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One of the most successful intracellular parasites, Toxoplasma gondii has developed 
several strategies to avoid destruction by the host. These include approaches such as 
rapid and efficient cell invasion to avoid phagocytic engulfment, negative regulation of the 
canonical CD40-CD40L-mediated autophagy pathway, impairment of the noncanonical 
IFN-γ-dependent autophagy pathway, and modulation of host cell survival and death to 
obtain lifelong parasite survival. Different virulent strains have even evolved different ways 
to cope with and evade destruction by the host. This review aims to illustrate every aspect 
of the game between the host and Toxoplasma during the process of infection. A better 
understanding of all aspects of the battle between Toxoplasma and its hosts will be useful 
for the development of better strategies and drugs to control the parasite.
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TOXOPLASMA AND HOST IMMUNITY

Toxoplasma gondii is an obligate intracellular protozoan parasite with a unique apical complex 
composed of specialized cytoskeletal and secretory organelles, including micronemes, rhoptries, 
and dense granules. T. gondii is the single species in the genus Toxoplasma, although recent 
studies revealed that it has many genetic types distributed across the continents. In North 
America and Europe, populations of T. gondii are dominated by three archetypal types (I, II, 
or III) (Darde et  al., 1992; Howe and Sibley, 1995; Howe et  al., 1997; Ajzenberg et  al., 2002), 
which vary substantially in virulence. Type I  strains are highly virulent to mice with an 
LD100 as low as a single parasite, whereas strains of types II and III are less virulent 
(LD100  >  1,000) (Sibley and Boothroyd, 1992; Sibley et  al., 2009). Unlike in North America 
and Europe, strains of T. gondii in South America are much more genetically diverse. Chinese 
1, however, has been reported to be  the most common type in East Asia, especially in China 
(Zhou et  al., 2010, 2011; Chen et  al., 2011; Wang et  al., 2013; Li et  al., 2014).

T. gondii is one of the most successful parasites, capable of invading and replicating within 
almost all nucleated cells of warm-blooded animals including humans (Dubey, 2010). The 
distinctive characteristic of this parasite is its ability to induce long-term chronic infections 
through its interactions with the host, leading to conversion of the prolific tachyzoite stage 
to the quiescent bradyzoite parasite stage (Aliberti, 2005). Bradyzoite forms of the parasite are 
not usually harmful in immunocompetent individuals, although in immunodeficient individuals, 
such as tumor and AIDS patients, they reconvert into cytolytic tachyzoites, resulting in severe 
toxoplasmosis and distant dissemination (Ayoade et  al., 2017). Despite the parasite being the 
subject of over 100  years of studies and efficient therapies against acute toxoplasmosis have 
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been developed, no effective approach for chronic infection 
of bradyzoites has been found because of its survival strategies 
in the host.

Among different hosts of T. gondii, there are natural differences 
in susceptibility to the parasite, and host innate immunity is 
known to play a critical role in susceptibility to the infection. 
Most laboratory mouse strains are susceptible to infection, and 
therefore they have been widely used for studying immune 
responses against T. gondii. In mice, parasite profilin interacts 
with Toll-like receptor (TLR)11 and TLR12 on dendritic cells 
(DCs) to generate a potent interleukin-12 (IL-12) response in a 
myeloid differentiation factor 88 (MyD88)-dependent manner 
(Yarovinsky et  al., 2005; Koblansky et  al., 2013). Distinct from 
these stimuli, binding of the T. gondii protein cyclophilin-18 
(C-18) to the chemokine receptor CCR5 can also activate murine 
DCs to produce IL-12 (Aliberti et al., 2003). As a pro-inflammatory 
cytokine, IL-12 stimulates NK cells, CD4+ T cells, and CD8+ 
T cells to express interferon-γ (IFN-γ), which plays a crucial 
role in parasite survival during infection. IFN-γ is also produced 
by neutrophils in response to IL-1β and TNF. IFN-γ propagates 
a signal to activate the signal transducer and activator of 
transcription 1 (STAT1) (see Glossary) through the surface 
receptor, IFN-γR. STAT1 is critical for the host immune response 
against T. gondii infection. STAT1 upregulates the production of 
effector molecules such as nitric oxide (NO) and reactive oxygen 
species (ROS), both of which are responsible for controlling 
parasite invasion in mice. IFN-γ also triggers the induction of 
immunity-related GTPase (IRG) proteins and guanylate-binding 
proteins (GBPs) to damage the parasitophorous vacuole membrane 
(PVM) in mice. Additionally, an IFN-γ-independent mechanism 
in mouse naive macrophages was found recently, in which NADPH 
oxidase (Nox)-generated ROS and GBP5 restrict the replication 
of avirulent type III parasites (Matta et  al., 2018).

Unlike mice, humans are quite resistant to T. gondii infection. 
Owing to lack of functional genes encoding the key innate 
sensors TLR11 and TLR12 (Roach et  al., 2005), human cells 
have different innate immune sensing mechanisms for the parasite. 
A recent research revealed that the human recognition system 
for this parasite is based on detection of the damage-associated 
molecule S100A11 released from infected cells and RAGE-
dependent induction of CCL2 (Safronova et  al., 2019). Human 
cells also rely on IFN-γ and STAT1 signaling to control the 
replication of T. gondii in  vitro (Ceravolo et  al., 1999), although 
different mechanisms are explored to control intracellular parasites. 
Firstly, indoleamine oxidase (IDO), but not inducible nitric oxide 
synthase (iNOS), has been found to be  an important effector 
to control the parasite replication in several human cell lines 
after IFN-γ stimulation (Pfefferkorn et  al., 1986; Nagineni et  al., 
1996); secondly, human cells are absent in IFN-inducible full-
length IRG genes and proteins (Bekpen et  al., 2005; Howard 
et  al., 2011). Although human cells express a wide repertoire 
of GBPs, the involvement of GBPs in the human anti-T. gondii 
response in different cell lines is controversial (Ohshima et  al., 
2014; Johnston et  al., 2016). Therefore, it appears that two of 
the main mechanisms of innate resistance mediated by IRGs 
and GBPs in IFN-γ stimulated mouse cells are not highly active 
in human cells (Hakimi et  al., 2017).

Rats, like humans, are quite resistant to Toxoplasma infection 
but vary in their susceptibilities depending on the rat strain 
(Dubey et  al., 2016). The Lewis (LEW) strain exhibits a 
complete resistance to Toxoplasma infection, and its resistance 
is partially abrogated by neutralization of endogenous IFN-γ, 
which showed that IFN-γ plays some role in the resistance 
of rats (Sergent et  al., 2005). The Toxo1 locus containing 
Nlrp1 (nucleotide-binding oligomerization domain, leucine-rich 
repeat protein 1) was identified to mediate resistance to  
T. gondii infection (Cavailles et al., 2006). T. gondii can activate 
the NLRP1 inflammasome in macrophages, leading to caspase-
1-induced pyroptosis and release of the pro-inflammatory 
cytokines IL-1β and IL-18 (Cavailles et  al., 2014; Cirelli et  al., 
2014). GRA35, GRA42, and GRA43 have been recently found 
to be  required for induction of macrophage pyroptosis in 
Lewis rats (Wang et  al., 2019).

EFFICIENT INVASION IS REQUIRED 
FOR PARASITE SURVIVAL

Because T. gondii is an obligate intracellular parasite, a successful 
and efficient cell invasion is crucial for its survival. To establish 
a successful invasion, T. gondii needs a coordinated sequential 
secretion of microneme and rhoptry neck proteins (RON) first 
to mediate the invasion. A secretion set of T. gondii, including 
ROPs and GRAs, is also involved in host modulation and long-
term establishment of the parasite into the host cell. The unique 
invasion mechanism of T. gondii consists of a secretion-regulated 
moving junction (MJ), which facilitates firm attachment between 
the parasite and the host plasma membranes (Alexander et  al., 
2005; Lebrun et  al., 2005; Lamarque et  al., 2011), and the 
glideosome, which is a specific motor system of the parasite. 
Formation of the MJ relies on apical membrane antigen 1 
(AMA1), secreted from micronemes and translocated to the 
parasite’s plasma membrane, and a rhoptry neck complex 
(composed of RON2, RON4, RON5, and RON8 proteins), secreted 
from rhoptry necks and exported into the host cell (Besteiro 
et  al., 2009; Lamarque et  al., 2011; Tyler and Boothroyd, 2011; 
Guerin et  al., 2017). RON2 exposes a short segment at the 
surface of the host cell that serves as a ligand for AMA1, thus 
forming an intimate contact to generate an irreversible interaction 
between the host cell and the parasite (Lamarque et  al., 2011; 
Tonkin et  al., 2011; Tyler and Boothroyd, 2011). In addition to 
AMA1 and RON2, T. gondii has three additional AMA paralogs 
and two additional RON2 paralogs, which form three complexes: 
AMA2-RON2, AMA3-RON2L2, and AMA4-RON2L1 
(Poukchanski et  al., 2013; Lamarque et  al., 2014; Parker et  al., 
2016). The exceptional molecular diversity at the parasite–host 
cell interface may explain why the parasite has such a wide 
host range. Microneme proteins like MIC4-1-6, MIC2-M2AP, 
and MIC3-8 complex also play a key role in adhesion that 
supports gliding motility and host cell invasion (Rabenau et  al., 
2001; Soldati et  al., 2001; Meissner et  al., 2002a; Wang and Yin, 
2015; Gras et  al., 2017). The glideosome is an actin-myosin 
motor complex in T. gondii, and it is composed of a short 
single-headed myosin heavy chain A (MyoA), a myosin light 
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chain (TgMLC1), and three gliding-associated proteins, TgGAP45, 
TgGAP50, and TgGAP40 (Herm-Gotz et  al., 2002; Meissner 
et  al., 2002b; Frenal et  al., 2010). The connection between the 
glideosome and the MJ complex was previously thought to 
be  mediated by aldolase (Jewett and Sibley, 2003; Boucher and 
Bosch, 2015); however, it was recently identified to be  mediated 
by glideosome-associated connector (GAC), which forms a bridge 
between cell surface adhesins and the actin cytoskeleton in the 
parasite (Jacot et  al., 2016). Finally, the power produced by the 
motor complex enables the parasite to move to potential host 
cells and to enter them by pushing forward the host membrane.

After active invasion of the host cell, Toxoplasma dissociates 
from the host membrane and resides within a non-fusogenic 
parasitophorous vacuole (PV), which provides a physical niche 
for the parasite (Tahara et  al., 2016). PV formation is a result 
of invagination of the host cell membrane and involves host 
cytoskeleton rearrangement, ROPs, and GRAs (Clough and 
Frickel, 2017). For parasite growth and proliferation, PVM is 
selectively permeable to small molecules and nutrients from 
the host through GRA17 and GRA23 (Gold et al., 2015). More 
importantly, as a physical barrier, the PV protects parasites 
from fusion with host lysosomes and endosomes, thereby 
enabling survival of the parasite (Mordue and Sibley, 1997; 
Pavlou et  al., 2018).

CELL AUTOPHAGY IN HOST  
IMMUNITY AND TOXOPLASMA EVASION

Classical autophagy, a highly evolutionarily conserved catabolic 
process, is a multistep lysosomal process in which intracellular 

damaged or superfluous proteins and organelles are engulfed 
by a double-membraned autophagosome and degraded after 
fusion with a lysosome (Deter et  al., 1967; Mizushima et  al., 
2011; Ohsumi, 2014). Autophagy is also actively involved in 
the capture of intracellular parasites and routing them for 
destruction. This selective autophagy process is called xenophagy, 
a key defense mechanism against a broad range of infections 
(Deretic et  al., 2013; Besteiro, 2018). In addition to classic 
autophagy, some noncanonical forms of autophagy are also 
involved in host defense against intracellular pathogens: 
LC3-associated phagocytosis (LAP) and IFNγ- inducible GTPase-
mediated host defense. These processes rely on some but not 
all components of the autophagy machinery (Zhao et al., 2008; 
Lai and Devenish, 2012; Haldar et  al., 2014).

In T. gondii-infected human/murine macrophages and 
nonhematopoietic cells, CD40 interacts with CD40L (CD154) 
expressed on the surface of T cells to trigger the killing of 
the parasite through an autophagy-dependent pathway (Andrade 
et  al., 2006; Portillo et  al., 2010; Van Grol et  al., 2013). 
CD40-CD40L interactions activate upstream regulators of the 
autophagic response such as ULK1/2 and Beclin1-PI3KC3, 
two important complexes required for the initiation of 
phagophore (an isolation membrane, precursor of the 
autophagosomal compartment), and then drive the recruitment 
of the protein LC3 to the phagophore and promote 
autophagosome formation (Liu et  al., 2016). In contrast, 
IFNγ-dependent noncanonical autophagy directly binds LC3 
and other Atgs to the PVM, leading to recruitment of two 
subclasses of IFNγ-inducible GTPases for parasite exposure 
(Selleck et al., 2015). Atgs in both canonical and noncanonical 
autophagy processes mediate the targeting of parasites and 

A B

FIGURE 1 | Autophagy initiates host immunity and Toxoplasma immune evasion. The host eliminates intracellular Toxoplasma through autophagy proteins in two 
ways: the canonical CD40-CD40L-mediated and the noncanonical IFN-γ-dependent autophagy pathways. Toxoplasma can evade elimination through host 
autophagy by following means. (A) In the canonical autophagy pathway, MIC3, and MIC6 secreted from Toxoplasma phosphorylate EGFR and activate the  
PI3K/AKT signaling pathway, which has an impact on LC3 function. The activation of FAK-Src through Toxoplasma invasion prevents this parasite from being 
targeted. (B) ROP5, ROP18, and GRA7 form a complex with ROP17 and load onto the PVM, inactivating IRGs through phosphorylation.
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expose Toxoplasma to host immune surveillance, leading to 
killing of the parasite. To avoid being targeted, Toxoplasma 
developed a survival strategy against autophagy that involves 
immune evasion (Figure 1A).

The Toxoplasma micronemal proteins MIC3, and MIC6 
act as ligands for EGFR, inducing phosphorylation of this 
protein in host cells and activating the PI3K/Akt signaling 
pathway. This event prevents the expression of the autophagy 
protein LC3 and vacuole-lysosomal fusion. Subsequently, the 
parasite is prevented from being targeted by the host autophagy 
machinery (Muniz-Feliciano et  al., 2013; Wang et  al., 2016). 
In mammalian cells, Akt phosphorylation also results in the 
activation of mTORC1, which negatively regulates 
autophagosome formation, thus inhibiting autophagy (Kim 
et  al., 2011). During host invasion and MJ formation,  
T. gondii activates a signaling cascade downstream of FAK-Src. 
It inhibits the activation of the key stimulators of autophagy 
PKR and eIF2α, which prevent the parasite from being targeted 
(Portillo et  al., 2017).

ESCAPE FROM GTPases-DEPENDENT 
ANTIMICROBIAL PROGRAMS

As mentioned above, the IFNγ-inducible GTPase-mediated host 
defense plays a crucial role in the destruction of the PVM in 
a murine model. In IFNγ-stimulated cells, a complex containing 
LC3 and a subset of Atgs attaches to the PVM and recruits 
IFNγ-inducible GTPases, leading to vesiculation and destruction 
of the PVM (Lai and Devenish, 2012). Consequently, the 
parasites are released into the host cell cytoplasm and 
subsequently become exposed to the host immune system. 
Recent reports indicate that Gate-16 is also required for this 
GTPases-dependent antimicrobial program even in the absence 
of LC3 (Sasai et  al., 2017).

Virulent type I strains of T. gondii can evade this autonomous 
host immunity mechanism but type II and III strains cannot. 
Rhoptry protein kinase ROP18 and pseudokinase ROP5 are 
known to be polymorphic and determine the virulence of different 
strains and thwart the IRG system (Niedelman et  al., 2012). 
After being secreted during invasion, ROP18 phosphorylates 
Thr residues in the switch region 1 (SW1) on host Irga6 and 
Irgb6 with the cooperation of ROP5. ROP5 regulates the activity 
of ROP18, and additionally binds directly to monomeric IRGs 
to prevent oligomerization and support ROP18 phosphorylation. 
ROP5 is also able to associate with another PVM-associated 
kinase, ROP17, in phosphorylating and inactivating IRGs (Irgb6) 
(Etheridge et  al., 2014). GRA7 binds to and increases turnover 
of Irga6, which makes substrates available for ROP18, thereby 
preventing loading of IRGs (Figure  1B; Alaganan et  al., 2014; 
Hermanns et  al., 2016). ROP5 and ROP18 are also able to 
inhibit GBP1 loading onto the PVM. Pseudokinase ROP54 can 
move to the cytoplasmic face of the PVM and restrict immune 
loading of GBP2 to evade the GBP2-mediated immune response 
(Yang et  al., 2017a). In addition, ROP18  in virulent  
strains can phosphorylate activating transcription factor 6β 
(ATF6β), an important factor for DCs antigen presenting 

(Yamamoto et  al., 2011; Yamamoto and Takeda, 2012). 
Phosphorylated ATF6β may be degraded and affect the antigen-
presenting ability of DCs, having an impact on the interferon-
inducible GTPase-mediated host defense.

RESISTANCE TO OXIDATIVE STRESS

Escape from GTPase-dependent antimicrobial programs is 
vital to T. gondii, and innate immune cells cytotoxicity is 
essential for restriction of parasite infection (Figure 2). 
Resistance to cytotoxicity makes sense for T. gondii. Inducible 
nitric oxide synthase (iNOS) expressed by mouse macrophages 
synthesizes NO through oxidation of L-arginine. Large amounts 
of NO result in parasite death but can be  easily inhibited 
by T. gondii for sustained replication. The process is mediated 
by TGFβ1 induction through Smad2 and Smad3, leading to 
destruction of iNOS and actin filament (F-actin) 
depolymerization. After infection, high levels of arginase 
compete with iNOS for the same substrate, leading to a 
reduction of NO (Padrao Jda et  al., 2014). T. gondii HSP70 
(TgHSP70), a tachyzoite-specific protein, also contributes to 
downregulation of NO (Moroda et al., 2017). In human cells, 
the effect of iNOS is different. It acts as a pro-Toxoplasma 
host factor through the GRA15-dependent virulence mechanism 
in the THP-1/Huh7 coculture mode (Bando et  al., 2018). 
Upregulation of ROS and IDO generated by many cell types 
leads to inhibition of parasite replication. An oxidative stress 
microenvironment is generated by producing hydrogen 
peroxide, superoxide, and hydroxyl radicals to damage the 
parasites or reduce tryptophan levels, preventing the parasites 
from rapid replication. However, T. gondii can subvert these 
mechanisms through an antioxidant network. The cytosolic 
peroxiredoxins TgPRX1 and TgPRX2 and mitochondrial 
peroxiredoxin TgPRX3 act downstream of superoxide 
dismutases (SODs) to detoxify hydrogen peroxide (Kwok 
et  al., 2003). TgSOD2 and TgSOD3, similar to mitochondrial 
SODs, are able to eliminate the ROS produced by oxidative 
phosphorylation. T. gondii antioxidant glutathione-S-transferase 
(TgGST), glutaredoxin (TgGrx), and catalase also make a 
major contribution to decomposing superoxide anion radicals 
and resisting oxidative damage (Pino et al., 2007; Wang et al., 
2015). T. gondii thioredoxin reductase (TgTR) maintains a 
thioredoxin-reduced state during NADPH consumption that 
protects parasite against oxidative-burst injury (Kim et  al., 
2017; Xue et  al., 2017). However, this survival ability may 
only occur in virulent strains, whereas avirulent type III 
parasites are preferentially cleared by NADPH oxidase and 
induction of GBP5  in human cells (Matta et  al., 2018).

REGULATION OF HOST GENE 
EXPRESSION BY T. GONDII

Interferon-inducible cell autonomous immunity or cytotoxicity, 
necessary for the host to control the parasite, is based on 
gene expression. These signal transduction pathways enhance 
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or regulate the overall immune response in such a way as to 
become subverted by T. gondii, constituting a major part of 
the T. gondii immune evasion mechanism (Figure 3).

STAT pathways modulate the transcription of both pro- 
and anti-inflammatory molecules for parasite control. The 
STAT1 transcription factor, the main signal transducer of 
IFN-γ, mediates interferon-inducible immunity but may 
be  blocked by the Toxoplasma inhibitor of STAT1-dependent 
transcription (TgIST), resulting in blockage of interferon 
regulatory factor 1 (Irf1), p65 GBPs, iNOS, indoleamine 2, 
3-dioxygenase 1, and major histocompatibility complex (MHC). 
Secreted by T. gondii after invasion, TgIST translocates to 
the nucleus and recruits the Mi-2 nucleosome remodeling 
and deacetylase (NuRD) complex to STAT1-dependent 
promoters, leading to chromatin alteration and signal blockage 
(Gay et al., 2016; Olias et al., 2016). In addition, this mechanism 
is not virulence-dependent, and thus all T. gondii clonal 
lineages equally inhibit STAT1 transcriptional activity and 
repress the IFN-γ response (Rosowski and Saeij, 2012). Another 
mechanism of IFN-γ blockage through STAT1 is 
dephosphorylation by suppressor of cytokine signaling 
phosphatase (SOCS1), an anti-inflammatory pathway that is 
upregulated during parasite infection.

Transcription factors STAT3 and STAT6 are associated 
with IL-4 and IL-6 production. After being injected into 
host cells, ROP16 localizes to the host nucleus through 
nuclear localization signals. ROP16 can disturb the host 
IFN-γ signal transduction and phosphorylates STAT3 and 
STAT6, leading to a decrease in IL-12 levels that mainly 
limits the protective Th1 cytokine responses and the 
inflammasome. Phosphorylation of STAT6 also induces the 
expression of arginase-1, SOCS2, and interferon regulatory 
factor 4 (IRF4). High levels of production of arginase-1 lead 
to NO degradation, resulting in resistance to host immune 

attacks, thereby allowing proliferation of the parasite. Although 
all three strain types initially induce STAT3 and STAT6 
activity, only ROP16 I/III strains suppress IL-12 production 
in macrophages, because a single amino acid substitution 
in the kinase domain was identified in ROP16 II that 
determines the strain difference in terms of Stat3 activation 
(Yamamoto et  al., 2009). ROP16 also induces the 
phosphorylation and nuclear translocation of STAT5 to generate 
protective immunity (Chang et  al., 2015).

In addition to IRFs, CD40 and TNF, as downstream factors 
of NF-κB signaling pathway, are also required for parasite 
control. The NF-κB family of transcription factors plays a 
key role in host immunity against T. gondii because it is 
believed to be  an evolutionarily conserved mechanism that 
regulates host innate and adaptive immune functions for 
parasite survival. ROP18 in T. gondii type I strains is responsible 
for p65 degradation and thus suppresses NF-κB activation 
(Du et  al., 2014). NF-κB can also be  inhibited by T. gondii 
excretory/secretory antigens (TgESAs), which limit the 
functional activity of macrophages and suppress 
pro-inflammatory cytokine secretion for parasite survival (Wang 
et  al., 2017). In addition, release of GRA15 by type II strains 
activates the NF-κB pathway and initiates IL-12 synthesis 
through enhancing the expression of CD40  in infected cells 
(Morgado et  al., 2014). Thus, type II GRA15 has the ability 
to effectively control acute T. gondii infection and promote 
the conversion of parasite into bradyzoites at the chronic 
infection stage. This mechanism is considered another T. gondii 
immune evasion strategy.

Other T. gondii GRA and ROP effectors contribute to host 
gene targeting and signaling interference. GRA6 selectively 
activates nuclear factor of activated T cells 4 (NFAT4), a host 
transcription factor, which modulates host immune responses 
and parasite dissemination in a strain-specific manner 

FIGURE 2 | Resistance of Toxoplasma gondii to oxidative stress. Oxidative stress is an important way for the host to restrict Toxoplasma replication and prevent 
subsequent infection. Activation of TGFβ1 induced by Toxoplasma through Smad2 and Smad3 leads to destruction of iNOS. The NF-κB pathway is responsible for 
this decline in NO levels, whereas TgHSP70 also regulates this pathway. Cytosolic peroxiredoxins (TgPRXs) and superoxide dismutases (TgSODs) from Toxoplasma 
are able to eliminate ROS and protect the parasite against oxidative-burst injury.
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(Ma et  al., 2014). The p38 MAP kinase pathway controls gene 
expression and the early immune response, such as IL-12 
production, to restrain T. gondii. GRA24 modulates host immune 
responses by triggering prolonged autophosphorylation and 
nuclear translocation of the host cell p38 MAPK (Braun et  al., 
2013). Interestingly, ROP38 has an adverse influence in 
downregulating MAPK signaling and some other transcriptional 
controls without affecting parasite replication and virulence 
(Peixoto et  al., 2010). ROP38 functions in accordance with the 
demands of parasite survival, including bradyzoite differentiation, 

or maintaining the viability of the infected host cells. GRA16 
is secreted and eventually exported to the host nucleus to interact 
with the herpesvirus-associated ubiquitin-specific protease 
(HAUSP) and modulate host gene expression, such as the p53 
tumor suppressor pathway, which promotes host cell survival 
under stress conditions. The export of the GRA16 and GRA24 
effectors into host cells and their accumulation in the nucleus 
are mediated by the aspartyl protease TgASP5 (Curt-Varesano 
et al., 2016). According to a recent study, ROP17 downregulates 
the activation of many immune signaling pathways and 

FIGURE 3 | Targeting of host gene expression by Toxoplasma gondii. Effectors secreted by T. gondii manipulate host gene expression. TgIST translocates to the 
nucleus after T. gondii invasion and inhibits STAT1 by phosphorylation. GRA10 and ROP16 phosphorylate STAT3 and STAT6, mainly leading to a decrease in IL-12 
and Th1 response. Additionally, phosphorylation of STAT6 results in resistance to NO. ROP18 and TgESAs block the NF-κB signaling pathway and impair CD40- 
and TNF-regulated parasite control of the host. However, GRA15 of type II activates this signaling pathway, which may promote cyst formation of the avirulent strain 
to avoid host immunity. GRA6 activates the host transcription factor NFAT4, and then attracts inflammatory cells and facilitates T. gondii dissemination. ROP38 and 
GRA24 have a diverse role in the modulation of the MAPK pathway.
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transcription factors to inhibit immune responses during T. 
gondii infection in human cells (Li et  al., 2019).

MODULATION OF HOST CELL 
SURVIVAL AND DEATH FOR  
PARASITE PROLIFERATION

Intracellular T. gondii depends on the sustained life of host cells 
for its growth, metabolism, and proliferation. Host cell death 
seriously threatens parasite survival, whereas apoptosis induction 
in some cells may suppress the immune responses against the 
parasite (Luder et  al., 2001). Modulation of host cell survival 
and death is one of the strategies for T. gondii survival (Figure 4).

Inhibition of host cell apoptosis may preserve intracellular 
replication and long-term survival of the parasite. T. gondii infection 
inhibits mitochondrial apoptosis by preventing the release of 
cytochrome-c and phosphorylation of the pro-apoptotic Bad protein 
and inducing overproduction of the anti-apoptotic Bcl-2 (Hippe 
et  al., 2008; Hwang et  al., 2010; Quan et  al., 2013). In infected 
macrophages, T. gondii also induces serpin B3/B4 expression 
through STAT6 activation and activates the STAT3-miR-17-92-Bim 
pathway to inhibit apoptosis (Song et  al., 2012; Cai et  al., 2014). 
In addition to blockage of cytochrome-c release, T. gondii targets 
the holo-apoptosome assembly to inhibit caspase-dependent intrinsic 
cell death (Graumann et al., 2015). ROP18, an important virulence 
determinant of the parasite, has been found to play a role in 
regulating apoptosis of infected cells. It inhibits host cell apoptosis 
by blocking the release of cytochrome-c, upregulating the ratio 

FIGURE 4 | Balancing host cell survival and death. Inhibition of cell apoptosis preserves the intracellular parasite Toxoplasma gondii. Effectors such as ROP18 play 
a role in Fas/CD95-mediated apoptosis to inhibit this process. ROP16 also phosphorylates STAT3 and STAT6 to inhibit cell death. However, TgPDCD5 and GRA1 
induce cell death, which may help the parasite survive by killing host’s immune cells.
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of Bcl-2/Bax, and inducing p53 degradation (Wu et  al., 2016; 
Yang et  al., 2017b; Xia et  al., 2018).

On the other hand, induction or enhancement of apoptosis 
in the course of T. gondii infection might be  beneficial for 
the parasite (Figure 4). Programmed cell death 5 (TgPDCD5), 
a protein released from T. gondii, enhances apoptosis of uninfected 
host macrophages, which appears to be  a negative regulator 
of the immune response against the parasite (Bannai et  al., 
2008, 2009). Similarly, GRA1 secreted by T. gondii induces 
apoptosis of monocytes that is mediated by the TGF-β pathway 
(Ngo et  al., 2017). Apoptosis and cell death in bystander host 
cells may be  caused by nitric oxide and other soluble factors 
produced by infected cells (Nishikawa et  al., 2007).

SURVIVAL STRATEGIES IN THE 
CHRONIC INFECTION STAGE

After exponential replication as tachyzoites, the increasing host 
immune response and accompanying stress conditions lead  
T. gondii to differentiate into the latent bradyzoite stage that resides 
in tissue cysts. This stage allows the parasites to cause chronic 
disease owing to their ability to evade the immune system and 
resist common therapies. In addition, when the host immunity 
becomes impaired, T. gondii being an opportunistic pathogen may 
transform into rapidly replicating tachyzoites. Infectious bradyzoite 
cysts forming in muscle, heart, and central nervous system (CNS) 
tissues allow T. gondii to spread to a new host following predation 
of its former host, a part of the parasite’s life cycle.

Because of the “Trojan horse” strategy in which tachyzoites 
move to immune-privileged organs such as the CNS and form 
cysts under the regulation of multiple genes, bradyzoites within 
tissue cysts persist for the life of their host (Hong et  al., 2017; 
Huang et  al., 2017). Rhoptry proteins such as ROP17, ROP35, 
and ROP38 also promote tachyzoite conversion to encysted 
bradyzoite. The persistent cyst is cloaked with a glycosylated 
structure called the cyst wall, which provides a sturdy barrier 
for bradyzoite survival and infectivity for oral transmission. Cyst 
wall glycoprotein CST1 glycosylated by Tg.ppGalNAc-Ts confers 
structural rigidity in brain cysts in a mucin-like domain-dependent 
manner (Tomita et  al., 2013, 2017). A toxoplasma nucleotide-
sugar transporter (TgNST1) is also required for cyst wall 
glycosylation (Caffaro et  al., 2013). Bradyzoite-secreted 
pseudokinase 1 (BPK1) is a component of the cyst wall and 
necessary for the growth, maintenance, and stability of tissue 
cysts (Buchholz et  al., 2013). Several GRA proteins contribute 
to cyst wall formation and maintenance. A recent report 
demonstrated that the T. gondii lysosomal vacuolar compartment 
(TgVAC) is capable of proteolysis and maintains the viability 
and persistence of T. gondii cysts (Di Cristina et  al., 2017).

CONCLUDING REMARKS

T. gondii is an intracellular parasite with an efficient invasion 
system that avoids phagocytosis. After a successful invasion, it 
secretes many different effectors to disturb the canonical 

CD40-CD40L-mediated and the noncanonical IFN-γ-dependent 
autophagy, regulate host gene expression, modulate host cell 
survival and death, and counter host defense mechanisms.  
T. gondii needs a balance between establishing a successful 
infection in the host for ensuring propagation, and avoiding a 
too rapid multiplication that would kill the host. Additionally, 
as a successful intracellular parasite, obtaining nutrients from 
the host is also a critical survival strategy (for a more detailed 
discussion of nutrients, see Blume and Seeber (2018) and 
references therein). T. gondii employs different approaches in 
a strain-specific or host-specific manner to fight against different 
hosts. Striking differences in the strategies adopted by the parasite 
have been observed between murine and human hosts. Though 
anti-Toxoplasma responses have been extensively investigated 
in a mouse model, the mechanisms used by human cells to 
control the parasite and by the parasite to antagonize these 
responses remain elusive. For instance, what is the major IFN-γ-
induced effector in human cells, as there are no IFNγ-inducible 
IRGs and a reduced GBP repertoire? What are the Toxoplasma 
virulence factors in humans, and how do they defend the PV 
from host destruction in human cells? As is known that ROP18 
and ROP5 are the major virulence factors in strains from North 
America, Europe, and South America in mice, what are the 
virulent determinants in the atypical lineages (i.e., types 13/
Chinese 1 from China, 14 from Africa, and 11 from North 
America), and how do these determinants fight the immune 
system in mice and in humans to help the parasite survive? 
Addressing these questions will allow a better description of 
the battle between T. gondii and its hosts, and such knowledge 
will be useful in the development of drugs to control the parasite.
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GLOSSARY

Atgs Autophagy-related proteins. Eukaryotic factors participating in various stages of the autophagic process and 
required for autophagosome formation.

CDPKs Ca2+-dependent protein kinases. A family of enzymes that control multiple process of parasite in motility, 
adhension, and egress.

GBPs IFN-γ-inducible guanylate-binding proteins.
GRAs Dense granule protein. Proteins secreted from the parasite dense-granule organelles and take part in most steps 

during parasite invasion and evasion.
IDO Indoleamine oxidase. Induced by IFN-γ and degrades tryptophan, an essential nutritional amino acid for the 

intracellular growth of T. gondii in human cells.
iNOS Inducible nitric oxide synthase. An IFN-γ-inducible protein that mediates parasite clearance and growth inhibition 

through nitric oxide production.
IRGs A family of rodent IFN-γ-induced GTPases.
LC3 Microtubule-associated protein1 lightchain3. A mammalian autophagosomal ortholog of yeast Atg8 and 

contributes to major steps of autophagy. There are two isoforms of LC3, LC3-I (soluble) and LC3-II (membrane-
bound).

MICs Microneme proteins. Proteins secreted from the apically located parasite microneme organelles and contribute to 
T.gondii invasion and virulence.

MJ Moving junction. A tight apposition between the host cell and parasite plasma membranes. Anchors the invading 
parasite to the host cell and facilitates parasite internalization within a parasitophorous vacuole.

MMPs Matrix metalloproteases. A family of enzymes containing Ca2+ and Zn2+ in structure that participate in metabolism 
in extracellular matrix.

NLRP1 An inflammasome sensor and a member of the NLR (Nod-like receptor/nucleotide binding domain/leucine rich 
repeat containing) protein family.

PV (and PVM) Parasitophorous vacuole. An intracellular compartment that the parasite resides in and is bounded by membrane 
called PVM.

RONs Rhoptry neck proteins. Proteins secreted from the neck of the rhoptry organelles. A component of the moving 
junction that plays a central role during invasion.

ROPs Rhoptry body proteins. Proteins secreted from the bulb or body of the apically located rhoptry organelles of the 
parasite and take part in most steps during parasite invasion and evasion.

STAT Signal transducer and activator of transcription. A group of transcription factors that transmit signals from the 
extracellular milieu of cells to the nucleus.
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