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Diversity analyses of the eukaryotic microorganisms in the gut of marine animals is
hampered by the presence of host DNA in the samples. PCR ampilification of rRNA
genes of eukaryotic microorganisms is inefficient with universal primers targeting 18S
rRNA gene when the host DNA is dominant. In this study, we designed several
blocking primers to inhibit PCR amplification of rRNA genes of the shrimp Litopenaeus
vannamei, and tested their efficacy on the oyster Crassostrea hongkongensis. We first
compared the intensity of PCR product bands obtained with and without the
blocking primers. Then, one primer was selected for further verification using high-
throughput sequencing. Our results showed that X-BP2-DPO was the most effective
blocking primer in suppressing the host 18S amplification compared to nine other
candidates. The inhibition rate was 99% for the amplification of shrimp rDNA, and
17% for the amplification of oyster rDNA. The concentration of the blocking primer
in the PCR mixture was an important factor to be considered in the experimental
design. The development of blocking primers provided a valid method to study the
composition and characteristics of eukaryotic microorganisms in shrimp gut for a better
understanding of its diets.

Keywords: blocking primer, PCR, eukaryotic microorganisms diversity, high-throughput sequencing,
shrimp, oyster

HIGHLIGHTS

- This is the first study of eukaryotic microbiota of shrimp and oyster.

An effective and specific blocking primer was developed to block the 18S amplification of the host
DNA in shrimp (L. vannamei).

The inhibition rate of X-BP2-DPO for the amplification of shrimp rDNA was as high as 99%.
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INTRODUCTION

A major focus of ecology is understanding trophic relationships
and energy flows in natural environments, associated food
web dynamics and changes in food webs due to disturbance,
environmental change, invasions and extinctions. Predator-
prey interactions are often assessed by examining eukaryotic
microbes in gut contents (Aguilar et al., 2017). Traditionally,
the identification of gut content species has been conducted
using morphological methods (Paquin et al., 2014; Harms-Tuohy
et al., 2016; Aguilar et al., 2017). However, characterizing the
interaction between the host and the non-host via such methods
may introduce a number of uncertainties that increase the
difficulty of determining the complex diversity or heterogeneity
of eukaryotes in animals (Bailey et al., 2010).

As a result, several methods for analyzing the diversity of
eukaryotic microorganisms in the gut of marine animals have
been tested. Of them, DNA-based methods are perhaps the
most promising ones, and are now established as powerful
tools for studying the diversity of eukaryotes (Symondson,
2002; King et al, 2008; Harms-Tuohy et al, 2016). The
amplification of the 18S rRNA genes (rDNA) of eukaryotes
by the polymerase chain reaction (PCR) makes it easier
to understand the species composition of samples (Maslov
et al, 2013). However, PCR-based studies typically employ
several cycles and target short amplicon sizes, thereby allowing
co-amplification of certain quantities of the host DNA in
the samples (Martin and Rygiewicz, 2005; Vestheim et al.,
2005). Mostly, the species diversity that could be detected
by universal primers in samples is often compromised by
high concentrations of the host DNA templates (Vestheim
and Jarman, 2008). If the sample contains the host sequences
at relatively high concentrations, then the less concentrated
sequences of other eukaryotes are often not amplified as PCR
favors the dominant DNA types (Jarman et al., 2004; Deagle et al.,
2005; Belda et al., 2017).

A common method to circumvent this problem is to
design species-specific primers for detecting the species of
interest in the gut of animals (Agusti et al.,, 2003; Nejstgaard
et al,, 2003; Vestheim et al., 2005). This is, however, not
suitable if the potential range of the target species is large or
unknown, as it is impossible to design hundreds of species-
specific primers in advance. Restriction enzymes have been
applied in PCR amplification to remove host DNA (Blankenship
and Yayanos, 2005; Blankenship and Levin, 2007; Flaherty
et al., 2018). It requires a unique cutting site in the host
sequence which is often difficult to find. Furthermore, it
will not work if the PCR has failed to amplify any non-
host DNA when the host DNA has dominated the PCR
completely. Green and Minz (2005) applied a method, “Suicide
Polymerase Endonuclease Restriction,” to cut only the target
DNA in the mix prior to the investigation for microbial
diversity using PCR. However, this method still requires several
additional handling steps and has apparently not achieved
wide acceptance.

A new method is to design a blocking primer which can
block the amplification of host DNA in a complex sample

for the detection of eukaryotic species of interest (Seyama
et al., 1992; Vestheim and Jarman, 2008; Craig et al., 2014).
Blocking primers preferentially bind to the DNA of which
amplification is to be avoided, ie., the host DNA. They
are synthesized like conventional amplification primers, but
modified with the addition of a C3 spacer at the 3’ end,
resulting in complete inhibition of the enzymatic elongation
of the primer. In PCR, blocking primers can either compete
directly with the amplification primers (annealing-inhibiting
blocking primers) or prevent elongation by binding onto the
fragment in between the two amplification primers (elongation
arrest blocking primers) (Boessenkool et al., 2012). Su et al.
(2017) enhanced the detection of prey-specific DNA sequences
via high-throughput sequencing using blocking primers, which
has shown that different kinds of fish consumed a wide variety
of prey. Boessenkool et al. (2012) applied a human-specific
blocking primer to study the diversity of endogenous DNA
sequences. Powell et al. (2012) has reported the development
of a new blocking primer that allows PCR amplification of
bacterial DNA in the presence of algal chloroplast DNA. Anneal-
inhibiting blocking primers and peptide-nucleic acid (PNA)
oligonucleotide blockers have been developed to reduce the
amplification of mosquito 185 rRNA gene sequences (Belda
et al, 2017). Nevertheless, there are few studies on host
inhibition primers in marine animals, especially in invertebrates,
which could help understand their eukaryotic microbiota
(Clerissi et al., 2018).

Considering that shrimps and oysters are among the most
important and popular aquaculture species in the world, the
development of primers blocking their rRNA genes will aid
to a better understanding of their diets and even allow the
detection of parasites and pathogens in these animals. In this
study, we designed a blocking primer capable of inhibiting
the amplification of shrimp host DNA, tested its optimal
concentration for the suppression of 18S rDNA amplification,
and also validated its effectiveness in oysters.

MATERIALS AND METHODS

Design of Blocking Primer

From the NCBI web site', we retrieved 18S rDNA sequences
from shrimp, oyster, and protist which are considered to
be common and representative species in aquaculture ponds
(Ucko et al., 1989; Shekhar, 1997; Purivirojkul and Khidprasert,
2009; Hamoutene et al., 2015). We performed multi-sequence
alignments of the 18S rDNA sequences (Supplementary
Figure S1), and defined conserved regions as targets to
our blocking primers. These regions correspond to priming
regions targeting the V9 of 18S rRNA genes, referred to
the Earth Microbiome Project’ (Amaral-Zettler et al., 2009;
Albaina et al, 2016). The universal primers are as follows:
1391f (forward): 5-GTACACACCGCCCGTC-3'; and EukBr

Uhttps://www.ncbi.nlm.nih.gov
Zhttp://www.earthmicrobiome.org/protocols-and-standards/18S/
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(reverse): 5-TGATCCTTCTGCAGGTTCACCTAC-3'. We foll-
owed two strategies aiming to block the host sequence:

(a) The blocking primer was modified with a C3 spacer at
the 3’-end.

(b) The blocking primer had an internal modification of
five deoxyinosine molecules (44444), in addition to a C3
spacer added at the 3’-end.

The C3 spacer (3 hydrocarbons, 1-dimethoxytrityloxy-
propanediol-3-succinoyl-long chain alkylamino) is a standard
primer modification available from most suppliers of custom
oligonucleotides (Tan and Liu, 2018). Adding this modification
to the 3’-end of an oligonucleotide prevents elongation during
PCR, without noticeably influencing its annealing properties
(Chun et al., 2007; Vestheim and Jarman, 2008). Dual priming
oligonucleotide (DPO) contains two separate priming regions
joined by a polydeoxyinosine linker, which is used to decrease the
melting temperature of long primers and avoiding mispriming
and primer-dimer and hairpin formation (Wu et al, 1991;
Vestheim and Jarman, 2008).

The blocking primer intended to inhibit amplification of
shrimp DNA was mainly designed based on the differences
among the 18S rDNA sequences of protists, and those of shrimp.
We selected the blocking sites which are unique in shrimp
sequences, based on the alignments of the 18S rDNA sequences of
the various species of eukaryotes, including shrimp, oyster, algae
(Rhodophyta, Chlorophyta), and protozoan (Platyhelminthes,
Endomyxa, Arthropoda) in Supplementary Figure S1. The
details of the accession numbers of the 18S rDNA sequences of
different eukaryotic species (with annotation at Phylum level) are
shown in Supplementary Table S1. The 5’ end of the blocking
primer starts with the common section, which is consistent with
the forward universal primer either partially or completely, and
extends to a position where there is a clear difference between
the 18S rDNA sequences of shrimp and other eukaryotes. We
found the sequence of algae is quite different from that of
shrimp and protist after comparing their 18S rDNA sequences
(Supplementary Figure S1A).

In this study, 10 blocking primers were designed according
to alignments of the 18S rDNA sequences of several eukaryotes
such as shrimp, oyster, eukaryotic algae, and protist. The first six
primers were designed against the shrimp host and the other four
were designed against the oyster host (Supplementary Table S2).

Sample Collection and DNA Extraction
Samples of Litopenaeus vannamei and Crassostrea hongkongensis
were caught in October, 2017 from a pond at Fenzhou Village,
Doumen District, Zhuhai City, Guangdong Province where
shrimp and shellfish polyculture farming is carried out. The
gut of L. vannamei and C. hongkongensis were immediately
collected under aseptic conditions and preserved in a DNA
storing reagent (GT21234, Huayueyang, Beijing). Three groups
of shrimp and oyster samples were taken, respectively, and each
group contained 3-5 individuals, which were used for testing
of blocking efficacy. Six additional groups of shrimp and oyster
samples were used for further method validation. All samples
were obtained during the same period from the same pond.

Total DNA was extracted from the gut contents of the shrimp
and oyster samples using the Hipure Mollusc DNA Kit (D3128-
03, Magen, China). The Hipure Water DNA Kit (D3145-02,
Magen, China) was used to extract DNA of the organisms
(eukaryotic microorganisms and zooplankton). The 500 ml water
sample collected from the pond was initially filtered through a
filter screen (75 pm) (1werw45, Tengshuoge, China), and then
filtered through filter membranes (0.22 pm) (C180096, PALL,
United States) to obtain eukaryotic microorganisms in the water;
Zooplankton was collected from around 15 L pond water using
a plankton collector (Purity, China) (the mesh size of 0.16 mm).
And then the condensed 100 mL collections were filtered onto
the filter membranes (0.22 pwm) to fix and preserve zooplankton.
The DNA integrity was checked on a 1.5% agarose gel, and
the DNA concentration was measured using a NanoDrop2000
spectrophotometer (Thermo Fisher Scientific, United States).
Finally, the extracted DNA was stored at —20°C.

Amplification With Blocking Primers

All the sample DNAs from the L. vannamei, C. hongkongensis,
organisms in pond water were amplified in duplicate PCRs at
a 25 pL reaction volume, containing 10 pL Platinum™ Hot
Start PCR Master Mix (2X) (13000014, Thermo Fisher Scientific,
Lithuania), 1 pL (each) primer 1391f and primer EukBr (10 M),
1 pL template DNA, 8-12 pL nuclease-free water, and 0-4 uL
blocking primer (10 uM). The PCR thermal cycling conditions
were as follows: 3 min at 94°C; 35 cycles of 30 s at 94°C, 30 s
at 55°C, 1 min at 72°C; and finally 10 min at 72°C. The PCR
products were checked by electrophoresis on a 1.5% agarose gel
stained with DNAGRrgen (UV) (TTANDZ). In the electrophoresis
results, the decrease in intensity of the band compares to the
no-blocking, reflects the inhibitory effect of the blocking primer
on the host DNA. The less intense the band, the better the
blocking effect.

Library Construction and Sequencing
Library Construction From PCR-Amplified Products
Following the results of the previous experiment, we could
evaluate the inhibitory effects of the 10 blocking primers on the
host sequences. 6 samples of L. vannamei and C. hongkongensis
were amplified without and with the blocking primer, X-BP2-
DPO at the concentrations of 0.4 and 0.6 WM in PCRs. The
amplification of each sample was repeated thrice using PCR.
Indexing PCRs were done using the following recipe: 1 pL
template DNA, 1 L forward primer with barcode (10 uM), 1 L
reverse primer with barcode (10 M), 10 pL PCR master mix
(2X), a range of volumes of the blocking primer X-BP2-DPO (0,
1, and 1.5 L, the concentrations of 0, 0.4, and 0.6 .M in the PCR
mixture), nuclease-free water up to 25 pL. Indexing PCRs were
carried out on a TaKaRa PCR Thermal Cycler Dice (TP600) using
the following cycling conditions: 94°C for 3 min and 35 cycles of:
94°C for 30 s, 55°C for 30 s, 72°C for 1 min, and 72°C for 10 min.

Library Normalization, Pooling, Quantification,

and Sequencing

For the construction of the library, we normalized the samples
by quantifying the indexing PCR products (three replicates from
each sample were pooled) using a Qubit” 3.0 Fluorometer
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(Invitrogen, Malaysia). We then normalized them to an equal
concentration, pooled each normalized sample, purified and
concentrated them with a 1X AMPure XP (Beckman Coulter)
clean up kit, and finally eluted them in 50 pL Qiagen buffer (TE)
for alibrary. The libraries were generated using PCR with Illunina
adapters connected (NEB, United States), then were sequenced
using an Illumina Hiseq 2500 System by Novogene company
(Beijing, China). High-throughput sequence data are in NCBI’s
Sequence Read Archive under SRA accession: SRP151638°.

Sequence Analysis

Sequencing data of the library were primarily analyzed using
QIIME2*. The library containing sequences of several samples
was demultiplexed based on the sequencing barcodes. We
performed filtration and quality control of the sequences
by applying the “DADA2” method (Callahan et al., 2016),
which is used to infer sample sequences exactly and resolve
differences of as little as 1 nucleotide®. The “DADA2” quality
control process additionally filtered the phix reads and chimeric
sequences, if any. The changes in the number of reads after
filtration and quality control (Supplementary Table S3), and
the quality of the library sequences (Supplementary Figure S2)
are shown in Supporting Information. The feature table (i.e.,
abundance table of sequence variants per sample) (Bokulich
et al,, 2018) and representative sequence were generated by
QIIME2 (data sheet.zip in Supporting Information), and the
reads were identified using the giime2 feature-classifier method
using the SSU rRNA gene SILVA128 database® (Quast et al.,
2013) as reference.

Potential Inhibition Efficacy of

X-BP2-DPO to Other Taxa

In order to estimate the potential inhibition efficacy of X-BP2-
DPO to other taxa beyond this study, the primer sequence was
further tested against the SILVA database (Release 132), using
Diamond (version 0.9) (Buchfink et al., 2015), with the e-value
set at le-5 for the alignment. All hits with alignments were
ranked by their hit score and grouped based on their taxonomy
origin (Figure 8).

RESULTS

Selection of Blocking Primer

According to the brightness of the target bands in the
electrophoresis, we could recognize the appearance of
the inhibitory effects on host sequences (Figure 1A and
Supplementary Figure S4). The fragment >100 is the target
fragment (18S V9), and <100 are primer dimers. Quantification
of the PCR bands by Quantity One (Version 4.6.6) allowed
an easy detection of the inhibition. Primer, X-BP1-DPO,
X-BP2-DPO, and X-BP5-C3 exhibited relatively good inhibitory

*https://www.ncbi.nlm.nih.gov/sra/SRP151638

“https://qiime2.org/

Shttps://github.com/benjjneb/dada2/
Chttps://www.arb-silva.de/download/archive/qiime/Silva_128_release.tgz

effects on the amplification of both shrimp (Supplementary
Figure S3A) and oyster (Supplementary Figure S3D) templates.
The inhibitory effect on the host DNA with the blocking primers
at the concentration of 0.8 or 1.6 LM is generally better than that
at the concentration of 0.4 WM.

It was reported that species-specific blocking primers may
block other non-host sequences as well (Boessenkool et al.,
2012; Shehzad et al, 2012). Considering the fact that the
blocking primers have a strong inhibitory effect on shrimps
(Figure 1A and Supplementary Figure S3A) and a relatively
good inhibition on oysters (Supplementary Figures S3D, $4), we
were concerned about the inhibition of the primers at different
concentrations on the non-host taxa. As shown in Figures 1B,C
and Supplementary Figures S3B,C, we found the six primers
against shrimp could hardly inhibit the amplification of the
organisms at low concentrations (0.4 and 0.8 wM).

The inhibitory effects of the four blocking primers against
oyster, L-BP1-C3, L-BP2-C3, L-BP3-C3, and L-BP4-C3
(Supplementary Table S2) were also evaluated. However,
we did not find pronounced inhibitory effects of the primers
on oyster DNA (Supplementary Figures S3E, S5). It was
clear that the blocking primers against shrimp had better
inhibition of oyster DNA than the blocking primers against
oyster (Supplementary Figures S3D, S§4). So, we continued to
study the eukaryotic microbes in shrimps and oysters with the
blocking primers against shrimp.

The performance of the blocking primer with non-host DNA
was sensitive to its concentration in the PCR mixture; hence,
keeping the blocking primer concentration at the minimum
required amount is a good approach (Vestheim and Jarman,
2008). We then carried out an in-depth data analysis by
high-throughput sequencing of the shrimp and oyster samples
amplified with the blocking primer, X-BP2-DPO, which was
chosen as the most effective primer based on its inhibition at the
concentrations of 0, 0.4, and 0.6 wM in barcode PCRs followed
by Illumina sequencing.

In-Depth Data Analysis

Composition of Identifiable Taxa

Up to 4,035,147 reads for the library containing 18 samples were
generated for 18S rDNA V9 amplicons from Hiseq2500, with an
average of 144,723 reads per sample after quality filtering. As the
readable length of Hiseq2500 was adequately long for the 185 V9
amplicon, we did not merge paired-end reads, we simply used
readl for subsequent analysis.

Supplementary Figure S6 shows the observed feature (ASV,
amplicon sequence variants) numbers of the different samples
at increasing sequencing depths. A sequencing depth of 20000
seemed to be largely sufficient despite the treatment and
12000-20000 appears to be an appropriate depth range when
performing high-throughput sequencing of the 18S rRNA genes
in shrimp and osyster gut. The gut contents of marine animals
always include a large diversity of marine organisms, especially
low-abundant taxa (Osei-Poku et al,, 2012; Su et al., 2017).
The use of blocking primers seemed to increase the overall
numbers of ASVs per sample. All reads from all samples
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X-BP2-DPO| X-BP3-DPO X-BP4-DPO |X-BP5-C3 | X-BP6-C3

B
X-BP1-DPO X-BP2-DPO X-BP3-DPO X-BP4-DPO X-BP5-C3 X-BP6-C3
0.4 0.8 1.6
250 bp ==
100 bp ==
250 bp =
100 bp =
250 bp =
100 bp ==
c
X-BP1-DPO X-BP2-DPO X-BP3-DPO X-BP4-DPO X-BP5-C3 X-BP6-C3
0.4 0.8 1.6
250 bp =—
100 bp =

FIGURE 1 | Inhibitory effects of blocking primers at varying concentrations against shrimp sequence amplification (A), eukaryotic microorganisms (B), zooplankton
(C) templates. Samples were amplified with six different blocking primers against three shrimps at concentrations of 0.4, 0.8, and 1.6 wM. Experiments were
repeated thrice. Primers (lanes) with preferred inhibition efficacy are marked with red rectangles. Please find the detailed methods of sample collection and PCR
protocol from Sections “Sample Collection and DNA Extraction” and “Amplification With Blocking Primers” in the main text.
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FIGURE 2 | The taxonomic composition of eukaryotic microorganisms in shrimp (A,C) and oyster (B,D) amplified with the blocking primer at various concentrations.
C and D, details of class composition of “non-host” in shrimp and oyster samples (the relative abundance of ASVs >0.01%) when the primer concentration is
0.6 pM. Numbers above each bar chart are reads counts, and were all grouped in class level. “4+0,” “+0.4,” and “40.6 wM” implying that the samples were
amplified with the blocking primer, X-BP2-DPO, at different concentrations. “X1-3” and “L1-3” are six different shrimp and oyster samples, respectively.

were clustered into 1,255 ASVs after sequencing and analyzing.
The taxonomy distribution of the representative sequences
determined by sequence similarity against the Silva database
version 128 allowed the identification of 105 distinct taxa.
Taxonomic composition and ASV table of all the samples is
shown in Supplementary Tables S$4, S5.

In Figure 2A, it is obvious that the dominant host DNA
(about 93%) and very few eukaryotic microorganisms are present
in the shrimp samples amplified without any blocking primes;
the host DNA content decreased markedly with the addition of
the blocking primer, X-BP2-DPO, at a concentration of 0.4 uM
during PCR; and then, the host DNA content became minor
with a large diversity of eukaryotic microorganisms in shrimp
samples upon the addition of a blocking primer at 0.6 M
(Figure 2C). Sequencing results demonstrated the primer’s ability
to amplify diverse eukaryotic microorganisms while the host
DNA amplification was inhibited to represent a total 0.01%
of the total reads when using the blocking primer at 0.6 uM
in shrimp samples.

Figure 2D also shows a relatively rich microbial diversity in
oyster samples with the primer concentration at 0.6 M, but the
primer’s inhibitory effects were not as effective on oyster DNA as
was for shrimp (Figure 2B, Supplementary Figure S7).

Proportion of Taxa
Among the 105 annotated taxa in the shrimp and oyster
samples, the dominant identifiable taxa include hosts, Cyclotella,
Cryptomonadales, uncultured Halteria, and Oligotrichia.

For shrimp samples, there is a significant difference between
the proportions of shrimp host when the primer concentration
is 0 and 0.6 uM (Figure 3A). The proportions of the

four dominant eukaryotes increased clearly, while the host
reads were almost completely suppressed with an addition of
the primer at 0.6 wM (Figure 3). A quite rich eukaryotic
microflora was detected by the 18S universal primers with the
addition of the blocking primer at 0.6 pM simultaneously,
which explains the effectiveness of the blocking primer for
the shrimp samples.

Venn diagrams show the diversity of taxa present in
shrimp and oyster hosts amplified with the blocking primer
at different concentrations. The number of common
taxa present in the two kinds of samples increased
significantly with the addition of the blocking primer in
PCRs (Figures 4A,C). The addition of primers increases
the proportion of eukaryotic microorganisms, which is
likely to be related to the diet of shrimps and oysters. In
Figure 4D shows 54 common eukaryotic microorganisms
detected both in shrimp and oyster guts, including a large
variety of algae, protists, eumycetes. The percentage of most
eukaryotic microorganisms (algae, protists) is less than 1%
of total taxa population. The top few taxa that are well-
annotated include Cyclotella, Cryptomonadales, Ochrophyta,
Bacillariophyceae, Trebouxiophyceae, uncultured Halteria,
Oligotrichia, Stramenopiles, Alveolata, and Nucletmycea.

Diversity Index Analysis

As expected and shown in Tables 1, 2, the changes in these
indices (“observed_otus,” “ace,” “Chaol,” “shannon,” “faith_pd,’
“pielou_e”) are almost positively related to the richness of
identifiable taxa in shrimp and oyster samples. The richness
and evenness of shrimp and oyster samples amplified with the
blocking primer were higher than those amplified without the
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FIGURE 3 | Changes in the percentage of taxa in shrimp samples. (A) Changes in the percentage of host reads in shrimp samples amplified with the blocking
primer, X-BP2-DPO at various concentrations. (B-E) Changes in percentage of the four dominant eukaryotes reads [Cyclotella (B), Cryptomonadales (C), uncultured
Halteria (D), and Oligotrichia (E)] in shrimp samples amplified with the blocking primer, X-BP2-DPO at various concentrations. “+0,” “4+0.4,” and “+0.6 pM” imply
that the samples were amplified with the blocking primer, X-BP2-DPO at the concentrations of 0, 0.4, and 0.6 pM in the PCRs. The data was analyzed by applying
Tukey’s test and Levene’s test (o = 0.013).
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FIGURE 4 | Detected genus of eukaryotic microorganisms shared between shrimp and oyster samples. “X” and “L” represent shrimp and oyster samples,
respectively. They were amplified with X-BP2-DPO at different concentrations (0, 0.4, and 0.6 uM). A-C are Venn diagrams; the number in the circle represents the
number of genera detected in shrimp and/or oyster samples. D is a heatmap of the overall composition of the eukaryotic microorganisms amplified with X-BP2-DPO
at 0.6 pM [select log2(X + 1) for data visualization, from blue to red, the number is gradually increasing.].

primer. In general, the optimal (maximum) value of each index
results while the primer concentration used is 0.6 |LM.

samples (R), reflecting the nonlinear structure of the sequence
data (Kenkel and Orldci, 1986; Thibodeau et al., 2015). From
the result, it was observed that the shrimp and oyster samples

Comparative Analysis represent good aggregations, respectively, and the samples

In order to learn more about the differences between the samples
amplified with and without the blocking primer, NMDS (non-
metric multi-dimensional scaling) analysis was used (Figure 5).
It is calculated based on the Bray-Curtis distance between

amplified with blocking primer at 0.6 WM in PCRs tend to cluster
together. The samples show a good representation according to
the stress (<0.05), which indirectly validates the reliability of the
sample sequences.
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TABLE 1 | Diversity index of reads in shrimp samples.

Diversity index X1 + 02:b1 X1+ 0.6 X2+0 X2+ 0.4 X2 + 0.6 X3+0 X3+ 0.4 X3 + 0.6
Filtered reads 40039 74312 39202 18912 69906 63523 799673 18395
Observed_otus® 16 323 35 34 112 40 49 75
Ace? 16.2196 335.802 35 34 117.459 42.1564 62.7226 75
Chao1® 16 332.45 35 34 115.714 40.6 61 75
Simpsonf 0.13019 0.92386 0.2204 0.569 0.24483 0.16207 0.74775 0.2602
Shannon9 0.49718 5.43345 0.91121 1.58459 1.07654 0.63989 2.78415 1.18267
Faith_pd" 5.43251 19.2559 6.42457 7.11525 9.10699 6.84896 5.18038 9.12366
Pielou_e' 0.1243 0.65185 0.17765 0.31147 0.15814 0.12024 0.49587 0.18987
TABLE 2 | Diversity index of reads in oyster samples.

Diversity index L1 + 02:b2 L1+04 L1+ 0.6 L2+0 L2 + 0.4 L2 + 0.6 L3+0 L3+ 0.4 L3 + 0.6
Filtered reads 37890 19229 178091 140748 16653 199258 153608 471173 200992
Observed_otus® 14 9 179 34 15 302 16 30 144
Ace? 14.249 9.5175 217.984 38.7974 15 340.907 18.1536 38.0866 196.072
Chao1® 14 9 216.5 39.25 15 337.935 17 35 183
Simpsonf 0.24506 0.24456 0.3265 0.40477 0.24681 0.62987 0.22252 0.34249 0.19738
Shannon9 0.67535 0.72981 1.36916 1.52014 0.76867 3.18205 0.63619 0.86991 0.82696
Faith_pd" 4.29526 5.84358 13.6546 4.26958 412717 23.8013 3.83661 3.27697 10.9164
Pielou_e' 0.17738 0.23023 0.18295 0.2988 0.19675 0.38625 0.15905 0.17728 0.11534

aX 4+ 0,” “X + 0.4,” and “X + 0.6” mean that the shrimp samples were amplified with the blocking primer, X-BP2-DPO at the concentrations of 0, 0.4, and 0.6 uM. blaxq,
X2, and X3” are three different shrimp samples. P2“L1, L2, and L3” are three different oyster samples. ©“observed_otus” index is studied to calculate numbers of distinct
OTUs (DeSantis et al., 2006). “Abundance-based Coverage Estimator (ace) metric and f“Simpson” index are used to estimate species richness using a correction factor
(Simpson, 1949; Chao and Lee, 1992). ©“Chao1” index and 9“Shannon” index indicate the diversity from abundant data (Shannon et al., 1951; Chao, 1984). NFaith’s
phylogenetic diversity (faith_pd) index is the measures of biodiversity that incorporates phylogenetic difference between species (Faith, 1992). 'Pielou’s evenness (pielou_e)
index measures the relative evenness of species richness (Pielou, 1966), which is proportional to changes in species richness. Sample “X1 + 0.4” was filtered out when

performing rarefaction of samples because of its very low number of reads (the sampling depth was 16653).

Redundancy analysis (RDA) is a method to extract and
summarize the variation in a set of response variables that
can be explained by a set of explanatory variables (van den
Wollenberg, 1977). Figure 6 (RDA) showed the shrimp samples
“X 4+ 0.4 uM” and “X + 0 wM;” the oyster samples “L + 0 uM”
and “L + 0.6 wM” aggregate separately, and the taxa of
high proportion in samples maintain good aggregation as
well. Compared to the Ostreoida (C. hongkongensis), shrimp
(P. monodon) seems to be more closely associated to a
few main eukaryotes (Cyclotella, Cryptomonadales, uncultured
Halteria, Oligotrichia).

Further Verification

In order to further verify the effect of blocking primer, we
evaluated X-BP2-DPO with another six repetitions of shrimp
(Figure 7A) and oyster (Figure 7B) at the concentration
of 0.6 wM. The result showed that abundant eukaryotic
microorganisms at phylum level were detected out from both
shrimps and oysters and their composition varied significantly
among different individuals.

However, as only a few sequences were included in the primer
design, it is uncertain whether the blocking primer could be
incidentally biased against another taxonomic group beyond this
study. Therefore, the sequence of X-BP2-DPO was further tested
against the SILVA database. As the primer sequence was based on
the 18S universal primer (1391f), it was aligned mostly at the 5

end 89.8% (69604/77541) to SILVA records. The sequences with
ambiguous taxonomy were excluded, and the remaining 51833
sequences were grouped into four major groups based on their
hit score. As shown in Figure 8, shrimp sequences (15 records)
were assembled in the first group, the group with the highest
hit score (Figures 8A,B, red highlight) and with alignments
not only at the 5 but also at the 3’ end, very important to
PCR eflicacy. Meanwhile, 44 jellyfish records (Semaeostomeae
and Rhizostomeae) were also blasted with high score (>70,
orange highlight). However, these hits did not have alignments
at the 3’ end. Thus, the efficacy in blocking the amplification
would be probably lower in jellyfish than in shrimp. Bivalves
(267 records), together with abundant Hexapoda, Tracheophyta,
and Chelicerata and other records, were assembled in the third
group with hit scores between 60 and 70 (green highlight).
Records with lower score (<60) were assembled in the fourth
group, the group with the least inhibition efficacy.

DISCUSSION

Although the bacterial component of the microbiome has been
the focus of most microbial diversity research to date, viruses,
prokaryotes, and eukaryotic microbes together form a complex
network of ecological interactions that ultimately defines the
complete microbiome (Belda et al., 2017). A blocking primer
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designed to suppress PCR amplification of metazoan DNA in
protistan community by Tan and Liu (2018) can reduce 42.1-
72.4% of metazoan sequences; Belda et al. (2017) has developed
Anneal-inhibiting blocking primers and PNA oligonucleotide
blockers to reduce the amplification of mosquito 185 rRNA
gene sequences by 80% when studying the mosquito eukaryotic
microbiome; To select the amplification of bacterial DNA from
microalgae cultures, Powell et al. (2012) developed a blocking
primer to reduce the proportion of algal chloroplasts sequences
was in clone library from 70% to only 6%. In this study, the
99% inhibition rate of the blocking primer, X-BP2-DPO against
shrimp host sequences outperformed above studies.

We focused on improving the simplicity and efficiency of
strategy for blocking the eukaryotic host DNA amplification
and detecting eukaryotic microorganism diversity in the gut of

marine animals. The addition of a blocking primer is a simple
method that allows for using a single PCR to simultaneously
and distinctly amplify the eukaryotic microorganisms amongst
a vast quantity of host DNA in each sample. The effect
of the blocking primer on host seems better when 44444
and C3 are added together at the 3/-end (Figure 1A). The
blocking primer was intended to selectively bind to the host
sequence and ended with five deoxyinosine molecules and a
C3 spacer that prevent extension during the PCR of the host
target without noticeably influencing the annealing properties
of primer. At the same time, other eukaryotes (such as
protist, algae, fungi, etc.) in the samples were abundantly
amplified by the 18S universal primer. Applications of the
blocking primers against marine animals help to understand
the composition and characteristics of eukaryotic microbes

Frontiers in Microbiology | www.frontiersin.org

10

April 2019 | Volume 10 | Article 830


https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Liu et al.

A Blocking Primer

o

o |

S

-

o

S

e}

éstreoida
L+0pM
L+0.6uM
o
< . .
g ° 7 X primer.concentration
e e Penaeus.monodon
KoM Y L+0.4uM :
\ X+0.4uM

o

Q]

el

[

o

S

S

1

I T T I
=500 0 500 1000

FIGURE 6 | Redundancy analysis (RDA) of the samples and the blocking primer. “+0,” “+-0.4,” and “+0.6 pM” imply that the samples were amplified with the
blocking primer, X-BP2-DPO at the concentrations of 0, 0.4, and 0.6 wM in the PCRs. “X” and “L” represent the shrimp and oyster samples, respectively.

RDA1

in the guts in order to make a further study on their
diets. The relevant primers with some modifications could
even promote the research of the detection of parasitic
pathogens in animals.

Considering the blocking primer against shrimp, X-BP2-DPO
may also mildly inhibit the eukaryotic microorganisms in hosts
(Boessenkool et al., 2012; Shehzad et al., 2012), keeping the
blocking primer concentration at the minimum required amount
is a matter of considerable interest, though such inhibition
is not evident from the Figures 1B,C and Supplementary
Figures S3B,C). Surprisingly, the blocking primer against
shrimp has a better inhibition on the amplification of oyster
DNA than the primer against oyster from Supplementary
Figures S3D,E, $4, S5. So, we analyzed the eukaryotic microbes
in shrimps and oysters using the blocking primers against
shrimp, X-BP2-DPO.

However, there seems to be some inconsistencies in our
results, for example: The annotation information obtained in
silva_128_database for the proportions in Sample, X3 + 0.4 uM
through the present annotation process by QIIME2 could only be
accurate to “Eukaryota” (Supplementary Table S4), which may
be associated with the incompleteness of SILVA database or that
the sequenced region does not allow unambiguous identification.
We found the large proportion annotated as “Eukaryota” is
mainly composed of Cryptomonas sp. 18S rRNA gene, Crassostrea
gigas 18S rRNA gene, and Goniomonas avonlea 18S rRNA gene
using the NCBI blast; it is not hard to notice that a large part
of oyster DNA (Ostreoida) exists in shrimp samples, especially
in Sample “X2 + 0.6 pM” and “X3 + 0.6 wM” (Figure 2A).
A possible cross contamination of PCRs can be ruled out since
we had set negative controls which show no amplification, and
the amplification of positive samples with variable microbial
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biodiversity means that the apparent “contamination” was not
from the laboratory. In the ecosystem of shrimp and shellfish
polyculture farming, shrimps and oysters are the two most
important species at a high nutritional level (Martinez-Cordova
and Martinez-Porchas, 2006). L. vannamei is an omnivorous
scavenger (Hill and Wassenberg, 1987), and C. hongkongensis
could filter large amounts of water (Shpigel and Blaylock, 1991;
Liudong et al.,, 2017), which would have an impact on shrimps.
In fact, oyster DNA is present in shrimp samples, and shrimp
DNA is also present in oyster samples in the results of the
compositional analysis (Figure 2). There are a lot of free DNA
in the pond water, it is likely that some oyster DNA ends up in
the shrimp diet and vice versa.

To study the diet of shrimps (L. vannamei) and
oysters (C. hongkongensis), we examined the compositional
characteristics of the common species present in the shrimp
and oyster hosts. Predator-prey interactions could ultimately
determine the fate and flux of every trophic level in an ecosystem,
particularly the upper-level consumers of economic importance
(Link, 2004). Considering the omnivorous nature of shrimps
and the filter-feeding properties of oysters, large numbers of
eukaryotic microorganisms in aquaculture water are likely
to enter shrimps and oysters during feeding, resulting in
similarities in their diet. Among the 67 common species, the
top high-content taxa include Cyclotella, Cryptomonadales,
Ochrophyta, Bacillariophyceae, Trebouxiophyceae, uncultured
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FIGURE 8 | Alignments for primer sequences and the SILVA database (Release 132). All hits with alignments were ranked by their hit score (A), and grouped based

Halteria, Oligotrichia, Stramenopiles, Alveolata, Nucletmycea,
etc. As the major consumers in the ecosystems of shrimp
and shellfish polyculture farming, shrimps and oysters have
contributed to the web structure of the microbial community.
The above-mentioned eukaryotic microorganisms (protist,
eukaryotic algae, and fungi) may are derived from aquaculture
water, and some fungi may also come from certain culture food
supplements (yeast, probiotics, etc.) (Burgents et al., 2004). The
use of our blocking primer allowed detection of small amounts
of eukaryotic microorganisms.

CONCLUSION

Predator-prey interactions in marine ecosystems are of critical
importance in the structuring of marine communities and
determining the health of the world’s oceans (Bailey et al,
2010). The host-specific blocking primer against L. vannamei,
X-BP2-DPO is a highly promising tool to inhibit the 18S rDNA
amplification of this shrimp species. Addition of the blocking
primer could greatly enhance the quantity and the diversity of the
eukaryotic microorganisms in shrimps, thereby improving our
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ability to maximize the gut content information about them in
favor of studying the taxa composition and their relationships
with environment. The development of blocking primers will
offer more universal applicability to different marine animals
based on the guarantee of simplicity and efficiency of the blocking
primer against specific species.
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