOW). Equilibrium considerations in the formation
of carbonates were calculated and are available in Table 2,
including a starting δ13CCO2 and δ18OCO2. The difference
between the measured δ18Ocarbonate and the expected (calculated)
δ18Ocarbonate is shown in Figure 7, for samples for which a
δ18Owater was available. In all samples except one (from PB2),
the measured δ18Ocarbonate was depleted in 18O relative to the
calculated, expected value for δ18Ocarbonate, with up to −17.39h
difference. Carbonates depleted in 18O relative to equilibrium
with water indicate rapid mineral precipitation or precipitation
far out of equilibrium.

Because the most negative δ13C carbonates were primarily
from the GS area, the mineralogy of solid samples from
those locations was further explored. The expected carbonate
mineralogy is shown in the Eh/pH diagram in Figure 6; measured
carbonate mineralogy is given in Figure 8. The model for
carbonate stability for a Ca-dominated water with low Mg, low
Fe, and near surface DIC values suggests that at the pH and
Eh of GS locations, the expected stable magnesium and calcium
carbonate minerals are artinite and calcite.
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FIGURE 7 | Differences in the values measured for δ18O in carbonates and values expected for δ18O in carbonates (calculated) in samples from 2012 (dry season)
and 2017 (very dry season). Data (see Table 2) are compared for the Poon Bato (PB), Manleluag (ML), Mainit Falls (MF), and San Isidro area springs (PF, NWD, and
GS). Positive values are enriched in 18O relative to equilibrium, and negative values are depleted relative to equilibrium with water.

XRD analysis of GS location carbonates (Figure 8) showed
that the outflow sites between 4.5 and 10.3 m are dominated
by calcite, serpentinite, clay minerals such as smectite and
chlorite, and other smaller proportions of carbonates such as
aragonite, magnesite, and artinite, with possible portlandite
[Ca(OH)2], suggested by variable right-side shoulder near the
serpentine peak at ∼42.5 ◦2-theta. At the source pool alone,
brucite [Mg(OH)2] and hydrotalcite [Mg6Al2CO3(OH)16·4H2O]
are indicated in XRD results, giving evidence for mineral
precipitation of hydroxide phases from this OH− dominated
spring water where it emerges from the subsurface.

Nitrogen
The δ15N in solid samples (presumably from biomass) compared
to the ratio of total carbon to total nitrogen (both as wt.%)
are given in Figure 9, broken down by flow system type
and season. A relationship between the abundance of nitrogen
in biomass and a depleted 15N isotopic signature relative to

atmospheric may indicate diazotrophic activity, supplying freshly
fixed nitrogen to the biomass (e.g., Loiacono et al., 2012 and
sources within). In contrast, nitrogen limitation or an 15N
enriched nitrogen isotopic signature relative to atmospheric
may indicate nutrient recycling, exogenous nitrogen addition
from eukaryotic surface systems, or microbial nitrogen cycling
functions such as nitrification or denitrification. A poorly fit
relationship was present between the C:N and δ15N in the
high flow systems during the seasons with more meteorological
precipitation (Figure 9A), but not in the very dry season
(Figure 9B). While there were fewer data points available for
the lower flow systems (Figure 9C), data cluster according
to the season the samples were obtained in. Very dry season
samples had the most positive δ15N, with high nitrogen biomass
(Figure 9C, blue field), dry season samples had the lowest wt%
nitrogen in biomass, and δ15N data fall between ± 2.3h (yellow
field), while wet season samples were primarily δ15N < 0h and
low C:N (red field).
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FIGURE 8 | X-ray diffractograms convey mineralogical differences between representative samples of Governor’s Spring solids, collected at spring source (green),
two locations along the outflow path (red, purple), and at the base of the main flow channel (blue). Data were collected using an Olympus Terra XRD unit outfitted
with Co tube (https://www.olympus-ims.com/en/xrf-xrd/mobile-benchtop-xrd/terra/#!), and peaks were identified using Xpowder (http://www.xpowder.com/).
Peaks (intensity on the y-axis) indicate strongly diffracted x-rays. Peaks correspond to specific angles (◦2-theta, on x-axis) at which x-rays are diffracted by specific
planes of atoms present in the mineral sample. At spring source (green diffractogram), serpentine peaks co-occur with strong brucite peaks, and associated
hydrotalcite. Along outflow path (red and purple diffractograms), carbonate and serpentine minerals dominate, with possible minor brucite, portlandite, and
magnesite. The lowest elevation site (blue diffractogram) shows carbonate minerals with a smectite group clay (broad peak, far left).

FIGURE 9 | Ranges of measured δ15N within organic fraction of solid samples, as a function of the C/N ratio in the samples, divided by 10. Data are found in
Table 2. Three sampling seasons are shown; 2013 wet (gray), 2012 dry (black), and 2017 very dry (red) seasons. Circles indicate high flow systems, Triangles
indicate low flow systems. The dashed line indicates the expected δ15N of atmospheric N2. Values below this line are interpreted as produced by fractionation during
nitrogen fixation processes, and values above are likely influenced by other nitrogen cycling reactions and nitrogen recycling. (A) High flow systems, during the wet
and dry seasons. (B) High flow systems during the very dry season. (C) Low flow systems, all seasons.

DISCUSSION

Surface derived carbon, such as DOC picked up from plant,
animal, or soil sources during overland flow, is characteristically
depleted in δ13C relative to atmospheric CO2. Examples of
surface derived carbon can be found in Table 2 – samples
from PB1 (“Muddy pot, 2013”) and PB2 (leaf litter and soil
reference material, 2012), which range from δ13C = −14.7
to −24.6h. When such biomass is carried into the sample
locations after being dissolved or transported as solids, it
provides organic carbon with δ13C depleted with respect to
atmospheric CO2. Microbial heterotrophy of organic carbon
for biomass production results in very little fractionation

of carbon (e.g., Hayes, 1993). In these systems, when the
δ13Cbiomass is only barely fractionated with respect to δ13CDOC
the assumption can be made that DOC was utilized to
produce the biomass. Further, it is logical that the source
of the DOC is likely primarily from surface environments,
rather than produced within the pools, especially during
periods of high precipitation. Care needs to be taken when
interpreting DOC-biomass relationships in the low precipitation
seasons. Measured δ13CDOC or δ13Cbiomass values with a large
enrichment relative to source DOC are likely products of
microbial carbon fixation, a result of recycling of carbon in a
closed or semi-closed system, or a mix of heterotrophic and
autotrophic growth.
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The measured δ13CDIC can be the product of multiple
processes, including fluid mixing, fractionation following
biological activity, and kinetic effects to name a few. Removal
of DIC from the source (whether subsurface or surface) by
microbial carbon fixation or methanogenesis will change both
the concentration of DIC and the δ13CDIC in the remaining
DIC pool. Some autotrophic organisms are known to fractionate
DIC by as much as 36h with specific carbon fixation pathways
at 25–40◦C (Hayes, 2001; House et al., 2003). Likewise, the
production of DIC by heterotrophic processes, or acetoclastic
methanogenesis will supply DIC to the available pool that is
fractionated relative to the source DOC.

Nitrogen fixation fractionates N2 only slightly from
atmospheric values, and δ15Nbiomass close to 0h can be
inferred to be a product of nitrogen fixation (Delwiche and
Steyn, 1970). Other nitrogen cycle processes produce more
negative δ15Nbiomass, and values of δ15Nbiomas that are enriched
relative to atmospheric N2 can result from recycling fixed N2 in
a closed or partially closed system (e.g., Havig et al., 2011).

The climate of the Philippines affects the primary carbon
sources for biomass in serpentinizing spring fluids in the
Zambales and Palawan ophiolites. Our goal was to determine
the primary carbon source for biomass in both the source pools
(where a greater “subsurface” fingerprint might be presumed)
and runoff channel locations. Our data indicate that factors that
impact the primary carbon source include flow rate of the fluids,
and degree of exogenous carbon input from meteorological
precipitation-derived DIC and DOC.

Seasonal low meteorological precipitation affects the quantity
of biomass present in the sediments at all field locations where
multiple seasons were sampled (ML, PB1) – measured biomass
was less abundant in the dry and very dry seasons (Figures 2, 3).
This decrease in biomass production can not be directly linked
to a decrease in DOC concentrations within our sample set.
With few exceptions (ML1, and some outflow channel sites of
ML2), there is not an apparent decrease of DOC with decreased
meteorological precipitation and the highest DOC:DIC ratios are
found in very dry season samples (Supplementary Figure S4).
However, as discussed below, in a few cases (such as ML during
the very dry season) there is evidence of DOC recycling during
the drier seasons relative to the wet season. A possible explanation
is that biomass does increase in response to an increase in
delivery of DOC via overland flow, and the DOC measured
during the wet season is “leftover” DOC that has not been
consumed. The dynamics of population and metabolic shifts
that might be tied to DOC have not been studied previously
in these systems.

High Flow Systems (ML, GS, NWD, MF)
Our results indicate that the primary source of carbon for
microbial communities in high flow systems was variable with
location and affected by season. Evidence for carbon limitation
was found during the very dry season, and the best indication of
mixotrophic communities (i.e., indication of both heterotrophic
and autotrophic processes) was found at distance down outflow
channels where δ13Cbiomass relative to DOC was the most positive

(Figure 4). Both DIC and DOC were <1 ppmC in the source
pools of most high flow systems (with the exception of MF and
NWD). The DOC:DIC of high flow sites was<1 (with only three
exceptions), and these represent the highest DOC:DIC ratios
found in each sampling season (Supplementary Figure S4).

The carbon isotopic ratio data indicate the primary carbon
source incorporated into biomass in the ML1 and ML2 systems
was likely DOC. The δ13Cbiomass (Figure 2) in these two springs
was only slightly depleted or slightly enriched with respect to
DOC (Figure 4); in cases of δ13Cbiomass enrichment relative
to DOC, a secondary carbon source of DIC from atmospheric
influence or from microbial metabolic byproducts may be
invoked. Sampling during the very dry season in the Manleluag
area revealed a δ13CDOC more enriched than that in other
seasons, suggesting carbon recycling in the outflow channel
due to lower flow rates and less exogenous carbon delivered
by meteorological precipitation, resulting in the residual DOC
pool harboring more 13C. Modeling of the degree of input from
the subsurface δ13CDIC was inconclusive with a broad range
of incorporation of subsurface source δ13CDIC possible (6–93%
incorporation). Given that the measured δ13CDIC in the ML
system is influenced by a wide range of processes we feel the
approach used was insufficient to model these dynamics. Our
available evidence indicates that carbonate production in the ML
systems required a mix of carbon from DIC and atmospheric
CO2. Carbonates analyzed from the source pools of ML1 and
ML2 had enriched δ18O and δ13C compared to other samples
(field “c,” Figure 5). Carbonates in this range of δ18O and
δ13C have been interpreted by others as carbonates formed
by remineralization or resulting from mixing of endmember
fluids. Farther down the outflow at ML2, carbonates are
a mix of “fossil” carbonates and freshly formed carbonates
with more depleted δ13C and δ18O than at the source pools
(Figure 5, field “d”).

The other major high flow system, the GS area and associated
NWD, was only sampled in the very dry season and the
source of carbon for biomass was variable by location. In
the source pool of GS, both δ13CDOC and δ13Cbiomass were
enriched compared to all other sample locations (Figure 2),
and the DOC:DIC was the lowest observed (Supplementary
Figure S4). The microbial community in the source pool of
GS may build biomass from carbon fixation processes, thus
producing organic acid byproducts that are 13C enriched relative
to the DOC or subsurface DIC endmember (Supplementary
Figure S3), contributing to the measured δ13CDOC. Alternatively,
the measured δ13CDOC may also be a consequence of the
very dry season sample time, similar to that observed in the
ML systems described above – a comparison with wet season
δ13CDOC is not available for the GS system. As the fluid
at GS flowed downstream, DIC and DOC did not become
more abundant (in contrast to the outflow of ML2), and
the δ13Cbiomass became more depleted relative to the source
pool biomass. Rayleigh modeling of the potential input from
a subsurface source of DIC was largely inconclusive for the
GS system. DIC at NWD is only slightly enriched relative
to DOC. Carbonates produced in and near the source pool
at GS occur with brucite [Mg(OH)2], and are more 13C
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enriched than other samples (and ∼10h 13C enriched relative
to the next site downstream), possibly representing mixing
with endmember fluids or recrystallization of carbonates rather
than freshly precipitated carbonates (Figure 5, fields “c, d”).
However, Figure 7 shows that the carbonates found in the
GS system have the largest difference between the expected
δ18O and the measured δ18O, indicating that rapid carbonate
deposition is occurring at this location, even in the source
pool. Biomass carbon at the bottom of the outflow channel
of GS either incorporated carbon from the carbonates, or
influenced the δ13Ccarbonates. These carbonates had the most
negative 13C found in our high flow systems, and there was
only <1–4h difference between δ13Cbiomass and δ13Ccarbonate.
This could indicate that carbonate formed quickly in the outflow
and microbial waste product DIC was a key source of carbon
used to form the carbonate. Another possibility is that the
microbial community utilized carbon from the carbonate to build
biomass. There is precedent for this latter concept. In high pH
serpentinizing systems found at The Cedars (United States),
it has been shown that Serpentimonas isolates use CaCO3 in
carbon fixation (Suzuki et al., 2014). Future work will be needed
to determine if this is a phenomenon is restricted to the
low meteorological precipitation season at GS. Regardless, by
4.5 m down the outflow channel, rapid carbonate deposition
has resulted in carbonates with some of the most depleted δ13C
and δ18O relative to other carbonates reported from terrestrial
serpentinizing systems.

Evidence for nitrogen fixation in the high flow systems
(Figures 9A,B) was limited to the MF site (only sampled
in the dry season), the source pool of ML1 in the very
dry season, and the distant outflow points of ML2 (but
excluding the 2012 dry season samples). These results indicate
that the ML system communities have potential for nitrogen
fixation under some environmental conditions, and more
investigation is needed to determine which members of
the community are capable of nitrogen fixation and what
conditions enable the process. The MF location is slightly higher
temperature than ML, with a likely hydrothermal mixing member
(Cardace et al., 2015) and nitrogen fixation processes could be
attributed to thermophilic members of the community (e.g.,
Hamilton et al., 2011; Loiacono et al., 2012).

Low Flow, Uncapped Systems
(PB2, PB3, PF)
While few data are available for low flow systems in general,
those data presented in Figure 3 indicate that there may be a
relationship between more seasonal meteorological precipitation
and an increase in concentrations and volume of DIC, DOC, and
biomass in the uncapped systems.

Low flow systems have some of the lowest DOC:DIC
ratios of all the samples examined (Supplementary Figure S4),
with little variability between seasons. While few data are
available for low flow systems, the uncapped pools featured
the most depleted δ13Cbiomass, relative to DOC, with the
largest fractionation from DOC (up to 7h), regardless of
season of sampling. To produce biomass depleted in 13C

relative to both DOC and DIC, microorganisms either have
to use an unidentified, very δ13C negative source of carbon,
or a large fractionation from DIC needs to occur. These
results indicate that even when carbon from surface processes
was available in the drier seasons, it is possible that the
lower flow, uncapped systems received enough fluid and gas
from the subsurface to support a microbial community that
engaged in metabolic activities independent from exogenous
carbon. During the dry season, these systems may depend on
methane or other carbon-bearing gasses sourced from depth.
Estimation of the subsurface endmember δ13CDIC does not
produce results that support this hypothesis. However, it is
possible that the estimation of the subsurface source δ13CDIC
is inaccurate (Supplementary Figure S3) – only a few samples
were available for each pool and the Miller-Tans analysis was
performed with the PB area samples (capped and uncapped
combined) considered as one “site,” rather than separate locations
that may have differing endmembers in reality. Alternatively,
when exogenous carbon was less abundant in the very dry
season, the low flow, uncapped systems may recycle carbon
similarly as described above for the high flow systems –
metagenomic/metatranscriptomic data could help to clarify the
carbon flow for the very dry season.

Regardless of the season of sampling, the nitrogen cycle was
dependent on surface-sourced nitrogen as no direct evidence
from geochemistry points to active subsurface nitrogen fixation
(Figure 9). The low flow, uncapped systems form carbonates
slowly and are enriched in δ13C and δ18O relative to other
carbonates sampled, suggesting that they have opportunity to
undergo recrystallization as they shift toward equilibrium values
(fields “c, d,” Figure 5).

Low Flow, Capped Systems (PB1)
Seasonality affected the carbon isotopic ratio of DIC and DOC
in the “capped” low flow pools, the abundance of biomass
present, and possibly the source of carbon for the biomass. In
the dry season, the pool fluid is separated from atmospheric
and most surface influence by the physical barrier of the
carbonate skin on the pool surface (Figure 1g). The low flow,
capped systems appear to be forming carbonates at a rapid
rate, both on the bottom of the pools and across the surface
of the pool. Some of these data fall outside of identified
fields in Figure 5, or near field “f,” identified as potentially
forming via a CO2 hydroxylation process (Falk et al., 2016).
Along with the high flow GS locations, these low flow capped
carbonates are the most depleted in δ13C and δ18O of the
samples, indicating fresh, fast formation. Under these conditions,
new carbon and nutrients can only be obtained from slowly
flowing gas and fluid from depth, or from solids already
present in the pool. Figure 3 shows how this impacted the
DIC, which was more δ13C depleted than DOC. The DIC pool
was likely influenced by metabolic byproducts from microbial
metabolism depleted in 13C relative to DIC from surface sources,
which were trapped in the fluids under the carbonate cap.
The residual DOC pool was also more 13C enriched than
in the wet season, indicating that heavier δ13CDOC was left
behind in the DOC pool, non-replenished by surface DOC.
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The carbon isotopic signature of the biomass was more 13C
depleted than both DIC and DOC, and could be influenced
by incorporation of carbon-bearing gasses from depth, such as
in the low flow, uncapped pools. We interpret the wet season
δ13CDIC as incorporating atmospheric sources, indicating that
the cap was at least periodically washed away by precipitation.
Biomass in both the wet and dry season carried a nitrogen
isotopic signature indicative of nitrogen fixation (Figure 9C
and Table 2), in contrast to the uncapped low flow systems.
It is unclear why the capacity for nitrogen fixation would be
more prevalent in these low flow capped systems than the
uncapped systems.

CONCLUSION

Our results allow us to broadly characterize the effect of
climate and fluid flow on the carbon and nutrient sources
of several serpentinization-driven ecosystems in the Zambales
and Palawan ophiolites. Increased meteorological precipitation
during wetter seasons neither significantly diluted nor added
to the DOC and DIC concentrations in the source pools
of high flow systems ML1 and ML2, or capped, low flow
pool PB1 (the only sample locations where such a direct
comparison is possible). Samples farther down outflow channels
at ML did have higher concentrations of DOC in the wet
season, suggesting that climate may have a larger impact
on downstream systems than source pools of high flow
systems. However, changes in meteorological precipitation did
impact the carbon isotopic ratio of both DIC and DOC
in ML and PB1 fluids, which reflected seasonal gain/loss of
atmospheric influence on the δ13C of DIC, and changes in
exogenous DOC input.

The primary carbon source in high flow systems was variable,
with DOC contributing more to biomass in the ML system, and
a mix of DIC and carbonates contributing to biomass in the GS
system. Primary carbon resources in the low flow systems may
depend more on endogenous than exogenous carbon. Partially,
this may be due to smaller “footprints” of the lower flow systems,
affecting the surface area available to receive exogenous materials
either washed or dropped into the systems. Carbonate “caps” on
the very lowest flow systems seasonally isolate the pools from
both organic and inorganic exogenous carbon.

The search for a true “subsurface” signature in the Zambales
and Palawan serpentinizing systems has concluded that the
highest degree of subsurface influence is found in the low flow
systems, and in select source pools of the high flow systems
(namely GS). Rapid mineral precipitation of carbonate, and
δ13Cbiomass that was depleted relative to δ13CDOC highlights
potential true subsurface signals. Biomass can not be produced
from surface derived δ13CDOC with a resulting depleted δ13C
relative to that source – therefore a subsurface process can
be assumed. The drier the climate, the more the subsurface
carbon signature is apparent, making it more likely that processes
such as hydrogen based metabolisms (methanogenesis or sulfate
reduction, for example) are key in ecosystem functioning. In the
very dry season, evidence for 13CDOC pool enrichment relative

to source DOC, without subsequent 13Cbiomass enrichment
indicates that more autotrophy and/or methane-driven (and
hydrogen dependent) metabolic schemes were in action while
DOC was limited.

Future sampling will focus on obtaining multi-season samples
from all these locations, with endmember sampling, to further
explore the validity of this conclusion. Higher flow systems
at ML should be considered very carefully with respect to
subsurface signatures, and the degree of surface impact on
the geochemistry and microbiology. Previous work identified
relict subsurface genetic capacity in the ML systems, and
future work will focus on separating surface vs. subsurface
function in microbial systems, with an eye to identifying
populations that are actively using hydrogen-driven vs. Corganic-
driven metabolic processes. High flow GS and lower flowing
capped systems, including PB1 should be the focus of future
subsurface biosphere investigations. Further consideration of
carbon and nitrogen cycling potential will include insight from
metagenomic datasets. These will clarify the presence/absence of
the genetic capacity for the microbial communities found in these
locations to participate in carbon and nitrogen cycling, identify
metabolisms that use the abundant hydrogen present in these
systems, and allow deeper interpretation of these geochemical
data presented here.
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