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Aquatic environments are reservoirs of the human pathogen Vibrio cholerae O1, which

causes the acute diarrheal disease cholera. Upon low temperature or limited nutrient

availability, the cells enter a viable but non-culturable (VBNC) state. Characteristic of this

state are an alteredmorphology, lowmetabolic activity, and lack of growth under standard

laboratory conditions. Here, for the first time, the cellular ultrastructure of V. cholerae

VBNC cells raised in natural waters was investigated using electron cryo-tomography.

This was complemented by a comparison of the proteomes and the peptidoglycan

composition of V. cholerae from LB overnight cultures and VBNC cells. The extensive

remodeling of the VBNC cells was most obvious in the passive dehiscence of the cell

envelope, resulting in improper embedment of flagella and pili. Only minor changes of the

peptidoglycan and osmoregulated periplasmic glucans were observed. Active changes

in VBNC cells included the production of cluster I chemosensory arrays and change

of abundance of cluster II array proteins. Components involved in iron acquisition and

storage, peptide import and arginine biosynthesis were overrepresented in VBNC cells,

while enzymes of the central carbon metabolism were found at lower levels. Finally,

several pathogenicity factors of V. cholerae were less abundant in the VBNC state,

potentially limiting their infectious potential. This study gives unprecedented insight into

the physiology of VBNC cells and the drastically altered presence of their metabolic and

structural proteins.

Keywords: Vibrio cholerae, viable but non-culturable, proteomics, electron cryotomography, cell envelope,

bacterial ultrastructure

INTRODUCTION

Changes in the physical and chemical properties of their environment, such as heat, cold and
salt stress, oxygen and nutrient deprivation, desiccation and changes in osmolarity, threaten the
survival of bacteria, and they have therefore evolved various strategies to evade detrimental effects
(Merchant and Helmann, 2012; Alvarez-Ordóñez et al., 2015; Guan et al., 2017). The facultative
human pathogen Vibrio cholerae, is common in brackish and estuarine waters where it is often
associated with aquatic flora and fauna (Blake et al., 1977; Huq et al., 1983; Tamplin et al., 1990;
Balakrish Nair et al., 1991). Like many other bacteria, V. cholerae enters a state of restrained
metabolic activity when confronted with cues like low temperatures and or low nutrient availability
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over extended periods of time (Xu et al., 1982; Mederma et al.,
1992; Rahman et al., 1994; Oliver et al., 1995; Oliver, 2005, 2010;
Morishige et al., 2015; Pinto et al., 2015). Once the cells have
entered this state, V. cholerae does not readily start to grow
and reproduce when they are returned to more favorable and
nutrient-rich media, and their status has, therefore, been termed
“viable but non-culturable” (VBNC) (Xu et al., 1982; Kell et al.,
1998; Bergkessel et al., 2016).

Under standard laboratory conditions, V. cholerae cells
are slightly bent, comma-shaped rods. A characteristic
morphological feature of V. cholerae VBNC cells is a smaller size
and a round, coccoid shape with an increased gap between the
cytoplasmic and outer membrane (OM), which was previously
observed in transmission electron microscopy (TEM) studies
(Chaiyanan et al., 2007; Krebs and Taylor, 2011; Kim et al.,
2018). It is currently unknown how this is reflected in altered
peptidoglycan architecture, changes in the membrane structures,
or the composition of the periplasmic content of V. cholerae.
An additional limitation lays in the published TEM images
themselves, which were generated using fixed, stained and
sectioned cells. This technique is known to affect or obscure the
delicate ultrastructure of cells (Ayache et al., 2012). For example,
Escherichia coli VBNC cells that were prepared that way were
interpreted as dead, due to their seemingly empty cytosol (Kim
et al., 2018). The presence of several macromolecular complexes
in VBNC cells was revealed using other techniques. For example,
the toxin co-regulated pilus (TCP) and the flagellum were
detected in cultures that are transitioning into, or have already
entered, the VBNC state using transcription based methods
or immunolabeling (Asakura et al., 2007; Krebs and Taylor,
2011; Xu et al., 2018). Unfortunately, these methods can only
detect the presence of macromolecular complex components,
but whether those machineries are still properly assembled
and embedded in the envelope remained unclear. It is also
unknown if and how these structural changes are regulated.
Several studies have focused on either individual regulatory
and structural components involved in VBNC formation, or
analyzed the transcriptional profile of VBNC cells [see review
(Pinto et al., 2015)]. Unfortunately, the transcriptional studies
are difficult to compare with each other as gene targets were
not featured in all data sets or the results were contradicting
each other (González-Escalona et al., 2006; Asakura et al., 2007;
Xu et al., 2018).

To gain detailed insights into the structural makeup of
V. cholerae VBNC cells, we studied the morphology and
structural adaptation of V. cholerae VBNC cells using electron
cryo-tomography (ECT). The advantage of this method is that
the cells can be preserved in a near-native state as the samples
are directly applied from the culture to the grid and flash-
frozen without staining or dehydration steps. Thus, V. cholerae
VBNC cells can be visualized in 3D and at macromolecular
resolution, resulting in clear and authentic representations of
different cellular textures and large macromolecules (Jensen and
Briegel, 2007; Oikonomou et al., 2016). This approach was paired
with a proteomic analysis of the VBNC cells, as well as a
biochemical analysis of the peptidoglycan composition and the
presence and abundance of osmoregulated periplasmic glucans.

Together, these complementary analysis methods reveal several
characteristic changes of the cell morphology and function of
VBNC cells.

MATERIALS AND METHODS

Bacterial Strain, Media and VBNC
Inducing Conditions
Vibrio cholerae O1 biovar El Tor str. N16961 was used in
this study. A small amount of these cells from lysogeny broth
(LB) plates was used to inoculate three overnight cultures of
250ml low salt LB. These cultures were grown at 30◦C for 18 h
shaking at 200 rpm with a final OD600 of 2.5, corresponding
to ∼2·109 CFU. Fifty milliliters of the cells were harvested in
50ml conical polypropylene tubes using centrifugation (20min
at 5000 × g). Cell pellets were carefully resuspended in cold
natural waters, closed and kept at 4◦C in the dark on a
rocking platform set to low agitation. Total cell numbers were
enumerated from the biological triplicates from a dilution series
in the respective incubation waters using an improved Neubauer
counting chamber. Cells were considered to be in the VBNC
state if no CFU were observed in an undiluted volume of 100 µl
from any of the three biological triplicates. Samples for electron
microscopy or proteomic analysis were taken 30 days after no
CFU could be detected.

Natural waters were collected at the following sites: natural
fresh water (NFW) at 51◦52′50.3′′N 5◦59′52.2′′E, natural
brackish water (NBW) containing 13 g chloride/ l was collected
at 53◦06′02.4′′N 4◦53′50.5′′E and natural salt water (NSW) at
53◦06′11.7′′N 4◦53′54.8′′E. All waters were filtered through a
series of whatman filters, sterile filtered using a 0.22µm filter
followed by autoclaving. Waters were stored at 4◦C until use.

Live/Dead Stain
The fraction of live cells was determined as previously described
(Terzieva et al., 1996). In essence 200 µl of a 1:50 dilution of each
incubation was mixes with 1 µl of Syto9 and propidium iodide
each. The mixture was incubated at room temperature for 20min
in the dark before 3µl were applied to an agarose slab and imaged
on a Zeiss Axioplan 2 equipped with a Zeiss AxioCam MRc 5
digital color camera. At least 500 cells from randomly chosen
areas were quantified. Images were processed using ImageJ. Cells
with a red, orange, or yellow hue were rated as “dead” and green
cells as “live”.

Electron Cryo-Tomography
Eighteen µ l of cell suspension from the respective cultures was
gently mixed with 2 µl protein A-treated 10 nm colloidal gold
solution (Cell Microscopy Core, Utrecht, The Netherlands) by
pipetting. Aliquots of 3 µl were applied to a plasma-cleaned R2/2
copper Quantifoil grid (Quantifoil Micro Tools, Jena, Germany).
Plunge freezing into liquid ethane was carried out using a Leica
EMGP (Leicamicrosystems,Wetzlar, Germany) set to 1 s blotting
inside the chamber set at 20◦C and 95% humidity. Grids were
stored in liquid nitrogen until imaging.

Data acquisition was performed on a Titan Krios transmission
electron microscope (Thermo Fisher Scientific, Hillsboro, OR,
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USA) operating at 300 kV. Images were recorded with a Gatan
K2 Summit direct electron detector (Gatan, Pleasanton, CA)
equipped with a GIF-quantum energy filter (Gatan) operating
with a slit width of 20eV. Tomograms were recorded at a nominal
magnification of 42,000x (pixel size of 3.513 Å). Using UCSF
tomography data collection software (Zheng et al., 2007), all
tilt series were collected using a bidirectional tilt scheme which
started with 0◦ to −54◦ followed by 0◦ to 54◦ tilting with
a 2◦ increment. Defocus was set to −8µm. The cumulative
exposure was 120 e-/ Å2. Drift correction and bead-tracking
based tilt series alignment were done using software package
IMOD (Kremer et al., 1996). Tomograms were reconstructed
using simultaneous iterative reconstruction (SIRT) with iteration
number set to 4.

Line scans perpendicular to the OM or sheath membrane was
done using IMOD. Twenty nine measurements from five cells
each were recorded.

Osmoregulated Periplasmic Glucans
(OPG) Analysis
Bacteria (100mL) were grown in LB with several NaCl
concentrations or in various natural waters. Bacteria were
collected by centrifugation at 4◦C for 15min at 8,000 g. Cell
pellets were suspended in 20mL of distilled water and lysed with
5% trichloroacetic acid. After centrifugation at 4◦C for 30min
at 8,000 g, the supernatant was neutralized with ammonium
hydroxide 10% and concentrated by rotary evaporation. The
resulting material (2mL) was fractionated by gel filtration
on a Bio-Gel P-4 column (length: 47 cm, diameter: 1.7 cm)
equilibrated with 0.5% acetic acid. The column was eluted in the
same buffer at a flow rate of 15mL h-1 and fractions of 1.5mL
were collected. Presence of oligosaccharides in each fraction was
determined by the colorimetrically anthrone procedure (Spiro,
1966). Fractions containing OPGs were pooled and total content
was determined by the same procedure.

Peptidoglycan Analysis
Murein sacculi were purified as described previously (Cava et al.,
2011). In essence, 50ml cell material of LB overnight cultures
or VBNC (NSW) cell suspensions was pelleted, resuspended in
5ml phosphate buffered saline (PBS) and slowly added to 10ml
of boiling 10% sodium dodecyl sulfate while stirring. Samples
were boiled for 4 h, then stirred overnight at 37◦C. Cell wall
material was then pelleted by ultracentrifugation (85.000 rpm,
0.5 h) and washed in MQ water. Sacculi were digested with
pronase E (0.1 mg/ml) in a Tris-HCl 10mM pH 7.5 buffer for
1 h at 60◦C to remove Braun’s lipoprotein. After heat-inactivation
and washing, the samples were treated with muramidase (100
mg/ml) for 16 h at 37◦C, in 50mM phosphate buffer, pH
4.9. Muramidase digestion was boiled and centrifuged and the
supernatants were reduced with 0.5M sodium borate pH 9.5 and
sodium borohydride. Finally, samples were adjusted to pH 3.5
with phosphoric acid.

Chromatographic separation was performed as previously
described (van der Aart et al., 2018) on an Acquity UPLC HSS
T3 C18 column (1.8µm, 100 Å, 2.1× 100 mm).

The peak areas of masses corresponding tomuropeptides were
collected and a final table which shows peak areas as percentage
of the whole was produced in Microsoft Excel.

Proteomic Analysis
Equal amounts of V. cholerae O1 biovar El Tor str. N16961
cells from biological triplicate LB overnight cultures or VBNC
microcosms were collected using centrifugation. Cells were
carefully washed with ice-cold PBS and subjected to proteomic
analysis using mass spectrometry (MS). In the first step,
cell pellets were reconstituted in 2% Sodiumlauroylsarcosinate
and heated for 15min at 95◦C. Protein concentration was
measured and 50 µg of total solubilized protein was used
for further analysis. The samples were incubated with 5mM
tris(2-carboxyethyl)phosphine at 95◦C for 15min followed
by 30min incubation with 10mM iodoacetamide at 25◦C.
For in-solution digestion (ISD), the samples were diluted
to 0.5% detergent using 100mM NH4HCO3. One Micro
gram trypsin (Promega) was used for digestion overnight
at 30◦C. Prior to Liquid Chromatography-Mass Spectrometry
(LC-MS) analysis, samples were acidified and purified using
C18 microspin columns (Harvard Apparatus) according to the
manufacturer’s instructions.

Using the protein digests of the biological triplicate samples,
LC-MS/MS analysis was performed on Q-Exactive Plus mass
spectrometer connected to an electrospray ion source (Thermo
Fisher Scientific). Peptide separation was carried out using
Ultimate 3000 nanoLC-system (Thermo Fisher Scientific),
equipped with packed in-house C18 resin column (Magic C18
AQ 2.4µm, Dr. Maisch). The peptides were first loaded onto
a C18 precolumn (preconcentration set-up) and then eluted in
backflush mode with a gradient from 98 % solvent A (0.15 %
formic acid) and 2 % solvent B (99.85 % acetonitrile, 0.15 %
formic acid) to 25 % solvent B over 105min, continued from
25 to 35 % of solvent B up to 135min. The flow rate was set to
300 nL/ min. The data acquisition mode for the initial label-free
quantification study was set to obtain one high-resolution MS
scan at a resolution of 60,000 (m/z 200) with scanning range from
375 to 1500m/z followed by MS/MS scans of the 10 most intense
ions. To increase the efficiency of MS/MS shots, the charged state
screening modus was adjusted to exclude unassigned and singly
charged ions. The dynamic exclusion duration was set to 30 s. The
ion accumulation time was set to 50ms (both MS and MS/MS).
The automatic gain control (AGC) was set to 3 × 106 for MS
survey scans and 1× 105 for MS/MS scans.

For label-free quantification the MS raw data were analyzed
with Progenesis QI software (Non-linear Dynamics, version
2.0). MS/MS search of aligned LC-MS runs was performed
using MASCOT against a decoy database of the uniprot Vibrio
cholerae protein database (UniProt Consortium, 2018). The
following search parameters were used: full tryptic specificity
required (cleavage after lysine or arginine residues); two missed
cleavages allowed; carbamidomethylation (C) set as a fixed
modification; and oxidation (M) set as a variable modification.
The mass tolerance was set to 10 ppm for precursor ions and
0.02 Da for fragment ions for high energy-collision dissociation
(HCD). Results from the database search were imported back
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to Progenesis, mapping peptide identifications to MS1 features.
The peak heights of all MS1 features annotated with the
same peptide sequence were summed, and protein abundance
was calculated per LC-MS run. Next, the data obtained from
Progenesis were evaluated using SafeQuant R-package version
2.2.2 (Glatter et al., 2012). Hereby, 1% false discovery rates (FDR)
of identification and quantification as well as intensity-based
absolute quantification (iBAQ) values were calculated.

To further gain more information on the detected proteins,
their localization was predicted using PSORTdb (Peabody et al.,
2016) and Fur binding boxes were inferred from Panina et al.
(2001); Mey et al. (2005). Data from a microarray study (Asakura
et al., 2007) and RNA sequencing analysis (Xu et al., 2018)
of V. cholerae VBNC cells are included for comparison (see
Table S3). In addition, the abundance of predicted enzymes of
metabolic pathways were mapped using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (Kanehisa and Goto,
2000; Kanehisa et al., 2017) (see Table S5). Finally, the proteomic
data was further sorted according to their predicted regulons as
inferred from RegPrecise 3.0 (Novichkov et al., 2013).

RESULTS

V. cholerae Enters the VBNC State After
Prolonged Incubation
In order to simulate the aquatic habitats as closely as possible
in our laboratory setting, we used water samples collected from
environmental sources, including fresh water (NFW), brackish
water (NBW) and salt water (NSW). Cells introduced into the
50ml microcosms of NFW, NBW and NSW had all lost their
ability to form colonies on LB plates over the course of 200 days
(Figure 1). At the final time point 69% (NFW), 70% (NBW)
and 65% (NSW) of the cells were viable according to live/ dead
staining with Syto9 and propidium iodide (data not shown).
From the initial ∼2 × 109 cells/ ml the final total cell count
showed a reduction of the cells per ml to 6.3× 106 ± 2.4 × 106

(NFW), 2.8× 107 ± 1.2× 107 (NBW) and 1.3× 107 ± 3.3× 106

(NSW) (Figure 1, dashed lines).

Biochemical Analysis of Osmoregulated
Periplasmic Glucans and Peptidoglycan
The transfer of the LB ON cultures to the respective water
samples causes an osmotic up- or downshift in our cell
cultures. Therefore, we analyzed the presence and quantity of
osmoregulated periplasmic glucans (OPGs), which are a known
response to changes of environmental osmolarity in growing cells
(Bohin, 2000). V. cholerae from LB ON cultures used to inoculate
the natural water microcosms contained 0.37 µg OPGs/ mg cell
weight, while cells grown in LB with no NaCl contained 1.13 µg
OPGs/ mg, and cells from LB +30 g NaCl/ l contained 0.20 µg
OPGs/ mg cells, respectively. The VBNC cells were all within the
range of the value of the inoculum with 0.27 µg OPGs/ mg cells
(NFW), 0.17 µg/ mg cells (NBW) and 0.25 µg/ mg cells (NSW)
indicating either a lack of OPG production or immediate cession
of growth.

The change from “comma”-shaped to small, round cells
suggests that the peptidoglycan (PG) may be remodeled
between these two states. To test this hypothesis, we analyzed
digested murein sacculi by LC-MS (Table S1 and Figure S2). Of
monomeric muropeptides, the amount of tetrapeptides increased
from 70.3% in stationary cells to 79.4% in VBNC cells. Similarly,
the amount of TetraTetra dimers increased from 38.3% in
stationary cells to 62.3% in VBNC cells. The PG of both cell types
contains low amounts of D-methionine (10% in stationary cells
and 6% in VBNC). The amount of muropeptides carrying an
anhydro-group at the N-acetylmuramic acid (MurNAc) moiety
was similar between the two cell types, indicating that the length
of the glycan strands was generally similar. No pentapeptides
were detected in the VBNC cells, which corresponds well to the
observed lack of growth. Furthermore, comparison of the base
peaks of disaccharides vs. bi-disaccharides of both sets, showed
that cells from LB ON cultures cells carried 20%more cross-links
than the VBNC cells.

General Morphological and Physiological
Changes
Electron cryo-tomography of V. cholerae VBNC cells revealed
their characteristic morphology; these small, round cells contain
a cytoplasmic compartment of reduced volume and are devoid of
storage granules, independent of the water used for incubation
(Figure 2A, Figure S1 andMovies S1–S4). Of the observed cells,
14% (NBW), 20% (NSW), and 22% (NFW) had a damaged
cytoplasmic membrane (CM), resulting in loss of cytosolic
content (for examples, see Figure S1). These cells were deemed
“dead” and were excluded from the subsequent analysis.

In 29% of all VBNC cells, we observed up to five convex
patches in the OM, containing two pronounced layers that differ
from the typical OM of V. cholerae (Figures 2A,B). These were
never observed in standard overnight LB (LB ON) lab culture
cells. Using line scans perpendicular to the membranes, the
thickness and spacing between the two layers was determined.
We found that the OM patches closely resemble the appearance
of the flagellar sheath membrane (Figures 2C,D).

A characteristic feature of the CMwas the presence ofmultiple
invaginations into the cytoplasm that were at least partially open
to the periplasm (Figures 2E,F). These invaginations were found
in VBNC cells from NBW and NSW microcosms as well as in
cells raised in overnight LB cultures, but not in cells incubated
in NFW.

Multiple large proteinaceous structures required for
important cellular behaviors such as sensing, motility,
attachment and secretion are embedded in the cellular envelope.
Since an expansion of the periplasmic space is characteristic
for VBNC cells, the functionality or synthesis of these envelope
embedded complexes may be affected in the VBNC cells. Thus,
we next focused on determining if they are still present and also
if they retained their subcellular location (Table 1). ECT analysis
revealed that many VBNC cells were flagellated. In 18% of all
VBNC cells, the flagellar basal body or a pilus is contained in
a small vesicle and, thus, separated from the bulk cytoplasmic
compartment (Figure 2H). The type IV pili (T4P) that we
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FIGURE 1 | Cell number, colony forming units (CFU) and viability during VBNC formation. Left panel shows the CFU/ ml and total cells count of V. cholerae incubated

in natural brackish (NBW), fresh (NFW) or salt water (NSW). Right panel shows examples of the live/ dead staining using propidium iodide and Syto9. Cells marked

with an asterisk were counted as “live” while cells with yellow, orange or red hue (marked with a cross) are deemed “dead”.

observed in VBNC cells all had a diameter of ∼6 nm (Figure 2I)
and are therefore unlikely to be TCP pili, which were previously
determined to be∼8 nm thick (Chang et al., 2017).

Of the three chemotaxis systems present in the V. cholerae
genome (cluster I, II, and III), only cluster II chemosensory
systems were found with similar abundance in cells of all
incubation types. These can be clearly identified by the presence
of periplasmic receptor domains, as well as the characteristic
25 nm spacing between the base plate and the inner membrane
(Briegel et al., 2009). The cytoplasmic cluster I chemosensory
system was only observed in a few cells incubated in NBW and
NFW, while cluster III was not seen in any of the imaged cells.

Finally, we also observed a region characterized by a relatively
homogeneous density and lack of ribosomes, which appears
to be the considerably condensed chromosome (Figure 2G).
Intriguingly, we only observed this in the cells from NSW
and NBW incubations, but did not observe a similar DNA
condensation in the VBNC cells from the NFW sample.

Proteomic Analysis of VBNC Cells
To gain more insights into changes associated with the VBNC
state, the proteomes of VBNC cells and cells of an LB ON lab
culture were compared.

Since many of the structural changes were highly similar
in VBNC cells obtained from all types of water samples,
NBW water cultures were used for proteomic analysis using
mass spectrometry and label-free quantification. The respective
names were inferred from Uniprot, and functional categories
were assigned using KEGG and DAVID (Kanehisa and Goto,
2000; Huang da et al., 2009a,b; UniProt Consortium, 2018). Of
the 2219 quantified proteins, 1349 were significantly over- or
underrepresented (q < 0.01) in VBNC cells as compared to LB

ON cells, demonstrating the extensive impact of the VBNC status
on the cellular content (Tables S2, S3; Figure S3). Proteins that
were detected with n >= 3 peptides were analyzed in more
detail. Components that were more abundant in VBNC cells
fell, among others, into the categories of bacterial chemotaxis,
flagellar assembly, ribosomal proteins, arginine biosynthesis, and
ABC transporters. Less abundant proteins in VBNC cells were
predominantly allocated to metabolic categories such as carbon
metabolism, tricarboxylic acid cycle (TCA) cycle, amino acid,
amino sugar and nucleotide sugar metabolism (Table S4). For
more detailed analysis, the components of individual structures
or pathways were further refined using published data or the
VchoCyc database (Shi et al., 2006).

Large Protein Complexes
In the proteomic analysis, we detected multiple proteins involved
in the formation of T4P, flagellar and chemosensory systems
with significant changes between LB ON cultures and VBNC
cells (Figure 3).

The V. cholerae genome contains three T4P systems: the
mannose-sensitive haemagglutinin (MSHA) pili, the toxin co-
regulated pili (TCP) and the chitin co-regulated pili (ChiRP)
(Taylor et al., 1987; Jonson et al., 1991; Fullner and Mekalanos,
1999; Aagesen and Häse, 2012). The MSHA and ChiRP systems
are both T4a pili, while the TCP are T4b pili (Chang et al., 2017).
The seven detected MSHA pili proteins presented only a slightly
lower or higher abundance in VBNC compared to LB ON cells
or were not significantly different between the cultures. Very few
proteins of the other two pili systems were detected. Of those,
TCP biosynthesis protein TcpF levels in VBNC cells was not
significantly different from LBON cultures, but all other TCP and
ChiRP components were less abundant.
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FIGURE 2 | Structural changes of VBNC cells as observed by ECT. (A) A cell from a NBW microcosm with a convex OM patch (black arrow). (B) Magnified detail of A

exhibiting the pronounced two layers of the OM patch. (C) Flagellar sheath membrane (white arrow) for comparison. (D) Individual (gray) and averaged (blue) line scan

measurements perpendicular to the membrane exhibit similar spacing of the two layers in the outer membrane patch (upper panel) and flagellar sheath membrane

(lower panel). (E) Tomogram of a NBW VBNC cell segmented using Amira. Outer membrane (blue) is clearly separated from the cytoplasmic membrane (yellow).

Multiple invaginations (green) can be found lining the cytoplasmic membrane. (F) Examples of the invaginations found in VBNC cells from NBW (left panel) and NSW

(right panel) microcosms. (G) Tentative outline highlighting the condensed chromosomal DNA. (H) VBNC cells showing flagella (left panel, white arrow) or T4P (right

panel, black arrow) embedded in small vesicles. (I) Details of exemplary T4P. Scale bars represent 200 nm (A,G), 100 nm (H), 50 nm (F) and 10 nm (B,C,I),

respectively. CM, cytoplasmic membrane; PP, periplasm; OM, outer membrane.

V. cholerae moves through the environment using flagellar
rotation guided by chemotaxis. Seven out of 19 detected
flagellar proteins showed a >1.5 - fold abundance, further
10 were represented at similar levels as in LB ON cells and
only the flagellar biosynthesis proteins FlhF and FlhA were
significantly less abundant in VBNC cells. Flagellar motility is
controlled by the chemosensory cluster II. Five of the 40H class

methyl-accepting chemosensory proteins (MCPs) associated with
cluster II were >1.5 – fold more abundant while three were 1.5-
fold reduced. The remaining 22 detected cluster II components,
including the kinase CheA and chemotaxis protein CheW,
showed only minor changes. As observed in the ECT data, a
fraction of the VBNC cells from NBW microcosms contained
cluster I chemosensory arrays which is in line with the increased
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TABLE 1 | Quantification of occurrence of structures in cells from VBNC microcosms and LB ON cultures as observed by ECT.

Sample N Flagella Chemosensory system T4P Detached OM Condensed DNA

I II III

NBW 35 66% 9% 71% - 23% 100% 83%

NFW 18 33% 6% 94% - 72% 100% -

NSW 18 39% - 72% - 22% 100% 83%

LB ON 18 72% - 83% - 33% 17% -

abundance of the cluster I chemosensory array CheA (VC1397),
CheW (VC1402), and the MCP DosM (VC1403) in these cells.

Pathogenicity
The flagellum as well as adhesins such as OmpU (VC0633), GbpA
(VCA0811), FrhA (VC1620) and Mam7 (VC1501) are required
for successful initial attachment to the intestinal epithelium
(Attridge and Rowley, 1983; Sperandio et al., 1995; Kirn et al.,
2005; Syed et al., 2009; Krachler et al., 2011). Only OmpU and
Mam7 were detected in the proteomic analysis, exhibiting a
similar (OmpU) or slightly higher abundance (Mam7) in the
V. cholerae VBNC state than in LB ON cells.

Following the initial colonialization, a plethora of other
virulence factors and regulators are known or likely to be
involved in pathogenicity of V. cholerae. This includes the
TCP pilus, the cholera toxin CtxAB, the type II secretion
system (T2SS) proteins EpsCDEFGHIJKLMN, hemolysin A,
ten further predicted hemolysins or hemolysin secretion
proteins, the accessory colonization factor AcfBC, the MARTX
toxin, Zot and Ace toxins (as reviewed for example in
Childers and Klose, 2007; Almagro-Moreno et al., 2015;
Conner et al., 2015; Silva and Benitez, 2016). Only 15
of these were detected with more than two peptides in
the MS analysis. Of these, only the putative hemolysin
secretion protein VC0199, a putative hemolysin (VC0578), the
hemolysin Hlx VCA0594 and the T2SS proteins EpsCEFGL
were found with a slightly increased abundance in VBNC
cells (Figure 4).

Envelope Maintenance, Cell Shape
and Division
Contrary to the drastic morphological changes of the envelope
of VBNC cells, half of the proteins involved in cell division,
cell shape and the synthesis and maintenance or structure of
the cell envelope were not significantly more or less abundant
(Figure S4). If we observed differences, these changes differed
only slightly between the cultures (up to ±1.5 fold). This
includes the proteins that determine the rod-shape (MreBC) and
curvature of the cell (CvrA). The two enzymes predicted to be
responsible for OPG production,MdoHG (VC1287 and VC1288)
were less abundant than in cells grown in LB ON cultures.

Metabolic Enzymes
VBNC cells have previously been reported to exhibit a
markedly restrained metabolism (Mederma et al., 1992; Rahman
et al., 1994; Oliver et al., 1995; Morishige et al., 2015). To

analyze potential shifts in metabolic pathways, we retrieved
the predicted function of metabolic proteins detected in the
VBNC proteome data, mapped their respective pathways and
expected underlying regulons using KEGG, VchoCyc and
RegPrecise 3.0 (Kanehisa and Goto, 2000; Shi et al., 2006;
Novichkov et al., 2013; Kanehisa et al., 2017) (Tables S5, S6).
Cell envelope proteins involved in electron transport such as
cytochromes (VC1442, VC1441, VC1440, VC1439, & VC1951),
formate dehydrogenases (VC1519, VC1511, & VC1512) and
cytochrome d ubiquinol oxidases (VC1843&VCA0872) were less
abundant in VBNC cells. We observed a significant reduction
of enzymes involved in the central carbohydrate metabolism,
specifically those required for glycolysis, the TCA cycle and
the pentose phosphate pathway. Furthermore, we found a
reduction of proteins predicted to be involved in the biosynthesis
of lipopolysaccharides, isoprenoids, nucleotides and branched-
chain amino acids as well as of co-factors such as riboflavin,
NAD, ubiquinone and glutathione. In contrast, proteins of the
Entner-Doudoroff (ED) pathway, the urea cycle and fatty acid
β-oxidation were more abundant in VBNC cells. In addition,
components of the amino acid metabolism, as well as the
siderophore and iron-sulfur cluster biosynthesis, were increased.
Predicted ABC transporters with at least two components
significantly more abundant, were those involved in up-take
of sulfate, iron (III), arginine/ornithine, L-amino acids and
oligopeptides (Table S7).

Since the components of the mentioned pathways are often
part of the same regulon(s), we next analyzed their abundance in
relation to the regulatory networks. Genes that are upregulated
in V. cholerae O395 by low iron availability and/ or the absence
of master regulator Fur, or contained a predicted Fur binding
box in their upstream region, were used to define the subclass
of iron/Fur regulated proteins (Figure 5) (Panina et al., 2001;
Mey et al., 2005). With the exception of a ferroxidase (VC0365)
and a protein putatively involved in iron uptake (VC1264), all
other proteins whose genes are repressed by Fur are present
in higher concentrations in VBNC. This also includes the gene
for manganese-dependent superoxide dismutase SodA, while the
iron-dependent superoxide dismutase SodB was two-fold less
abundant. Proteins encoded by genes that are either activated
by Fur or not part of its regulon (VCA0678, VCA0679, VC1516,
VCA0784, and VC1216) were found in lower or only slightly
higher abundance in VBNC cells. Proteins encoded by genes
with a predicted upstream Fur binding box in their upstream
region, but without expression data from a Fur mutant, showed a
mixed pattern.
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FIGURE 3 | Relative protein abundances of components of the flagellum, chemotaxis arrays and T4P. The left illustrations depict which components of the respective

structures are more (red) or less (blue) abundant or not significantly different (gray). White symbols represent components that were not found in the MS analysis or

with peptides n < 2. CM, cytoplasmic membrane; OM, outer membrane. Depicted is the log2-ratio of NBW VBNC cells and LB ON cells. Proteins found in

significantly higher abundance in VBNC cells compared to LB ON are indicated by red circles while significantly lower ratios are shown as blue circles. Gray circles

represent components with no significant difference between VBNC and LB ON cells (q < 0.01). Chemotaxis components are grouped by their predicted interaction

with the respective chemosensory cluster.
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FIGURE 4 | Relative protein abundances of proteins associated with pathogenicity. Depicted is the log2-ratio of NBW VBNC cells and LB ON cells. Proteins found in

significantly higher abundance in VBNC cells compared to LB ON are indicated by open white circles while significantly lower ratios are shown as black circles. Protein

abundances that were not significantly different are colored gray (q < 0.01).

Besides the already described Fur regulon, all proteins whose
genes are predicted to be repressed by ArgR, GntR, IscR, and
TyrR, as well as those for the repressors themselves, were more
abundant. Genes that are predicted to be repressed by FruR,
GalR, NanR, PdhR, PrpR, and ScrR showed a decrease in
expression, as based on the proteome data. With the exception of
NanR, all these repressors were also less abundant. The remaining
regulons showed a mixed pattern with varying protein levels of
their regulons.

DISCUSSION

In between seasonal outbreaks of cholera, V. cholerae resides
in environmental water bodies. In environmental samples,
plate counts frequently resulted in lower cell numbers of the
pandemic V. cholerae O1 serotype than direct enumeration
methods. This indicates that at least parts of the V. cholerae
population is in the viable but non-culturable state in the
tested waters (Colwell et al., 1985; Huq et al., 1990; Hasan
et al., 2002). After ingestion of V. cholerae VBNC cultures
by human volunteers, the cells revert to the cultivable and
infectious state, making them a potential threat to the public
health (Colwell et al., 1996). Besides influencing the physiology
and behavior of individual V. cholerae cells, environmental
niches may have been important drivers in the evolution of
the pandemic strains as they allowed recombination events with
other pathogenic or non-pathogenic donors. Detailed studies of
strains of the 7th cholera pandemic, of which the N16961 strain
is a representative, and its pre-pandemic relatives demonstrated
the step-wise acquisition of pathogenic traits through mutations,
phage predation and recombination events during the first half
of the 20th century (Mutreja et al., 2011; Hu et al., 2016). The

notable decrease of recombination events in the 7th pandemic
strains after 1961 could at least partially be attributed to
the inactive VBNC life style of V. cholerae under suboptimal
conditions (Hu et al., 2016). Thus, the VBNC phenotype not
only enables the survival of pandemic strains in the environment
and present a threat to the public health, but may also slow
down its subsequent diversification. Understanding the VBNC
phenotype in V. cholerae is therefore important to understand
seasonal outbreaks as well as the further development of
this species.

In this present study, cells that have reached the VBNC
state have been subject to osmolarity up- or downshifts, low
temperature and starvation for extended periods of time. The
transition from warm LB cultures to natural waters resembles
the osmolarity shifts experienced by V. cholerae when being shed
by a human patient into the environment as the conductivity of
LB broth and rice-stool water is similar (Nelson et al., 2008). As
a result of these cultivation changes, the cells have undergone a
process of drastic physiological and morphological restructuring.

Several features such as the overall loss of the vibrioid shape,
a similarly small cytoplasm that was devoid of storage granules
and the separation of the CM and OM occurred in all three water
types (see Figure S5). The reduced cell size could potentially
be created during cytoplasm shrinkage. Here, the flagellum, pili
and other membrane spanning structures could act as tethers
that anchor the CM to the OM. This, in turn, could lead
to the observed second cytoplasmic compartments of smaller
size. Despite these similar features, the cells incubated in fresh
water showed noticeable differences to the cultures with higher
salt concentrations. For example, V. cholerae in fresh water
microcosms exhibited the lowest number of flagellated cells and
a comparably high percentage of piliated cells, indicating that
the water composition promotes different survival strategies.
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FIGURE 5 | Relative abundances of proteins with predicted Fur binding boxes in their upstream region and/ or shown regulation by iron availability and/ or the master

regulator Fur. Depicted is the log2-ratio of NBW VBNC cells and LB ON cells. Proteins found in significantly higher abundance in VBNC cells compared to LB ON are

indicated by open white circles while significantly lower ratios are shown as black circles. Protein abundances that were not significantly different are colored gray (q <

0.01). (a) Relative expression data was taken from Mey et al. (Mey et al., 2005). The genes of the first five proteins were positively regulated by iron and independently

of Fur while the following 24 components were negatively regulated by Fur and iron. ND, not defined.

V. cholerae is frequently isolated from estuarine and salt water
environments, but can also grow in fresh water if it contains
sufficient assimilable organic carbon (Miller et al., 1982; Singleton
et al., 1982a,b; Vital et al., 2007). Incubated in nutrient-poor

lake water at room temperature for extended periods of time
promotes the switch to a “persister” phenotype and biofilm
formation (Jubair et al., 2012, 2014). Although the flagellum,
the MSHA pilus and adhesins synergistically promote initial
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surface attachment, the general switch from a flagella-driven,
motile life style to a sessile, biofilm-forming one is inversely
regulated through the messenger molecule cyclic diguanylate
(Jenal and Malone, 2006; Liu et al., 2010; Utada et al., 2014).
Thus, a decrease of flagella and increase of T4P could indicate
that the cells incubated in NFW attempted to switch from the
planktonic to a biofilm lifestyle during the transition to the
VBNC state.

In general, the abnormal distance between CM and OM may
disrupt a variety of processes such as envelope maintenance,
sensing and motility as previously shown for E. coli (Asmar
et al., 2017). The lack of structural conservation of the OM,
CM and PG is likely due to the increased gap of the periplasm,
rather than the absence of the maintenance machinery, as the
detected proteins required for envelope maintenance and shape
exhibited either unchanged or only minor differences in VBNC
cells. One possible result could be the thick, convex patches of
the OM that are reminiscent of the flagellar sheath. In Gram-
negative bacteria, the asymmetric composition of the OM is
tightly regulated to maintain its barrier function (see review by
May and Silhavy, 2017). Aberrations, such as the convex OM
patches, might be symptomatic of a perturbed OM maintenance
in the VBNC state. Contrary to the radical change of the general
morphology of V. cholerae VBNC, the PG alterations are rather
subtle. No pentapeptides, indicative of lack of cell wall synthesis,
were detected. The PG appeared less cross-linked in VBNC cells,
while the glycan strands had a similar length as in PG obtained
from LB ON cells. This is in contrast to the substantially higher
rate of cross-linking, as well as shorter glycan strands, that were
reported for E. coli VBNC cells (Signoretto et al., 2002). The
authors speculated that especially the shorter glycan strands
contribute to the formation of coccoid cells. InV. choleraeVBNC
cells, the rounded cell shape may arise due to the lower degree of
cross-linking of the PG which reduces cell wall stiffness (Huang
et al., 2008; Furchtgott et al., 2011).

The invaginations of the CM found in cells incubated in
NBW, NSW and LB ON incubations may be the result of an
increase in protein content relative to the lipid membrane. A
similar mechanism has previously been reported in cells that
overproduce membrane proteins (Lefman et al., 2004; Zhang
et al., 2007; Arechaga, 2013). The low level of OPGs in the
periplasm of NFWVBNC cells may weaken their osmoprotection
and prevent the formation of invaginations as the CM might be
more strained through increased turgor pressure. The described
cell envelope anomalies may affect the synthesis and function of
the envelope-spanning structures such as pili and the flagellum.
Certain integral structures, such as the alignment subcomplex
of T4P and the stators of the flagellum, span the distance from
the CM to the PG and their proper placement is essential to
the respective functions (Chun and Parkinson, 1988; De Mot
and Vanderleyden, 1994; Ayers et al., 2009; Tammam et al.,
2013; Leighton et al., 2015). Thus, the pili and flagella that
reside either in the small cytoplasmic vesicles or at sites of an
enlarged periplasmic gap are likely not functional because of the
increased distance between the envelope layers. The pili found in
the VBNC cells are likely MSHA pili. We base this conclusion
on their measured width of about 6 nm which matches the

previously reported diameter of T4a pili (Chang et al., 2017), as
well as the stable presence of several MSHA pili components and
decreased abundance of ChiRP and TCP system components in
the proteomics analysis. A previous study showed thatV. cholerae
VBNC cells cultivated in artificial sea water at 5◦C can attach to
chitin particles and intestinal epithelial cells (Pruzzo et al., 2003).
The observed presence of the flagellum, T4P and at least two
adhesins may be sufficient to mediate such initial attachment.

In addition to the changes in the V. cholerae VBNC cell
envelope, we found several changes in the protein content of
the cytoplasm. V. cholerae encodes three distinct chemotaxis
systems (cluster I, II, III) and 44–45 different MCPs (Briegel
et al., 2014). The MCPs that are known to interact with cluster
II all belong to the 40H class (Briegel et al., 2009, 2016). Cluster
II arrays sense a plethora of cues and are so far the only
chemosensory system that control the chemotactic swimming
behavior of V. cholerae (Gosink et al., 2002). This array is present
in both VBNC and LB ON cells at similar frequency and with
comparable CheA levels, but it seems to undergo restructuring
based on the differences of the 40H MCP abundance. A recent
study of V. cholerae cluster II revealed that this array is not
ultrastable like in the case of E. coli chemotaxis arrays (Yang et al.,
2018). This may facilitate MCP turn over and allow this species to
quickly remodel this system to tune their chemotactic response.
As the molecules sensed by individual MCPs are still unknown
for most MCPs, the cues that these restructured cluster II arrays
can sense remain to be uncovered. Cluster I chemosensory
arrays were only observed in VBNC cells where the respective
proteins were also 2.4–2.8 times more abundant. These arrays
have been reported to be formed under low-oxygen conditions
(Hiremath et al., 2015). As our cells were incubated in closed
microcosms, they likely experienced oxygen depletion, which
we assume induced the cluster I formation. Furthermore, we
also observed a homogenous region in the cytoplasm that is
reminiscent of the compact nucleoid of other bacteria (Pilhofer
et al., 2010; Butan et al., 2011). Thus, we believe this region to be
the condensed chromosomal DNA. Multiple proteins are capable
of structuring and condensing DNA. Out of these, the IHF
subunits and DPS were significantly more abundant in VBNC
cells. Together, these proteins could be responsible for observed
compacting the chromosome. However, DNA condensation is
thought to be an interplay betweenmolecular crowding andDNA
structuring proteins (de Vries, 2010). This might explain why the
compacted DNA was not observed in fresh water treated cells.

Similar to the absence of TCP pili, most other known
pathogenicity factors were either not detected or showed similar
or lower abundance in the proteomic analysis of VBNC cells. This
included adhesins for initial attachment as well as the cholerae
toxin and hemolysin A. Previous studies with V. cholerae strains
concluded that VBNC cells retain their pathogenic potential
based on the up-regulation of pathogenicity factor transcripts
(Vora et al., 2005; Asakura et al., 2007; Mishra et al., 2012; Xu
et al., 2018) or the presence of TCP pili (Krebs and Taylor,
2011). However, these studies are difficult to compare as each
used different combination of strains (V. cholerae O395 or
V. cholerae O1 strains N16961, El2382 or P6973), pre-cultures
were either stationary or exponentially growing cultures from
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different media (LB, TSB, or peptone water), VBNC inducing
conditions (spent media at 30◦C, lake water at 4◦C, aerated or
standing artificial sea water with 1%. 2.5 or 4% salt concentration
at 4◦C), incubation times (9–157 days) and starting CFUs (106/
ml−109/ ml). All of these factors may influence the expression
pattern and pathogenic potential of the VBNC cultures. In
addition, the observed increased transcripts may not result in
elevated levels of the respective proteins due to inhibition of
translation by ribosomal binding factors such as Vrp or HPF
(Wada et al., 2006; De Bari and Berry, 2013; Sabharwal et al.,
2015). To date, a single trial with nine participants determining
the infectivity ofV. choleraeVBNC cells has been published. Only
one of the volunteers developed cholera symptoms. However, the
authors noted that the loss of pathogenicity may be dependent on
how long the cells are already in the VBNC state (Colwell et al.,
1996). A time course dependent determination of the presence of
pathogenicity factors is, to date, still lacking.

V. cholerae VBNC cells not only restructure their morphology
but also their metabolism. Our proteomic data shows that
proteins of several entire predicted regulons or pathways
exhibit abundance shifts. This indicates the restructuring of the
metabolism caused by loss of repression of several regulons. This
includes most elevated gene products predicted or shown to be
repressed by Fur, ArgR, GntR, IscR, and TyrR (Panina et al., 2001;
Mey et al., 2005; Novichkov et al., 2013). The carbon metabolism
also seemed to undergo a broad shift as proteins involved
in glucose utilization (PtsGHI) and the Embden–Meyerhof–
Parnas-pathway (Pgi, TipA, GapA) were all less abundant, while
the glyoxylate shunt components showed stable (AceA) or
slightly higher levels (AceB). In addition, VC0285, a predicted
key protein of the ED pathway, and several enzymes of FA
degradation were detected with increased levels. Furthermore,
several ABC transport systems implicated to take up amino
acids or peptides were found at higher levels. This indicates
a vast metabolic shift toward alternative energy sources. This
seems logical as V. cholerae was shown to lose 88.7% of their
carbohydrates within a few days of starvation (Baker et al., 1983).

A general question regarding VBNC formation is whether
the observed changes are due to active regulation or passive
mechanisms such as stalled synthesis or maintenance and
stochastic decay. Our data suggests that many of the alterations
observed in the V. cholerae VBNC cell envelope are not due
to active restructuring, but rather to passive changes that may
be due to the dehiscence of the two membranes caused by a
shrinking cytoplasm. The metabolic changes, induction of the
cluster I chemosensory system and restructuring of the cluster
II array appear actively regulated and in dependence to effector
and oxygen availability. Whether the lower abundance of toxins
and the absence of the TCP pilus is an active downregulation
cannot be assessed, but indicates that the infectious potential of
V. cholerae VBNC cells is likely diminished.

A previous report by Kim et al. on E. coli VBNC populations
concluded that VBNC cultures are mainly composed of dead
cells, as the majority of cells appeared to have an empty cytosol

(Kim et al., 2018). This observation solely relied on the analysis
of chemically fixed, dehydrated, heavy metal stained, resin-
embedded and thin sectioned cell material without the three
dimensional context of the whole cells. Each of these sample
preparation steps can introduce artifacts and destroy the delicate
ultrastructure of bacteria (Diaz-Visurraga et al., 2010; Pilhofer
et al., 2010). Our analysis of 3D tomograms of flash-frozen
VBNC cells cannot confirm the statement by Kim et al. for
V. cholerae VBNC cells, since we only observed cells with a
damaged CM and cytosol leakage in 14–22% of the cases. This
number resembles the dead fraction determined by the live/dead
staining experiment.

Most previous work consists of individual aspects of
VBNC formation and decoupled structural and proteomic or
transcriptomic studies. Here, we have coupled the proteomic
and structural analysis to give important new insights into
the extensive changes this pathogen undergoes upon VBNC-
inducing conditions. To further study the temporal progress of
VBNC development, future studies should include the proteomic
analysis along the entire time course of their formation.
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