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The search for a bioactive natural antibacterial agent with wound healing properties is
a common practice for the development of new-generation molecules. Antimicrobial
peptides are a good alternative to antibiotics and easy-to-form hydrogels under self-
assembled conditions without pH adjustment. With this in mind, the peptide pool
was extracted from a formulated curd composed of a blend of probiotic bacteria
such as Streptococcus thermophilus, Lactobacillus casei, and Bifidobacterium bifidum
at an optimized ratio of 7:1:2. The water content of curd was collected by the
drainage column, centrifuged, filtered through a 0.45-µM filter, and used for hydrogel
preparation. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF)
mass spectrometry (MS) analysis confirmed the presence of peptide pool in the
extracted water. The prepared hydrogel was freeze dried, and its effect on biofilm
formation, swarming mortality, antimicrobials, wound healing, and biocompatibility was
subsequently verified. Transmission electron microscope (TEM) and scanning electron
microscope (SEM) images revealed the fibrous network of peptides after self-assembly
with non-polar n-hexane solvent and a porous structure after drying, respectively. The
observed biocompatibility, antimicrobial activity, and strong wound healing activity of
the developed curd-based hydrogel have opened a new platform for antibacterial
ointment formulation.

Keywords: antibiofilm, antimicrobial, curd, hydrogel, wound healing

INTRODUCTION

Nowadays, wound repair is a major health concern because of its association with antibiotic-
resistant bacteria. The increasing failure of conventional antibiotics to repair wounds calls for the
development of new antimicrobial agents with novel targets against antibiotic-resistant microbial
pathogens. In this context, the search for bioactive substances from natural resources is a common
practice for the development of new agents. Antimicrobial peptides of plant and animal origin
are an excellent source to search for a new antibacterial wound dressing agent (Pfalzgraff et al.,
2018). Hydrogel is useful as a base material for ointment formulation and preparation of wound
dressing material (Mahata et al., 2017). Hydrogels are three-dimensional, insoluble hydrophilic
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polymer networks capable of absorbing large amounts of water or
biological fluids. Hydrogels are formed by chemical cross-linking
processes such as disulfide bond formation, polymerization, or
the reaction between thiols and acrylates or sulfonic acids that
undergo volume changes during the transition from a sol to a
gel state (Qinyuan et al., 2017). Physically cross-linked hydrogels
do not undergo significant volume changes during the sol-gel
transition, because they are prepared via the self-assembly of
polymers by changing pH and temperature (Schoener et al.,
2013). Often, physical cross-linking leads to the formation of
weaker gels compared to chemical cross-linking, and these gels
are therefore more susceptible to mechanical forces like shear
stress. This can also be used to make physical hydrogels suitable
as injectable materials (Qinyuan et al., 2017). Another advantage
of physical cross-linking is that it mostly does not depend on the
addition of organic solvents or cross-linking reagents, but offers
the possibility of using these hydrogels in various biomedical
applications such as in the controlled delivery of drugs in
tissue engineering. Different types of bases (hydrocarbon, water-
removable, and water-soluble) with antimicrobial preservatives
and various surface active agents are used in the formulation of
therapeutic ointments (Goodman et al., 2002). A self-assembly-
based approach is also used for nanohydrogel base preparation
to enhance benefits such as antimicrobial, antibiofilm, and
antioxidant activities (Mahata and Mandal, 2018).

Biofilm formation by bacteria is an emerging threat in
infection control as it is easily formed over hydrophobic body
surfaces. Biofilm-forming bacterial cells are approximately 103
times more resistant than planktonic cells and decrease the
efficacy of conventional drugs (Roberta et al., 2012). Several
cationic host defense peptides including lactoferrin of milk are
reported as effective antibiofilm agents (Fuente-Núñez et al.,
2012; Sengupta et al., 2012). However, very few studies are done
to assess the effect of ointment bases or hydrogel prepared with
antimicrobial peptides and biofilm formation.

Here, we report the extraction of peptides from the
drainage water from fermented curd, the preparation of
hydrogel using peptide, and the assessment of its antimicrobial
activity to enhance preventive measures for human health.
The developed hydrogel effectively retards bacterial growth,
inhibits quorum sensing (QS) and biofilm formation, and
accelerates wound healing.

MATERIALS AND METHODS

Three bacterial strains, Streptococcus thermophilus, Lactobacillus
casei, and Bifidobacterium bifidum, were obtained from the
National Collection of Dairy Cultures, NDRI, Karnal, India. The
cultures volume was selected on the basis of specific requirements
of the product. Keeping the basic aim in mind, the curd starter
was formulated, which would give a firm body and consistency in
texture, thickness, color, flavor, taste, acidity, and shelf life.

Preparation of Curd
Strains were freshly subcultured in MRS (de Man, Rogosa, and
Sharpe) agar medium and incubated at 37◦C for 14 h. Different
volumes of log phase grown cultures (OD at 600 nm about

0.5) were used to prepare curd. The higher inoculum volume of
S. thermophilus(70–80%) was used, while the other two cultures
(L. casei and B. bifidium) were used at 10% and 20%, respectively.
After using various combinations and ratios of cultures, the best
combination and optimized ratio of 7:2:1 (for S. thermophilus,
L. casei, and B. bifidum, respectively) were obtained.

Peptide Isolation
An acid-methanolic extract of curd water was prepared following
the method of Nayak et al. (2018). In brief, curd-drained water
was collected and then diluted 10 times with a solution of
methanol/glacial acetic acid/water (90:1:9), mixed thoroughly,
kept at room temperature for 10 min, and then centrifuged at
12,000 rpm for 30 min at 4◦C. The supernatant was collected,
the methanol was evaporated through a rotary evaporator. To
remove the lipid content, the same volume of n-hexane was
added, and centrifuged at 12,000 rpm for 10 min at 4◦C. The
upper fraction containing lipid was removed, and the lower polar
fraction containing peptides was freeze-dried and dissolved in
0.1% trifluoroacetic acid (TFA).

Further purification of curd peptides was achieved through
reverse-phase high performance liquid chromatography (HPLC)
(HPLC, Agilent 1100 series, Agilent Technologies, United States)
by using a semipreparative C18 column (Hypersil BDS-C18,
5 mm, 4.5 mm × 250 mm). The solvent system used was
acetonitrile containing 0.05% TFA (A) and 0.05% TFA (B)
in water. The gradient of solvent B was used as described
earlier (Mandal et al., 2013). The elution from the column was
monitored at 215 nm in a diode array detector with a flow
rate of 1 ml min−1. Different peak fractions were collected and
lyophilized to dryness.

Hydrogel Preparation
The lyophilized peptide pool was dissolved in 0.1% aqueous TFA
at a final concentration of 10 µg ml−1. To this, zinc nitrate
solution was added to a final concentration of 50 mg ml−1

and allowed to form hydrogel. Concentration of the zinc nitrate
solution was optimized for the formation of proper hydrogel.

Characterization of Hydrogel
Total peptide pool was characterized using a matrix-assisted
laser desorption/ionization time of flight (MALDI-TOF)
mass spectrometer. The purified lyophilized peptide pool was
resuspended in methanol and 4 µl of peptide was mixed with
4 µl of matrix (CHCA, 10 mg/ml). The mixture (1 µl) was
spotted onto the MALDI 100-well stainless-steel sample plate
and allowed to air dry prior to analysis (Mandal et al., 2009).
The spectra were recorded in positive ion linear mode. For
reproducible result of the spectrum, the sample was separately
spotted thrice and analyzed in a MALDI-TOF mass spectrometer
(Mandal et al., 2013).

For Fourier transform infrared (FTIR) analysis, the curd
peptide-based hydrogel is placed onto a KBr pellet and then dried
completely. The spectra of the dried specimens were recorded on
a Shimadzu 8400 FTIR spectrophotometer. Absorbance spectra
were recorded from 4,000 to 400 nm with a 4 cm−1 resolution,
after subtracting absorbance background (Mandal et al., 2017).
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FIGURE 1 | Hydrogel preparation from extracted curd peptides. Prepared curd in the laboratory (a); extracted curd peptide pool (b); hydrogel from peptide (c);
optimization of Zn(NO3)2 ion (i), 25 µg ml−1; (ii), 50 µg ml−1; (iii), 75 µg ml−1; (iv), 100 µg ml−1 for hydrogel preparation (d); TEM image of self-assembled curd
peptide (e) and TEM image of hydrogel (f).

For SEM images of the self-assembled curd-peptide-based
hydrogel, 5 ml of stock solution (10 mg ml−1) was placed on
the glass coverslip and dried under room temperature. Samples
were fixed onto a graphite stub and kept in an auto sputter coater
(E5200, Bio-Rad, Hadapsar, Pune, India) under low vacuum for
gold coating up to 120 s. Surface morphology was analyzed
by a scanning electron microscope (JEOL JSM 5800, GenTech
Scientific, NY, United States) operated with an accelerated voltage
between 5 and 20 kV (Mandal et al., 2017).

Antimicrobial Assay
The lyophilized peptide pool was dissolved in 0.1% aqueous
TFA and lyophilized hydrogel was added in sterile distilled
water to test its antimicrobial activity against antibiotic-
resistant S. aureus and P. aeruginosa strains following the
protocol described by Wang et al. (2018). The strains were
described earlier as used in this study (Samanta et al., 2013).
Minimum inhibitory concentration (MIC) was determined at
the lowest concentration of compound required to inhibit
the growth of the test strain without showing any turbidity
(Nayak et al., 2018).

Flow Cytometry Analysis
Flow cytometry analysis was performed following the protocol
of Roymahapatra et al. (2015). Total number of dead cell
population was determined by dot plot analysis in Cell Quest Pro
software attached to a fluorescence activated cell sorter (Becton
Dickinson India).

Biofilm Quantification
Both crystal violet (CV) staining and XTT (2,3-bis-(2-methoxy-
4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduc-
tion assay (Ramage et al., 2001) were performed to quantify the
biofilm formation as described by Mandal et al. (2013).

Fluorescence Microscopic Analysis
Biofilm-containing bacteria were stained with Syto-9 following
the supplier’s protocol (Invitrogen, Thermo Fisher Scientific,
India) and washed thrice with PBS (1×) to remove the
debris. Images of stained bacteria were captured with
an inverted fluorescence microscope (Olympus IX 70
fluorescence microscopy).

Frontiers in Microbiology | www.frontiersin.org 3 May 2019 | Volume 10 | Article 951

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00951 May 13, 2019 Time: 16:42 # 4

Manna et al. Curde Peptide Based Antimicrobial Hydrogel

Swimming Motility Assay
Swimming motility assay was performed in 0.3% LB medium
following the method described by Fuente-Núñez et al. (2012).
One-microliter aliquots of mid-log-phase (OD600 of 0.45–
0.55) cultures was inoculated and mixed with increasing
concentrations of hydrogel. The diameters of the swimming
zones were measured after incubation for 15 h at 37◦C.
Swimming motility was determined by measuring the diameters
of the twitching zones. All assays were performed in triplicate.

Inhibitory Effect of Hydrogel on
Quorum-Sensing Activity of
Chromobacterium violaceum MTCC 2656
The effect of hydrogel on the production of QS-mediated
violacein in C. violaceum was studied by the agar well assay.
C. violaceum was mixed with molten nutrient agar of and then

FIGURE 2 | High-performance liquid chromatographic profile of extracted
curd peptide (A); matrix-assisted laser desorption/ionization time of flight
(MALDI-TOF) mass spectrometric profile of extracted curd peptide (B); Fourier
transform infrared (FTIR) spectroscopic overlay profile of extracted peptide
pool (red) and prepared hydrogel (blue) (C).

poured into plates. A well of 5-mm diameter was made at the
center of the agar plates; 100 ml of hydrogel was added and
incubated at 37◦C for 16 h. The appearance of clear zone of
inhibition of bacterial growth surrounding the well confirmed the
inhibition of QS (Ghosh et al., 2014).

Determination of Quorum
Sensing-Inhibitory Concentration of
Hydrogel With Reference to
Violacein Production
One hundred microliter of log phase cells of grown C. violaceum
bacteria MTCC 2656 (2.5 × 106 CFU ml−1) were used
to inoculate 10 ml of LB medium containing different
concentrations of peptide-derived hydrogel (100–1,000 µg ml−1)
and incubated at 37◦C for 16 h with shaking. The production
of the violacein pigment was quantified following the method
of Ghosh et al. (2014). In brief, 1-ml culture was centrifuged at
13,000 rpm for 3 min, and the pellet was completely dissolved
in 1 ml of DMSO by vigorously vortexing and centrifuged at
10,000 rpm for 10 min to remove the cells. The absorbance
of the supernatant was measured at 585 nm in a digital
spectrophotometer (Thermo Spectronic UV 1). The maximum
OD585 value observed for control cells without any hydrogel was
considered as 100% violacein production. The percentage (%)
inhibition in violacein production was calculated as follows: %
inhibition in violacein production=[(OD585 value observed in the
absence of hydrogel - OD585 observed in the presence of a defined
quantity of hydrogel)/OD585 value observed in the absence of
hydrogel]× 100.

Scratch Assay for Wound
Healing Activity
Human keratinocyte cells (HaCaT) were cultured on lysine-
coated coverslips (18 mm × 18 mm) in 35-mm petri dishes
in DMEM-F12 medium at a 37◦C incubator at 5% CO2
atmosphere. An in vitro scratch wound was made by using
a 200-µl sterile pipette tip on confluent HaCaT population
attached to the coverslip. Plates containing coverslips were
washed twice with PBS (pH 7.4). The curd peptide hydrogel
was prepared in DMEM-F12 complete media and added to a
plate with a final concentration of 10 µg/ml. The coverslip
without hydrogel was used as the control. At different time

TABLE 1 | Minimum inhibitory concentration (MIC) of peptides, peptide-derived
hydrogel, and a few antibiotics.

Antibacterial agents Minimum inhibitory concentration (µg ml−1)

S. aureus P. aeruginosa

Curd extracted peptides 128 524

Peptide-derived hydrogel 32 64

Ceftazidime 31.25 31.25

Vancomycin 15.62 31.25

Piperacillin 31.25 62.50

Ofloxacin 128 128
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FIGURE 3 | Fluorescence activated cell sorter (FACS) analysis of hydrogel-treated S. aureus and P. aeruginosa at a concentration of 16 µg ml-1. Dead cell
percentages were calculated as 62.54% for S. aureus (A,B) and 34.88% for P. aeruginosa (C,D).

points (0, 8, and 16 h), the wound pictures were observed
under a phase contrast microscope (10×, Zeiss Axio Observer
Z1, Carl Zeiss, Germany) and photographed. The wound
width was measured by Axiovision software (Version 4.7.2,
Carl Zeiss, Germany) to calculate fraction of wound healing
(Fronza et al., 2009).

RESULTS

Curd Formation and
Hydrogel Preparation
Formation of different amounts of whey on the top of the
prepared curd of different textures using different amounts
of three types of probiotics was observed. The curd with the
most firm body and the best textural properties was obtained
when probiotics S. thermophilus, L. casei, and B. bifidum were
used at a ratio of 7:1:2 after optimization (data not shown
here) (Figure 1a). Peptides were isolated from curd-drained
water (Figures 1b,c). Figure 1d shows the effect of different
concentrations of zinc nitrate for the formation of hydrogel.

FIGURE 4 | Fluorescence microscopic image of bacterial biofilm formation
untreated S. aureus (a), hydrogel-treated S. aureus (b), untreated
P. aeruginosa (c), and hydrogel-treated P. aeruginosa (d). Biofilm was stained
with SYTO 9 before capturing the image.
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The optimum concentration of zinc nitrate that helps to prepare
hydrogel was determined as 100 mg/ml.

Morphological Characterization
of Hydrogel
The morphology of the hydrogel prepared was observed through
FE-SEM and transmission electron microscope (TEM). The
TEM micrograph (Figure 1e) shows their cross-linked pattern
with a large proportion of self-assembled curd peptides along
with zinc ion. Interestingly, the images from a low dilution of
colloidal solution revealed a uniform nanoparticle-like structure
that may appear after the self-assembly of the individual peptide.
The SEM image of the gel showed a uniform porous shell-
like structure (Figure 1f). This may be due to the assembly or
organization of the cross-linked structure between the peptides
of curd with zinc ions. Peptides have a strong non-covalent
interaction between them, which forms a porous hydrogel
structure. The strong physical cross-linking via hydrogen-
bonding interaction between the multiarmed peptide chain and

the zinc ion assisted in the formation of a well-organized self-
assembled hydrogel.

HPLC and MALDI-TOF Analysis of
Curd Peptides
The methanol and acetic acid extracted curd peptides
were separated through reverse-phase HPLC. The HPLC
chromatogram revealed the presence of peptide peaks in the
curd extracts (Figure 2A). The curd-derived peptide pool was
also analyzed through MALDI-TOF mass spectrometry (MS)
(Figure 2B) in positive ion linear mode and revealed the presence
of nine peaks. The ions were obtained with m/z 656.06, 772.56,
856.78, 910.52, 989.67, 1238.07, 1377.33, 1528.63, and 1680.77.

FTIR Analysis of Curd Peptides and Gel
The FTIR spectra were obtained from both extracted peptides of
raw curd and hydrogel prepared from these peptide-derived curd
gels. In both cases, a major broad peak was observed at bands
from 3,400 to 3,600 cm−1. In this region, the peaks correspond
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FIGURE 5 | Assay of biofilm formation after staining with crystal violet stain (A). Bar graph indicates the biofilm formation of S. aureus and P. aeruginosa treated with
only curd (C), biofilm formation when treated with extracted peptide (P), and treated with hydrogel (H). The concentration used was 32 µg ml−1. Violacein
production by the strain C. violaceum treated with different concentrations of peptide (B). Violacein production by the strain C. violaceum in batch culture grown with
(red line) and without (black line) peptide (C). Assay of swarming motility was evaluated on LB agar plates treated with different concentrations of hydrogel (D). The
diameters (in cm) of the swim zones were measured after incubation for 20 h at 37◦C. The swim motility was studied in medium supplemented with different
concentrations (0–200 µg ml−1) of hydrogel against both strains, with S. aureus indicated by the red line and P. aeruginosa indicated by the black line. All
experiments were done in triplicate. Data are the mean of triplicates ± SE.
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to the OH and COOH stretching. The peak at 2,931 cm−1

corresponding to –CH– stretching was observed in the same
region for both cases and confirms that the CH bond is not
involved in gel formation. Interestingly, the peak observed at
1,623 cm−1 for curd hydrogel was found at 1,642 cm−1 for
peptide fraction (corresponding to the NH out of plane, and
in some cases, it is also responsible for −C-O- stretching).
Therefore, it seems that in this region, the major shift occurs
due to the involvement of an amide (–RCONH–) bond. Another
major shift occurs at a peak of 1,044–1,053 cm−1, which is
mainly responsible for the –C–O– stretching in the primary
alcohol structure. It is clear from the FTIR analysis that the
gel formation occurred due to the vibration change at –C=O–
and –RCONH– in peptides, and H-bonds helped to create the
hydrogel after cross-linking with each other (Mansur et al.,
2008; Figure 2C).

Antimicrobial Activity
The MIC of both peptide and hydrogel was evaluated against
S. aureus and P. aeruginosa and it was found to be more
active against S. aureus (MIC = 32 µg/ml) in comparison to
P. aeruginosa (MIC = 64 µg/ml; Table 1). Flow cytometry analysis
of hydrogel treatment at a concentration of 16 µg/ml showed
a significant percentage of dead cells for S. aureus (62.54%)
and P. aeruginosa (34.88%) (Figure 3). Analysis of biofilm
formation was visualized with fluorescence microscope image
analysis (Figure 4) using SYTO 9 stain revealed a significant
reduction of biofilm formation (Figure 4) by the bacteria treated
with curd peptide-derived hydrogels. Biofilm formation was
quantified using crystal violet (CV) stain as shown in Figure 5A.

Determination of Growth and Violacein
Production of C. violaceum MTCC 2656
Violacein production from C. violaceum was monitored after
incubation with different concentrations of peptide hydrogel,

and a decrease in violacein production was observed with the
increase of hydrogel in a dose-dependent manner. Hydrogel at
a concentration of half of the MIC value completely stopped the
violacein production (Figures 5B,C).

Inhibition of Swimming Motility
Swimming motility is an important criterion for biofilm
formation and is regulated by flagellar movement of bacteria.
Swimming motility was tested by incubating S. aureus and
P. aeruginosa with peptide-derived hydrogel, and it was observed
that the motility rate of both bacteria was significantly reduced
after treatment (Figure 5D).

Wound Healing Assay
Wound healing activities were performed against immortalized
human keratinocyte (HaCaT) cell lines. HaCaT cells play a crucial
role in regulation of skin epidermal tissue regeneration and
were used as a model cell line to test in vitro wound healing
activity. The survival rate of HaCaT cells was evaluated under
different concentrations of hydrogel. Proliferation of most of
the cells occurred at a hydrogel concentration of 0.5 µg/ml.
Therefore, a hydrogel concentration of 0.5–1 µg/ml was selected
for the wound healing (scratch) assay, and it was observed that
maximum wound healing occurred after 24 h of incubation in
comparison to control. These results from in vitro scratch assay
with hydrogel indicate that this hydrogel has the potency to be
used as a wound healing agent (Figure 6).

DISCUSSION

Milk and milk products are used as essential food for human
nutrition (Goodman et al., 2002; Laakkonen and Pukkala, 2008)
because these are a good source of protein, calcium, vitamins,
and trace elements like zinc (Jelen, 2005; Miller et al., 2007).

FIGURE 6 | Wound-healing assay was performed to examine the migration of human keratinocyte (HaCaT) cells through scratch assay. Photographs were taken at
0, 4, and 24 h following the initial scratch.
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They have a significant effect against numerous diseases and they
boost the immune system to fight against pathogens. In milk
and fermented milk products, different types of proteins and
peptides are also present, which mostly act against cancer cells
(Tsuda et al., 2000). In addition, several bioactive peptides in
milk-derived raw or fermented products are well documented as
regards to their role against various pathogens and their potential
in biotechnological applications (Mandal et al., 2014; Khan et al.,
2018; Fideler et al., 2019).

Hydrogel-based dressing materials provide hydration to
wounds and accelerate the healing process for faster pain relief.
Different base materials are reported to be used for hydrogel
preparation (Liu et al., 2018). Here, a curd-extracted peptide pool
is used as the base material for the formulation of hydrogel. The
presence of different peptides with various molecular weights has
been confirmed by HPLC and MALDI-TOF MS analysis. The
prepared hydrogel formed from these curd peptides is found
porous in nature. A TEM image revealed that the rigid fibrous
structure built via cross-linking may provide the possible cause
of hydrogel formation. Earlier, it has been reported that zinc
ions are able to trigger the peptide-based hydrogel formation
(Tao et al., 2018). After a detailed mechanistic analysis, it was
also stated that the network of weak non-covalent interactions,
such as π–π interactions, hydrogen bonding, and van der
Waals forces, is capable of forming nanofibers. The carbonyl
groups of peptides may perhaps chelate the zinc ions and
accelerate the gelation process. Here, we have also observed a
significant vibrational change at –C = O- and –RCONH– in
peptides. The presence of cationic metal (Zn) ions helps in
self-assembly formation and supramolecular gel formation. The
cross-linking that occurred here may be due to the coordination
of the carboxylic acid group of peptides to the Zn ions.
Earlier, several metal ions such as Fe(II), Ni(II), Cu(II), and
Zn(II) were used to transform the copolymer to gel phase
(Kotova et al., 2015).

The healing process depends on several factors such
as epithelization, contraction, connective tissue deposition,
regeneration of new collagens, and inflammatory responses
(Anderson and Hamm, 2014). It has also been reported
that oxidative stress from neutrophile-derived oxidants and
myeloperoxidase activity trigger chronic tissue damage and
accelerate wound formation. Therefore, reactive oxygen species
(ROS) play a crucial role in chronic wound inflammation,

and scavenging of ROS developed by bioactive copolymer
may be an option to make the healing process faster. When
bacterial infection occurs, then the ROS production increases
because of the activation of NADPH oxidase (Chen et al.,
2013). The developed material shows both antibacterial and
strong antibiofilm activity to prevent the colonization of bacteria
in wounds and subsequently to promote the healing process.
Interestingly, the hydrogel has significantly reduced swimming
motility and, subsequently, biofilm formation by decreasing
flagellar movement. Earlier, it has been reported that several
chemotaxis genes are upregulated whereas the genes related
to flagellar movement are downregulated (Sarah and Daniel,
2013). Bacterial behavior within biofilms is controlled by the QS
signaling. The disruption of biofilm is necessary to effectively
control the pathogens by antibiotics. These quorum-sensing
inhibitors can competitively inhibit the QS signaling system
(Drenkard, 2003). Here, a milk-peptide-derived hydrogel is
shown to inhibit QS. Quorum-sensing inhibitors have the
potential to control bacterial infections without disturbing the
bacterial cells and to subsequently minimize the role of antibody
development (Zeng et al., 2008).

CONCLUSION

A unique probiotics-based curd preparation protocol has been
developed. A cationic peptide pool is extracted from the
developed curd and transformed into hydrogel after self-
assembly of peptide and subsequent cross-linking with zinc ions.
The hydrogel showed antibacterial and antibiofilm properties,
reduction in swarming motility of pathogenic bacteria, inhibition
of QS, and good wound healing activities. These results suggest
that milk-peptide-based hydrogel may be used for skin tissue
regeneration and repair during injury. The remaining curd after
extraction of water may facilitate the growth of probiotics in the
human gastrointestinal tract.
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