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Stable isotope based metabolic flux analysis is currently the unique methodology that

allows the experimental study of the integrated responses of metabolic networks. This

method primarily relies on isotope labeling and modeling, which could be a challenge in

both experimental and computational biology. In particular, the algorithm implementation

for isotope simulation is a critical step, limiting extensive usage of this powerful approach.

Here, we introduce EMUlator a Python-based isotope simulator which is developed

on Elementary Metabolite Unit (EMU) algorithm, an efficient and powerful algorithm for

isotope modeling. We propose a novel adjacency matrix method to implement EMU

modeling and exemplify it stepwise. This method is intuitively straightforward and can

be conveniently mastered for various customized purposes. We apply this arithmetic

pipeline to understand the phosphoketolase flux in the metabolic network of an industrial

microbeClostridium acetobutylicum. The resulting design enables a high-throughput and

non-invasive approach for estimating phosphoketolase flux in vivo. Our computational

insights allow the systematic design and prediction of isotope-based metabolic models

and yield a comprehensive understanding of their limitations and potentials.

Keywords: adjacency matrix, elementary metabolite unit (EMU), fractional labeling (FL), Clostridium

acetobutylicum, phosphoketolase

INTRODUCTION

13Cmetabolic flux analysis (MFA) is currently the only experimental methodology to quantitatively
understand intracellular biochemical networks by means of stable isotope tracing, labeling pattern
analysis and indispensably, metabolic modeling which is based on mass and isotope balancing
(Stephanopoulos, 1999; Sauer, 2006). Importantly, isotope modeling can provide additional key
information that further defines the system, enabling quantification of the fluxes in parallel or
cyclic pathways that cannot be estimated reliably by mass balance only. A variety of mathematical
models were developed to establish relationship between isotope distribution and metabolic flux,
including isotopomers (Schmidt et al., 1997), cumomers (Wiechert et al., 1999), and bondomers
(Van Winden et al., 2002). However, previous methods suffer from the computational challenge in
resolving realistic and large-scale metabolic network, as a large number of isotopomer equations
need to be solved.
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To address this limitation, a creative computational
framework based on Elementary Metabolite Unit (EMU)
was proposed (Antoniewicz et al., 2007a). The EMUs of a
metabolite are defined as the non-empty subsets of all that
compound’s atoms (usually carbon atom). EMU can be cataloged
by size, i.e., the number of atoms in it. With atom transition
map, this framework will trace and identify the minimal relevant
metabolic information needed to simulate isotope patterns and
solve the optimization problem, and therefore greatly reduces
the number of balance equations and computation burden, i.e.,
95% reduction of the variables needed for the simulation in
an E. coli model without any loss of information (Antoniewicz
et al., 2007b). To date, EMU algorithm has garnered increasing
attention in metabolic analysis (Quek et al., 2009; Sokol et al.,
2012; Weitzel et al., 2013; Kajihata et al., 2014; Shupletsov
et al., 2014; Young, 2014). Better leveraging this approach in
understanding cell metabolism will require the development
of novel computational packages which are easy to program
and can fit new and broad application scenarios. However, to
date, computational approaches that can straightforwardly and
efficiently implement the EMU algorithm are still insufficient.

Here, we develop a new computational toolbox for steady
state metabolic modeling analysis, the EMUlator, which
accomplishes EMU modeling through an adjacency matrix-
based approach. In graph theory, an adjacency matrix is used
to quantitatively represent a graph, of which the elements
indicate the connectivity of vertex pairs in rows and columns.
Essentially, metabolic network is a directed graph with
branches, thus it can be transformed into adjacency matrix
for the ease of programming. Utilizing adjacency matrix, the
EMUlator can efficiently simulate isotope distributions for
13C-MFA. To demonstrate its functionality, we decompose
the EMUs for isotope simulation in a tricarboxylic acid
(TCA) cycle which represents a realistic metabolic network.
Furthermore, we applied this newly developed software in
modeling and analyzing the flux of phosphoketolase pathway in
Clostridium acetobutylicum xylose catabolism. By decomposing
the network and simulating metabolite isotopomer patterns,
we found a good correlation between phosphoketolase flux
and the fractional labeling of acetate, which has never been
characterized in an isotope tracer experiment. Coupled with
GC-MS analysis of acetate, this EMUlator-enabled analysis leads
to a novel and high-throughput methodology for quantitatively
understanding the phosphoketolase pathway in response
to environmental and genetic perturbation. As exemplified,
EMUlator aims to be a universal and powerful tool for isotope
tracer modeling and for gaining quantitative understanding of
cell metabolism. The software and its instruction are available at
Supplementary Information.

RESULTS

Overview of the EMUlator Pipeline
The EMUlator pipeline is designed in Python, capable of
performing a complete isotope simulation and prediction of
a metabolic network for 13C-MFA. Previous tools, such as
Metran (Antoniewicz et al., 2006, 2007a), OpenFlux (Quek

et al., 2009; Shupletsov et al., 2014) and INCA (Young, 2014),
are able to perform such modeling, however based on Matlab
platform which is not an open and free computing environment.
In addition, previous EMU modeling was substantially less
transparent than the one we present here. A key distinguishing
feature of EMUlator is the usage of adjacency matrix. This
ensures a graphic expression of the algorithm which can be
understood intuitively and implemented iteratively. In particular,
EMUlator provides a more detailed and principled procedure
of EMU modeling, which decomposes metabolic network into
EMU reactions, sets up EMU balances and simulates labeling
distribution. Most importantly, the EMU deconstruction results
in the reduction of the metabolic network model leading to a
smaller set of EMU reactions which preserves all the information
contained in it but decreases running time significantly.

EMUlator Transforms Metabolic Network
Into Adjacency Matrix
To illustrate algorithm of the program comparably, we
implement TCA cycle model as an example, as this representative
metabolic network was also used in the original EMU work
(Antoniewicz et al., 2007a). In this network, aspartate and
acetyl coenzyme A (AcCoA) are the substrates, while CO2

and glutamate are final products. Reactions with carbon
atom transitions are listed in Figure 1. As a directed graph,
any metabolic network with branches (due to cleavage and
condensation reactions) can be transformed into a metabolite
adjacency matrix (MAM). All metabolites are grouped in both
row and column coordinates, thus forming a square matrix.
Row metabolites appear as reactants while column metabolites
are products of each reactions. Elements determined by row
and column coordinates are connecting reactions for reactants
and products. Reaction in element may not be unique because
identical reactant and product could be involved in different
reactions. As such, inputs and outputs of the network are easy
to identify. Herein, columns without element are identified as
substrates since they have no precursors (i.e., columns for AcCoA
and Aspartate in dashed red boxes, Figure 2), while rows without
element are identified as final products (i.e., rows for CO2

and glutamate in dashed green boxes, Figure 2). Overall, MAM
reflects the connectivity of metabolites in a network.

EMUlator Decomposes MAM Into EMU
Adjacency Matrix (EAM)
EMU decomposition of a metabolic network can start at the
size of EMU(s) that need to be simulated. In this example,
we simulate the Mass Distribution Vector (MDV, the fractional
abundance of each isotopolog normalized to the sum of all
possible isotopologues.) (Nanchen et al., 2007) of glutamate
Glu12345 (size 5). All EMU reactions that are needed for this
simulation can be identified iteratively via MAM. Glu12345
as a product can be found in the column of EAM (size 5)
(see Figure 3A), its precursor AKG12345 is illustrated in the
corresponding row through the reaction V3. Similarly, for the
product AKG12345, we can locate its precursor Cit12345 via v2.
Lastly for the product (in column) Cit12345, we identify reaction
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FIGURE 1 | Simplified tricarboxylic acid (TCA) cycle to illustrate adjacency matrix-based EMU decomposition. Reactions involved in the metabolic model are listed on

the right. Lowercase letters in brackets demonstrate atom transition in each reaction. Decimals indicate EMU equivalents due to rotation axis within molecule. AcCoA,

acetyl coenzyme A; AKG, α-ketoglutarate; Asp, aspartate; Cit, citrate; Fum, fumarate; Glu, glutamate; OAA, oxaloacetate; Suc, succinate; subscript f, forward

reaction; subscript b, backward reaction.

FIGURE 2 | Metabolite adjacency matrix (MAM) of the TCA cycle network. MAM is a square matrix with all involved metabolites on both rows and columns. Each

element indicates reaction(s) through which reactant (row metabolite) is converted into product (column metabolite). Metabolites with no element in column are

identified as initial substrates (dashed red box); metabolites with no element in row are identified as final products (dashed green box).

v1, in which both OAA234 and AcCoA12 are the reactants. Since
EMUs of smaller size are identified in condensation reactions,
they will be used as new start points for searching. Therefore,
we can follow the OAA234 (AcCoA12 is identified as an EMU of
the substrate, and thus the searching stops), and search all other
EMUs at size 3 (Figure 3B). All precursor EMUs for multiple
precursors [e.g., due to equivalent EMUs (Antoniewicz et al.,
2007a)], can be identified through breadth-first search. As such,
adjacent matrix provides a straightforward and iterative path
allowing us to trace back EMUs of smaller sizes until the EMUs
of network substrates are identified (i.e., Aspartate and AcCoA
in this example). Once all set of the EMUs are obtained, EMUs

can be arranged into different EAMs per size. Similar to MAM,
row and column coordinates of EAM correspond to reactants and
products of each reaction, respectively, with the difference that
EMUs subject to convolution also appear in rows of EAM, and the
coefficients of an element equal to the stoichiometric coefficients
of corresponding reactant and product. Complete EAMs after
EMU decomposition of the example are shown in Figure 3.

EMUlator Significantly Reduces the Size
of EAMs
EMUlator can also reduce the scale of EAM. In steady state
isotope modeling, labeling pattern can only be modified by
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FIGURE 3 | EMU adjacency matrix (EAM) of size 5 (A), size 3 (B), size 2 (C) and size 1 (D). Each element indicates reaction(s) through which reactant (row metabolite)

is converted into product (column metabolite) as well as reaction coefficients. Construction of EAM starts from the EMU to be simulated, i.e., Glu12345 in this example.

All precursors of corresponding EMU can be found with MAM and atom transition using breadth-first search. Precursor searching continues until initial substrates. If

condensation reactions are encountered, precursors of smaller size are considered as new start points, respectively. EMUs of same size are located in the same EAM.
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convolution of two or more metabolites and unimolecular
reactions may be lumped without affecting simulations which
helps to reduce the scale of EAM. Unimolecular reactions can be
easily identified in EAM as those with solo element in a column,
which means its corresponding product only has a single source.
Those columns will be deleted with identical metabolites in rows
all renamed by their precursors. For example, in EAM of size 1,
after AKG3 column is eliminated, AKG3 in row will be renamed
with Cit3 which produces AKG3 by reaction v2 (Figure 4).
Moreover, since Cit3 is still from a unimolecular reaction (v1),
we eliminate the column as well and Cit3 in row will be renamed
by its precursor OAA2 via v1. The deletion of the column and
renaming of corresponding row continue until there is no solo-
element column in EAM. Finally, multiple rows with identical
metabolite name will be combined, indicating the identical
reactant and product are connected by different reactions.

EMUlator Identifies and Combines
Equivalent EMUs
Rotationally symmetric molecules (i.e., fumaric acid and succinic
acid) will give rise to equivalent EMUs (Antoniewicz et al.,
2007a), which are undistinguishable for enzyme, and react
identically in the reactions. EMUlator can combine those EMUs
as they will have the same probability to get certain labeling
pattern. Metabolites which could generate equivalent EMUs are
indicated with fractional carbon atoms in Figure 1. Fum2 and
Fum3 are equivalent EMUs of size 1 in this example (Figure 5).
Element coefficients of row equivalent EMUs are combined,
while coefficients of column equivalent EMUs are combined
and divided by the number of equivalents. Eventually, EMU
variables were reduced from 24 of initial EMU model to 9
after lumping unimolecular reactions and combining equivalent
EMU, yielding the same results as the original EMU work
(Antoniewicz et al., 2007a).

EMUlator Establishes EMU Balances
From EAMs
To simulate the labeling pattern of a given metabolite, EMU
balances are established from EMU reaction subnetworks of
different size, and MDVs can be calculated according to:

Xi = A−1
i · Bi · Yi

Where Ai and Bi are matrix function of flux variable of size i.
Ai is square matrix whose shape is dependent on the number
of EMU balance m of current size. Bi’s shape is m × n where
n is the number of available EMU variables (Antoniewicz et al.,
2007a). Simulation starts from size 1, and Y1 are MDVs of
network substrates. Other MDVs are calculated and then used
in Y of larger size. Ai and Bi can be easily deduced from EAM as
demonstrated in Figure 6. Diagonal elements of EAM are first set
to be the negative sum of other elements of current column. Then
the transposed upper square submatrix will be A1, and the lower
submatrix will be B1 after transposition and all elements negated.
The transformation is made according to the isotopomer balance
which states that the sum of all influx to an EMU multiplied by
its MDV (

∑

vi · MDV) is equal to the sum of the individual

product of each influx vi multiplied by MDVi

(
∑

(vi · MDV i)
)

.
Apparently, diagonal element represents the total influx of
corresponding EMU. Multiplied by MDV of balanced EMU,
the product is equal to the sum of all labeling pattern sources,
including those unknown (Xi) and known (Yi) EMU variables.
EMU balances of larger size can be established likewise until the
Glu12345 are eventually simulated. EMU balances of all sizes are
shown below:

EMU balance of size 1





−v6b − v5 0.5v6b + 0.5v5 0.5v6b
v6f −v6f − v7 0

v6f 0 −v6f − v7



 ·





MDVFum2

MDVOAA2

MDVOAA3





=





0 0 −0.5v5
−v7 0 0
0 −v7 0



 ·





MDVAsp2

MDVAsp3

MDVAcCoA2





EMU balance of size 2

[

−v6b − v5 v6b
v6f −v6f − v7

]

·

[

MDVFum23

MDVOAA23

]

=

[

0 v5
−v7 0

]

·

[

MDVAsp23

MDVOAA2 ×MDVAcCoA2

]

EMU balance of size 3





−v6b − v5 0.5v6b 0.5v6b
v6f −v6f − v7 0

v6f 0 −v6f − v7



 ·





MDVFum123

MDVOAA123

MDVOAA234



=





−0.5v5
0

0

−0.5v5
0

0

0

−v7
0

0

0

−v7



 ·









MDVOAA2 ×MDVAcCoA12

MDVOAA23 ×MDVAcCoA2

MDVAsp123

MDVAsp234









EMU balance of size 4

[−v3] ·
[

MDVGlu12345

]

= [−v3] ·
[

MDVOAA123 ×MDVAcCoA12

]

EMUlator Designs Optimal 13C-Tracer
Experiment for Quantifying Metabolic Flux
of Interest
To demonstrate the performance of EMUlator in a large-scale
setting that reflects the complexity of realistic cell metabolism,
we next performed simulation of isotope distributions in a larger
network model of C. acetobutylicum. C. acetobutylicum is a
solventogenic clostridium and represents a promising chassis
microbe capable of utilizing lignocellulose-derived pentose sugar
(i.e., xylose) for biofuels production (Mitchell, 1998; Gu et al.,
2011). In this case, pentose catabolism through phosphoketolase
pathway (Grimmler et al., 2010; Servinsky et al., 2010; Liu
et al., 2012) is of special interest in that this pathway has been
recognized as a key target for constructing synthetic pathways
(e.g., Non-oxidative glycolysis) that bypass CO2 loss via pyruvate
decarboxylase and thus enhance carbon yield in final products
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FIGURE 4 | Reduced EAM of size 1. Column metabolites with only one element can be lumped because it has solo influx. These columns can be eliminated

therefore, and their corresponding row metabolites will be replaced by its precursor. Elimination and replacement occur iteratively until no solo element column exists.

Rows with identical metabolite will be combined.

FIGURE 5 | EAM of size 1 with EMU equivalents combined. EMU equivalents can be combined. Coefficients of equivalent columns are combined and divided by the

number of EMU equivalents. Coefficients of equivalent rows are just combined.

(Bogorad et al., 2013). Here we used the adjacency matrix-based
EMUlator to simulate labeling patterns of metabolites and show
how it facilitates the selection of best isotope substrates and
readouts quantifying the in vivo phosphoketolase activity.

First, a biochemical network for xylose metabolism of
C. acetobutylicum was constructed, based on the genome
information (Nölling et al., 2001; Bao et al., 2011). As
shown in Figure 7A, after phosphorylation, xylose can be
metabolized either through the non-oxidative pentose phosphate
pathway or cleaved by phosphoketolase to form acetyl-phosphate
and glyceraldehyde-3-phosphate. Acetyl-phosphate is further
directed to generate extracellular fermentative products (i.e.,
acetate, ethanol, acetone, butanol, butyrate) and glyceraldehyde-
3-phosphate can enter pentose phosphate pathway in which
reactions are highly reversible due to the nature of isomerase,
epimerase, transketolase, and transaldolase. The oxidative

pentose phosphate pathway is not considered which was verified
to be inactive in C. acetobutylicum (Au et al., 2014). The TCA
cycle is not included as it does not influence the labeling patterns
of the upstream metabolites.

We selected acetate (AC), ethanol, 3-phosphoglycerate,
erythrose-4-phosphate and ribose-5-phosphate as candidate
readouts for reflecting phosphoketolase activity since MDVs of
these metabolites can be experimentally obtained either from
direct determination or derivation from amino acid MDVs
(Nanchen et al., 2007). Meanwhile, we tested all commercially
available xylose tracers: 1-13C xylose, 2-13C xylose, 3-13C xylose,
4-13C xylose, 5-13C xylose, 1,2-13C xylose, U-13C xylose. MDVs
were simulated using EMUlator in all possible combinations of
these candidate readouts and tracers. Goodness of correlation
between Fractional Labeling (FL) (defined in Materials and
Methods) and flux ratio through phosphoketolase (i.e., v2/v1 in
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FIGURE 6 | Transformation of EAM to establish EMU balance of size 1. Matrix function A of flux variables can be obtained by transposition of the upper square

submatrix (dashed red box) with negative sums of each column of original EAM as diagonal elements. Matrix function B can be obtained by transposition of the lower

submatrix (dashed green box) with all elements taken opposite sign.

Figure 7A) and range of effective FL are used as the selection
criteria. The modeling results are shown in Figure 8.

Among various xylose tracers, 1,2-13C xylose yields EMU
AC12 with best correlation between its FL and phosphoketolase
flux ratio (Spearman correlation coefficient = 0.7). The widest
effective range of FL (slope of regression line = 0.43) indicates a
good sensitivity on the flux ratio of phosphoketolase (Figure 8A).
EMU AC1 and AC2 show identical correlationship between FL
and flux ratio with that of AC12 (Figures 8B,C) because the
carbons of acetate originate from C2 and C1 of xylose which
are both labeled (probably also from C4 and C5 of xylose
converted from AcCoA) and behave equivalently in the atom
transition. FL of G3P123 could have a good correlation with
the phosphoketolase flux ratio, which is, however, disturbed by
many randomly distributed points (Figure 8E). This is probably
due to the reversibility of the reactions in glycolytic and pentose
phosphate pathways. EtOH12, E4P1234 and R5P12345 all show
poor correlation, and thus cannot be used as the indicators for
phosphoketolase flux (Figures 8D,F,G). As for other tracers, 1-
13C xylose and 2-13C xylose labeling result in poor correlation in
AC1 and AC2, respectively (Supplementary Figures 1, 2). AC12

and EtOH12 will be totally unlabeled using 3-13C xylose tracer as
no C3 of xylose will fractionate into these metabolites. G3P123
shows a good correlation with phosphoketolase flux while the
range of effective FL is too small to determine phosphoketolase
activity (Supplementary Figure 3). If 4-13C xylose and 5-13C
xylose are used as substrate, correlation between FL and flux
ratio are inverted for most of the EMUs. In addition, AC2 and
AC1 are totally unlabeled per 4-13C xylose and 5-13C xylose,
respectively. (Supplementary Figures 4, 5). As a control, FLs
of all MDVs are constant when fed with a mixture of U-13C
labeled and unlabeled xylose (Supplementary Figure 6), which
is, therefore excluded from the isotope tracer selection.
In comparison of all tracer/readout combination, 1,2-
13C-xylose/ AC12 performed the best and this selection
paves the way to the experimental measurement of flux in
phosphoketolase pathway.

Guided by the above simulations, C. acetobutylicum was
thereafter cultivated in 5 g L−1 1,2-13C xylose in following
experiment. Fermentation kinetics including cell growth and
the production of cell products over time are as shown in
Supplementary Figure 7. The flux ratio from phosphoketolase
pathway was then quantified by harvesting the supernatant and
determining the isotope pattern of AC with GC-MS. MDVs
of AC1 and AC12 were measured, and MDVs of AC2 can
be deduced. Accordingly, FL of AC1, AC2 and AC12 were
calculated to be 0.462 ± 0.018, 0.469 ± 0.012 and 0.465 ±

0.015, respectively, which is consistent with our prediction
that FLs of all fragments’ EMUs should be identical. A
distribution of phosphoketolase flux ratio was obtained from
simulated sample points with corresponding FL of AC1, AC2

and AC12 falling into the measured ranges. The average and 95%
confidence interval of the flux ratio through phosphoketolase
were estimated as 22.8% and 14.3–36.6%, respectively under
current conditions (Figure 7B).

DISCUSSION

Although equivalent to isotopomer models, EMU method is
able to significantly reduce the variables needed to simulate
labeling patterns of metabolites (90% reduction in our C.
acetobutylicum case) without any loss of information, which
therefore greatly facilitates 13C flux modeling of realistic and
large-scaled metabolic network and dynamic systems (Young
et al., 2008). Here we introduce a computational tool EMUlator to
themetabolic research community. This engine utilizes adjacency
matrix-based approach which is intuitively straightforward and
easy to program. Metabolic network can be decomposed into
EAMs of different size which can be further reduced by lumping
unimolecular reactions and combining equivalent EMUs. For
MDV simulation, matrix multiplication starts from EAM of the
smallest size, and iteratively continues to larger size until the
required EMU is simulated. Overall, the computation time for
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FIGURE 7 | Xylose metabolism in C. acetobutylicum. (A) Reaction network constructed for xylose metabolism. Complete reaction list is provided in

Supplementary Table 1. AC, acetate; ACE, acetone; AcP, Acetyl phosphate; BU, butyrate; BuOH, butanol; DHAP, dihydroxyacetone phosphate; E4P,

erythrose-4-phosphate; EtOH, ethanol; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; G3P, 3-phosphoglycerate; GAP, glyceraldehyde-3-phosphate;

PEP, phosphoenolpyruvate; Pyr, pyruvate; R5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate; S7P, sedoheptulose-7-phosphate; X5P, xylulose-5-phosphate; Xyl,

xylose; PKT pathway, phosphoketolase pathway; PP pathway, pentose phosphate pathway; TCA cycle, tricarboxylic acid cycle. (B) Metabolic flux ratio through

phosphoketolase at 5 g L−1 xylose. Flux ratios are relative to total xylose uptake rate, and values are presented as the mean of two replicates and 95% confidence

intervals are provided in the parentheses.

EMUlator to perform MDV simulation depends on the network
complexity, or connectivity which can be represented by the
number of non-zero elements in EAMs. For a realistic and
moderate-sized network shown in the above examples, the time
complexity is roughly O(n3), where n is the number of EMUs.

The EMUlator allowed large-scale and efficient isotope
modeling. To exemplify its capability, we applied it in

quantitative understanding of the phosphoketolase pathway in
the central carbon metabolism of an industrial model microbe
(C. acetobutylicum). We simulated labeling pattern of both
intracellular and secretory metabolites using different xylose
tracers, and identified the best tracer/readout combination
reflecting phosphoketolase activity. 13C-flux measurement of
the phosphoketolase pathway was enabled recently (Liu et al.,
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FIGURE 8 | Simulated fractional labeling (FL) of metabolites at different flux ratio from phosphoketolase with 100% 1,2-13C xylose as substrate. Random fluxes are

generated 1000 times subjecting to xylose metabolism network. MDVs of (A) AC1, (B) AC2, (C) AC12, (D) EtOH12, (E) G3P123, (F) E4P1234 and (G) R5P12345 are

simulated using adjacency matrix-based EMU decomposition method proposed in this work. Metabolite FLs and flux ratio from PKT are subsequently calculated and

plotted correspondingly. Regression line and 95% confidence intervals are also plotted.
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2012), in which 3-phosphoglycerate was used as the indicator
for phosphoketolase flux measurement in a 1-13C-xylose
labeling experiment. This design is reasonable as the FL
of 3-phosphoglycerate is monotonically reduced with the
increased flux through phosphoketolase. The limitation is that
3-phosphoglycerate is not a direct product of phosphoketolase,
therefore the flux estimation is largely dependent on the
assumption that the labeling pattern of 3-phosphoglycerate and
glyceraldehyde 3-phosphate, the product of phosphoketolase are
identical. In our case, we compared all available xylose tracers
and readouts with a more realistic metabolic network which also
takes reversible reactions into account. Our results demonstrated
that acetate (with EMUs of AC1, AC2, and AC12) can be a better
readout due to the strong correlations with phosphoketolase flux
and a wide effective range of FL. Indeed, acetate can be exclusively
derived from acetyl phosphate which is directly produced from
phosphoketolase. More importantly, acetate is an extracellular
metabolite and its isotope pattern can be easily measured by GC-
MS without derivatization. The convenience of measurement
without breaking the cells provides a high-throughput and non-
invasive method for prompt 13C-flux estimation, which, to our
knowledge, was never developed previously. This estimation is
based on the numerical relationship between fractional labeling
of acetate and flux ratio through phosphoketolase which are
positively correlated, even though it may not be strictly linear.
It should be noticed that in the FL range 0.5-0.65, multiple
flux ratio values are possible for a given value of FL. The
jitter could be due to the reversibility of biochemical reactions
and partial dependency of the EMU basis vectors (Crown
and Antoniewicz, 2012), which cannot make all free fluxes
absolutely solvable using only acetate labeling data. To further
obtain a more precise prediction of phosphoketolase activity,
advanced multiple regression method could be applied such
as machine learning using FLs of other relevant EMUs as the
training features.

We believe that the EMUmodeling based on adjacency matrix
approach opens a number of new possibilities in metabolic
network analysis and 13C-MFA. First, as exemplified, EMUlator
can be used to select metabolites as readouts reflecting directly
in vivo enzyme activities, and can also be used to do tracer
simulations (Metallo et al., 2009; Young, 2014) which predict
the labeling results of metabolic network models ahead of “wet”
experiments, leading to further refinement. More promisingly,
EMUlator is developed toward solving the inverse problem to
estimate intracellular fluxes through an optimization search that
minimize the sum-of-squared residuals between computationally
simulated and experimentally determined measurements. With
the EMU method, metabolic flux estimation can be further
extended to computation-intensive scenarios as genome scale
network (Gopalakrishnan and Maranas, 2015) and transient
labeling process (Hendry et al., 2019). This task cannot be
accomplished by other isotope modeling methods due to a
tremendous computational burden. Currently, we are engaged
in the development of an updated version focusing on the
de novo and complete solution of 13C-MFA, in which a
global flux distribution can be estimated either from steady-
state labeling or kinetic labeling experiments. It is our hope

that EMUlator will benefit the community and fuel metabolic
research as the basis for innovative development of metabolic
analysis tools.

MATERIALS AND METHODS

Implementation of EMU Algorithm
in EMUlator
The TCA cycle example in the results illustrates the adjacency
matrix approach for implementing EMU algorithm.
The software and its instruction and are detailed in
Supplementary Information.

Strain, Culture Conditions, and Medium
Clostridium acetobutylicum ATCC 824 was used in
all experiments. For growth studies and biochemical
characterization, C. acetobutylicum cells were grown
anaerobically in 37◦C in CTFUD defined medium (Olson and
Lynd, 2012) which contains 3 g L−1 Na3C6H5O7·2H2O, 1.3 g
L−1 (NH4)2SO4, 1.5 g L−1 KH2PO4, 0.13 g L−1 CaCl2·2H2O,
0.5 g L−1 L-Cysteine–HCl, 11.56 g L−1 MOPS sodium salt,
2.6 g L−1 MgCl2·6H2O, 0.001 g L−1 FeSO4·7H2O, 0.5mL L−1

Resazurin 0.2% (w/v), supplemented with Wolfe’s Vitamin
solution (ATCC). D-xylose was supplied at concentration
of 5 g L−1 as a carbon source. The cultures were started
with the optical density at 600 nm (OD600 = 0.05-0.08)
and performed in mid-log-phase. For labeling experiments,
1,2-13C-labeled xylose (99% pure; Cambridge Isotope
Laboratories, Tewksbury, MA) was added to media at
the concentration of 5 g L−1. C. acetobutylicum strains
were kept by freezing log-phase cultures at −80◦C with
10% glycerol.

Quantitative Analysis of Fermentation
Products
Cell growth was monitored by measuring the absorbance at
OD600 with a Spectronic 21D UV-Visible Spectrophotometer
(Milton Roy, Houston, TX). To analyze extracellular
metabolites, cell samples were harvested by centrifugation
at 13,000 g for 10min. After filtration with 0.2µm filter,
the supernatant was analyzed by Agilent 1200 high pressure
liquid chromatography (HPLC) (Agilent Technologies, Santa
Clara, CA) and injected into a Bio-Rad Aminex HPX-
87H column with a Micro Guard Cation H Cartridge.
4m M H2SO4 was used as mobile phase at a flow rate of
0.6 mL/min. The column temperature was set to 55◦C.
Metabolites were detected by refractive index detector and
UV/VIS detector.

Isotope Analysis
Labeling pattern of proteinogenic amino acids from cell mass
were analyzed by Gas Chomatograph-mass spectrometry (GC-
MS) as detailed in Xiong et al. (2018). The labeling pattern
of acetate in the supernatant was directly analyzed by GC-
MS without derivatization. Analysis of samples was performed
on an Agilent 6890N GC equipped with a 5973MS Detector
(Agilent Technologies, Palo Alto, CA). Samples were injected
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at a volume of 1 uL in splitless mode, and the analyte of
interest was separated on a Restek Stabilwax-DA column (Restek
Corporation, Bellefonte, PA). A flow of 1mL min−1 was held
constant throughout the run with the following temperature
profile: 35◦C, hold for 3min; ramped at 10 ◦C min−1 to
225◦C, hold for 1min; ramped at 15◦C min−1 to 250◦C, hold
for 5 min.

Isotope Modeling From the Metabolic
Network of C. acetobutylicum
Simulations were repeated 1,000 times with metabolic fluxes
randomly generated subjecting to mass balances determined by
reactions listed in Supplementary Table 1. Fractional labeling
(FL) was calculated to indicate labeling status of metabolites
according to:

FL =

n
∑

i=0
i ·mi

n

where n is the number of carbon in a EMU, and mi represents
components of MDV (Nanchen et al., 2007).
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