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Impact of leptospermone, a β-triketone bioherbicide, was investigated on the fungal
community which supports important soil ecological functions such as decomposition
of organic matter and nutrients recycling. This study was done in a microcosm
experiment using two French soils, Perpignan (P) and Saint-Jean-de-Fos (SJF), differing
in their physicochemical properties and history treatment with synthetic β-triketones. Soil
microcosms were treated with leptospermone at recommended dose and incubated
under controlled conditions for 45 days. Untreated microcosms were used as control.
Illumina MiSeq sequencing of the internal transcribed spacer region of the fungal rRNA
revealed significant changes in fungal community structure and diversity in both soils.
Xylariales, Hypocreales, Pleosporales and Capnodiales (Ascomycota phyla) fungi and
those belonging to Sebacinales, Cantharellales, Agaricales, Polyporales, Filobasidiales
and Tremellales orders (Basidiomycota phyla) were well represented in treated soil
microcosms compared to control. Nevertheless, while for the treated SJF a complete
recovery of the fungal community was observed at the end of the experiment, this was
not the case for the P treated soil, although no more bioherbicide remained. Indeed, the
relative abundance of most of the saprophytic fungi were lower in treated soil compared
to control microcosms whereas fungi from parasitic fungi included in Spizellomycetales
and Pezizales orders increased. To the best of our knowledge, this is the only study
assessing the effect of the bioherbicide leptospermone on the composition and diversity
of the fungal community in soil. This study showed that leptospermone has an impact on
α- and β-diversity of the fungal community. It underlines the possible interest of microbial
endpoints for environmental risk assessment of biopesticide.
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INTRODUCTION

The use of biopesticides, defined as natural active compounds, is viewed as a safe alternative
to agrochemicals for crop protection as they are considered to be less harmful and
environmental-friendly compared to synthetic pesticides (Dayan et al., 2007, 2011; Seiber et al.,
2014). Nowadays, only thirteen bioherbicides are commercially available (Cordeau et al., 2016).
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Among compound of interest, leptospermone [2,2,4,4-
tetramethyl-6-(3-methyl-1-oxobutyl)-1,3,5-cyclohexanetrione],
an allelopathic compound isolated from bottlebrush plant
(Callistemon citrinus) was used as pre-and post-emergence
herbicide to control broad leaf and grass weeds at a rate
of 3 L ha−1 (Dayan et al., 2011). Belonging to β-triketone
family, leptospermone inhibits the 4-hydroxyphenylpyruvate
dioxygenase (HPPD), a key enzyme in plant carotenoid
biosynthesis, (Rocaboy-Faquet et al., 2014) leading to
photosynthetic chlorophyll destruction of plant (Lee et al.,
2008). However, HPPDs are not specific for plant and are found
in prokaryotes and fungi, including those living in soil (Keon
and Hargreaves, 1998). Soil microorganisms which are known
to accomplish numerous functions supporting soil ecosystemic
services are key drivers to be protected (EFSA, 2017). As
recently underlined by Amichot et al. (2018) the side effect of
biopesticides has to be addressed, particularly assessing their
environmental fate and impact on soil microorganisms (Gopal
et al., 2007; Gupta et al., 2013; Singh et al., 2015a,b; Romdhane
et al., 2016), and to the best of our knowledge no studies
have been performed to estimate the effect of biopesticides on
fungal community (Thomson et al., 2015). Fungi are known
to play fundamental ecological roles in natural and managed
agricultural soils (Al-Sadi et al., 2015; Tardy et al., 2015). As it
was previously observed, application of pesticides, even at the
recommended field dose, can induce a reduction in the overall
fungal community, that could impacted the ecosystem services
in which fungi are involved (Sebiomo et al., 2011; Schlatter et al.,
2018). On the other hand, pesticides can be used as carbon source
by some fungi known to possess biodegradation abilities (Ikehata
et al., 2004; Tortella et al., 2005; Coppola et al., 2011; Panelli et al.,
2017; Góngora-Echeverría et al., 2018).

Within this context, this study assessed for the first time,
the impact of the bioherbicide leptospermone on the structure
and diversity of fungal community inhabiting two soil types.
We tested the effect of leptospermone on the diversity and
composition of the fungal communities during the experimental
time and in a same manner in the two different soils.
This goal was reached by high throughput deep sequencing
[Illumina MiSeq-based amplicon sequencing of ribosomal
internal transcribed spacer 2 (ITS2) region]. The richness of each
sample (α-diversity) and the diversity in composition among
samples (β-diversity) were assessed over time.

MATERIALS AND METHODS

Soil Characteristics and Microcosm
Experiment
Soils and microcosm set-up was previously described in
Romdhane et al. (2016). The two soils present different textures
with 2-fold more clay and sand proportion in Saint-Jean-de-Fos
(SJF) than in Perpignan (P) and with 2-fold less silt in SJF than
in P (Table 1). Both soils are poor in organic matter and show a
moderate cation exchange capacity.

Pure leptospermone was obtained as described by Owens
et al. (2013). Soil microcosms were treated at recommended field

TABLE 1 | Physico-chemical characteristics of the two soils (P and SJF) used
for the experiment.

Soil
characteristics

P Soil SJF Soil

Clay 13.9% 25.8%

Silt 60.5% 27.3%

Sand 25.6% 46.9%

Soil humidity, 20% 15%

Organic matter 1.7% 1.5%

Organic carbon 0.98% 0.9%

Cation
exchange
capacity (CEC)

15.5 meq 100 g−1 10.4 meq 100 g−1

Ca2+/CEC 214% 98%

pH in water 8.1. 7.62

History Experimental field
site having a
β-triketone history
treatment

Neither cultivated
nor treated with
pesticides for the
last 5 years

dose (D1, 5 µg g−1) or not (D0, control). For each soil, three
randomly chosen microcosms were sacrificed by sampling date
and treatment (n = 12 per sampling date). Soil samples were
then subdivided in different aliquots for dissipation studies and
molecular analysis.

Fate of Leptospermone in the Soil
Microcosms
Kinetics of dissipation and adsorption observed in P and SJF
soils have already been reported in Romdhane et al. (2016).
Briefly, leptospermone dissipation was measured during the time
course of the incubation. Soil extracts were prepared from 10 g
of each soil, and analyzed by HPLC/UV (Romdhane et al., 2016).
Calibration curves prepared with spiked blank soil samples, were
used to determine the leptospermone in soil extracts, with a
quantification limit of 0.2 mg L−1.

Adaptation of the batch equilibrium method was applied
to determine adsorption isotherms of leptospermone to both
soils, using soil samples spiked with a range of leptospermone
solutions (1 to 40 mg L−1) (Wilson and Chester, 1992; OECD,
2000; Romdhane et al., 2016). After 3 h of agitation with
1 g of soil sample, remaining leptospermone in solution was
measured by HPLC/UV.

Composition and Diversity of the
Fungal Community
The composition and diversity of the fungal community
were analyzed from DNA extracts [ISO 11063 derived from
Martin-Laurent et al. (2001)] for P and SJF soils, treated (D1) or
not (D0) with leptospermone at days 0, 4 and 45.

The amount of DNA was quantified (NanoDrop
Technologies, DE, United States) and standardized to
10 ng µL−1. Aliquots were used as template to amplify
Internal Transcribed Spacer 2 (ITS2) region of the ribosomal
RNA gene cluster (Ihrmark et al., 2012; Tedersoo et al., 2014;
Oliver et al., 2015). Amplicons were amplified with fITS7
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(5′-GTGARTCATCGAATCTTTG-3′, Ihrmark et al., 2012) and
rITS4 (5′-TCCTCCGCTTATTGATATGC-3′, White et al., 1990)
supplemented with overhang adapter at the 5′ end of each
primer. A PCR was performed in 25 µL reaction volume with the
following concentrations: DNA 30 ng, 300 µM dNTPs, 0.4 µM
of both primers (fITS7, rITS4), 1× Kapa Hifi HotStart ReadyMix
containing 2.5 mM MgCl2 and 0.5 unit of Kapa Hifi HotStart
DNA polymerase (KapaBiosystems, United States). PCR cycling
parameters were: 95◦C for 3 min, plus 30 cycles at 98◦C for 20 s,
57◦C for 30 s, and 72◦C for 30 s, and followed by an extension at
72◦C for 5 min. Relative quantity and yield were checked on 1%
agarose gel and quantified using the Quant-iTTM PicoGreenTM

dsDNA Assay Kit (Thermo Fisher Scientific, United States). The
resulting PCR products were sent to the GeT-PLaGe platform
(INRA, France) for multiplexing, purification and sequencing on
the Illumina MiSeq platform.

Sequence Analysis
Reads were passed through a quality control filter that removes
sequences with more than one expected errors for all bases
in the read and sequences under a minimum length threshold
(100 bp). Then, a dereplication step was performed: set of
unique sequence were find, sequences were compared letter-
by-letter and must be identical over the full length of both
sequences. In this step, singletons were discarded. UNOISE
algorithm (Edgar and Flyvbjerg, 2015) was performed to denoise
amplicon. Reads with sequencing error were identified and
corrected and chimeras were removed. High-quality reads were
then clustered into operational taxonomic units (OTUs) at
97% similarity using UPARSE (Edgar, 2013). The taxonomic
assignment to species level was carried out using SINTAX
algorithm (Edgar, 2016) against the Utax 22.08.2016 database
(Supplementary Table S1).

α- and β-diversity indexes were assessed at the taxonomic
rank of OTUs (MOTHUR, Schloss et al., 2009). Sample richness
estimated by observed richness, Chao 1 index, the Shannon
index and Simpson’s index were used to compare the soil
fungal community α-diversity. To visually identify patterns
of community structure among the samples (β-diversity),
a Principal Coordinates Analysis (PCoA) analysis based on
ThetayC dissimilarity matrix, was performed with MOTHUR
(Schloss et al., 2009).

Statistical Analysis
Differences between leptospermone treatments at days 0, 4 and
45 were assessed using a Kruskal–Wallis non parametric test
(P< 0.05) using “nparcomp” package of R software (Konietschke
et al., 2015). Sparse Partial Least Squares Discriminant Analysis
(sPLS-DA) was performed to select discriminant OTUs between
different treatments using the function “splsda” from R package
mixOmics (Lê Cao et al., 2017).

RESULTS

As previously observed by Romdhane et al. (2016),
leptospermone applied at the agronomical dose in P and SJF

soils was moderately adsorbed and in a similar manner for both
soils with Koc values of 144 and 137 mL g−1, respectively. The
dissipation was significantly faster in P than in SJF soil (DT50 = 4
and 9 days, respectively) but for both soils, leptospermone was
entirely dissipated at the end of the incubation.

A total of 1630991 reads (min: 14933, max: 57410)
were obtained through NGS sequencing (MiSeq Illumina
sequencing). After quality control, 553800 sequences remained
for analyses. The number of sequences per samples were of
13845 for a total of 2278 OTUs which were obtained at 98%
similarity threshold.

Ascomycota was the most dominant phylum (P: 58%, SJF:
57%), with mainly Sordariomycetes class (P: 26%, SJF: 38%)
represented by Hypocreales (P: 4%, SJF: 13%) and Sordariales
orders (P: 3%, SJF: 3%), Dothideomycetes (P: 35%, SJF: 41%)
class with Capnodiales (P: 3%, SJF: 7%) and Pleosporales (P:
5%, SJF: 16%) orders and Eurotiomycetes class (P: 14%, SJF:
9%) represented mainly by order of Eurotiales (P: 36%, SJF:
1%) (Figure 1). Basidiomycota phylum (P: 7%, SJF: 19%)
was represented by Agarocomycetes class (P: 78%, SJF: 77%)
with Agaricales order (P: 3%, SJF: 9%) and Tremellomycetes
class (P: 20%, SJF: 14%) with Tremellales order (P: 1%, SJF:
2%). Mortierellomycotina (P: 20%, SJF: 19%) subphylum was
only represented by Mortierellales order. Chrytridiomycota
(P: 12%, SJF: 3%) phylum was represented by one class
Chytridiomycetes and mainly two orders (Rhizophlyctidales,
P: 6% for, SJF: 0%, and Spizellomycetales, 2% for both soils)
(Figure 1). The composition of the fungal community of P
soil was different from that of SJF (Figures 1, 2). At both d0
and d45 observed richness was significantly lower in P than
in SJF soil while Chao1 showed similar trend but only at D0
(Table 2). After 4 days of exposure, Shannon and Simpson
indices of fungal communities recorded in P soil was lower
than in those of the control (p = 0.049). Accordingly, at the
same time, the composition of the fungal community observed
in P soil after 4 days of treatment was clearly discriminated
from the control (Figure 3A). In order to visualize the
relative abundance of selected OTUs in different treatments,
a clustered heatmap was generated for both soils. OTUs
mainly affiliated to Hypocreales (Fusarim sp.) and Capnodiales
(Cladosporium sp.) were significantly higher in leptospermone
treated soil (Figure 3B). The relative abundance of Sordariales,
Spizellomycetales and Mortierellales fungi decreased in the
treated P soil (Figure 1). Forty five days after the treatment,
fungal composition was still significantly different from the
control mainly represented by Sordariales, Pleosporales,
Hypocreales, leotiomycetes and Hypocreomycetidae fungi
(Figure 3B) while the relative abundance of Eurotiales, Pezizales,
Spiezellomycetales, Chytridiomycetales and Mortierellales
fungi were higher in treated P soils (Figure 1). In the SJF
soil, leptospermone did not induced significant changes in the
α-diversity on the fungal community (Figure 2 and Table 2),
contrary to what was observed for P soil. Nonetheless, significant
changes in the β-diversity of the fungal community were
recorded in SJF soil exposed microcosms as compared to
control (Figure 4A). While Ascomycota OTUs dominated the
composition of the fungal community of P soil, Basidiomycota
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FIGURE 1 | Relative abundance (expressed as % of the total number of OTUs) of fungal (A) phyla and (B) orders (level of class membership was also reported) in P
and SJF soils microcosms exposed to leptospermone applied at the agronomical dose (D1) or not (D0) for 0, 4 and 45 days (d0, d4, d45). ∗represented subphylum
level.

FIGURE 2 | Principal Coordinate Analysis (PCoA) of the effect of leptospermone applied at the agronomical dose (D1) as compared to the control (D0) on the
structure of the fungal community composition of P and SJF soils at 0, 4 and 45 days (d0, d4, d45). Percent of variance explained by the first two axis of the PCoA is
given.

and Zygomycota OTUs were dominant in SFJ soil (Figures 3B,
4B). In Figure 4B, one could observe that the relative abundance
of OTUs, responsive to leptospermone exposure, affiliated
to Xylariales and Hypocreales orders (Sordariomytes class),

Dothideales and Pleosporales orders (Dothideomycetes
class), Sebacinales, Cantharellales, Polyporales and Cortiales
orders (Agaricomycetes class), Filobasisiales and Tremellales
orders (Tremellomycetes class) and Mortierellales order
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TABLE 2 | Richness and diversity indices of the fungal community calculated for P and SJF soils microcosms exposed to leptospermone applied at the agronomical
dose (D1) or not (D0) at 0, 4 and 45 days (d0, d4, d45) (mean values ± standard deviation, n = 3).

Samples Index

Number of OTUs
(Observed richness)

Chao l Shannon-Wiener (H’) Simpson (D)

P-D0-d0 471.3 ± 22.5a 559.5 ± 63.0a 4.38 ± 0.36a 0.96 ± 0.01a

SJF-D0-d0 581.0 ± 86.6b 754.6 ± 120.0b 4.68 ± 0.04a 0.97 ± 0.00a

P-D0-d45 378.0 ± 67.0a 501.4 ± 73.1a 4.65 ± 0.34a 0.98 ± 0.01a

SJF-D0-d45 528.3 ± 41.4b 671.0 ± 69.8a 4.45 ± 0.08a 0.97 ± 0.00a

Perpignan P-D0-d4 529.0 ± 5.5a 629.1 ± 31.3a 4.85 ± 0.10a 0.98 ± 0.00a

P-Dl-d4 323.5 ± 90.5b 488.4 ± 135.8a 3.74 ± 0.40b 0.95 ± 0.01b

P-D0-d45 378.0 ± 67.0a 501.4 ± 73.1a 4.65 ± 0.34a 0.98 ± 0.01a

P-Dl-d45 493.7 ± 46.6a 679.3 ± 94.8a 3.85 ± 1.5a 0.81 ± 0.27a

Saint Jean de Fos SJF-D0-d4 582.3 ± 20.9a 746.2 ± 80.3a 4.61 ± 0.18a 0.97 ± 0.01a

SJF-Dl-d4 462.5 ± 55.7a 711.9 ± 81.4a 4.57 ± 0.10a 0.98 ± 0.00a

SJF-D0-d45 528.3 ± 41.4a 671.0 ± 69.8a 4.45 ± 0.08a 0.97 ± 0.00a

SJF-Dl-d45 411.0 ± 105.8a 517.0 ± 137.5a 4.34 ± 0.07a 0.97 ± 0.00a

Different letters indicate significant differences between the initial or final fungal diversity of the two soils, and between leptospermone treatments (D1) compared to control
(D0) at days 4 and 45.

(Zygomycota phylum) were significantly higher than in the
control microcosms. At the end of the incubation (45 days),
the fungal community of SJF treated soil was not significantly
different from that of control (Figure 4A) and OTUs were
mainly affiliated to Chaetothyriales and Spizellomycetales
orders (respectively Eurotiomycetes and Chytridiomycetes
classes) (Figure 4B).

DISCUSSION

To date, although EFSA recommended to implement microbial
endpoints, such as arbuscular mycorrhiza fungi, in pesticide
environmental risk assessment (EFSA, 2010), there are still a
limited number of studies evaluating side-effect of synthetic
pesticides on soil fungal community (Borowik et al., 2017;
Morrison-Whittle et al., 2017; Rivera-Becerril et al., 2017;
Góngora-Echeverría et al., 2018) and almost none concerning
biopesticides (Gopal et al., 2007).

To the best of our knowledge, this is the first study assessing
the effect of the leptospermone on the composition and diversity
of the fungal community in two different arable soils. As
expected, the composition of fungal community of P and SJF soils
were differing. Indeed, whether it is through α-diversity index
or through fungal community composition, P soil presented
the lower species richness and diversity. Its composition was
mainly dominated by Eurotiales and Mortierellales orders while
in SJF soil, Pleosporales, Hypocreales and Mortierellales orders
predominated. These differences could be partially due to
different physicochemical characteristics of the two soils and in
particular clay content, which is well known to influence the
aggregate size, moisture content and pH (Vargas-Gastélum et al.,
2015), key abiotic parameters of ecological niches. Indeed, higher
fungal alpha diversity in SJF soil than in P soil and the presence
of Pleosporales et Hypocreales fungi could be due to the fine-size

particles in this soil clay fraction (Wang et al., 2016). Moreover,
these first results could also be explained by the history treatment
of the two soils. Indeed, SJF soil was neither cultivated nor treated
with pesticides for the last 5 years contrary to P soil which
was cropped with corn and treated with synthetic β-triketone
herbicides (Romdhane et al., 2016), which could explained the
higher diversity obtained in SJF soil. However, one could observe
common features between the two soils such as the predominance
of Mortierella. These highly opportunistic genera are able to
rapidly grow on simple organic matter (Tardy et al., 2015) which
could reflect easily decomposable C-substrates in the two assessed
soils. A low abundance of Glomeromycota (<1% in both soils)
was observed in both soils. This result has already been observed
in other studies (Xu et al., 2012; Panelli et al., 2017) and may
be due to the fact that this phylum, gathered genera which are
obligate arbuscular mycorrhiza fungi forming symbiosis with
roots of most of vascular plants, could be poorly covered by
primers (Hartmann et al., 2015).

Dissipation of the bioherbicide was depending on the soil
(P-DT50 < SJF-DT50): longer persistence of leptospermone was
observed in SJF soil compared to P soil (Romdhane et al., 2016).
However, after 4 days of exposure to the bioherbicide, significant
changes in the structure of the fungal community were observed
in both soils compared to the control. The increase of the relative
abundance of Xylariales, Hypocreales (Sordariomycetes class),
Pleosporales and Capnodiales (Dothideomycetes class) fungi
might be linked to an increase of organic matter mineralization
by fungal activity (Lienhard et al., 2014) and to their possible
involvement in the biopesticide degradation, as previously
shown for synthetic pesticides (Bell and Wheeler, 1986;
Coppola et al., 2011). These orders of fungi grow quickly and
become dominant because they are well adapted to metabolize
low molecular weight organic carbon sources (Hannula et al.,
2012) such as the compounds released by dead sensitive
microorganisms like Spiezellomycetales, Pezizomycotina
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and Mortierellales fungi (respectively Chytridiomycetes,
Pezizomycetes classes and Mucoromycotina subphylum).
Moreover these fungi with melanin pigments in their hyphae
have been associated with mitigating environmental stresses
(including high temperatures, high UV radiation and extended
drought) (Bell and Wheeler, 1986). Genera like Fusarium
(Hypocreales order), well represented in treated soil microcosms,
are among those that most significantly respond to the
changing of agricultural managements (Hartmann et al., 2015)
and could be much tolerant to xenobiotic (Bourgeois et al.,
2015). Bioherbicide transformation might also explain the
increase of the relative abundances of fungal OTUs related
to Sebacinales, Cantharellales, Agaricales and Polyporales

orders and Filobasidiales and Tremellales ones (respectively
Agaricomycetes and Tremellomycetes classes) in SJF soil, where
leptospermone was still at rather high concentration after 4 days
of exposure as compared to P soil (Romdhane et al., 2016).
Indeed, several genera from these orders (i.e., Trametes sp.,
Phanerochaete sp., Cyathus sp., Phlebia sp., Cryptococcus sp.)
are known to have relatively broad amplitude of ecological
tolerance and to transform lignin and/or various recalcitrant
organic pollutants including numerous pesticides (Singh et al.,
1999; Singh and Kuhad, 1999; Ikehata et al., 2004; Tortella et al.,
2005; Xiao et al., 2011; Johnson and Echavarri-Erasun, 2011;
de Garcia et al., 2012). Moreover, these fungi, as Mortierella
genus (Mortierellales order) can grow in contaminated soils with

FIGURE 3 | sPLSDA analysis (A) of the effect of leptospermone applied at the agronomical dose (D1) on the fungal community composition in P soil at 4 and
45 days (d4, d45) as compared to control (D0) (95% confidence level ellipse plots). Heatmap plot (B) representing the relative abundances of OTUs picked up using
sPLSDA in P soil microcosms (numbers in brackets denote replicate).

FIGURE 4 | sPLSDA analysis (A) of the effect of leptospermone applied at the agronomical dose (D1) on the fungal community composition in SJF soil at 4 and
45 days (d4, d45) as compared to control (D0) (95% confidence level ellipse plots). Heatmap plot (B) representing the relative abundances of OTUs picked up using
sPLSDA in SJF soil microcosms (numbers in brackets denote replicate).
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pesticides (Kataoka et al., 2010; Salar, 2012), also because they
can use fresh organic matter released from dead microorganisms
sensitive to pesticides (Tardy et al., 2015).

Interestingly, after 45 days of incubation, the fungal
community of treated SJF soil was able to rapidly recover,
probably because of the entire dissipation of leptospermone
(Romdhane et al., 2016). Surprisingly, the β-diversity of
fungal community did not fully recover in P soil, although
leptospermone was dissipated more rapidly than in SJF soil.
At the end of the incubation in P soil, one could observe
that the relative abundance of most of the saprophytic fungi
and particularly those belonging to Sordariales, Hypocreales
Pleosporales, Helotiales, Agaricales and Tremellales orders were
lower in treated soil compared to control microcosms whereas
fungi from Eurotiales order and parasitic fungi included
in Spizellomycetales and Pezizales orders increased. In this
condition, the dissipation of the leptospermone might have
an antagonist effect by stopping the pressure on parasitic
fungi. This persistent changes in the fungal community
might result from a system drift due to changes in the
quantity and quality of organic matter in P soils induced by
leptospermone exposure (Klaubauf et al., 2010; Ma et al., 2013;
Wang et al., 2016).

To conclude leptospermone applied at the agronomical
dose caused significant changes in the β-diversity of the
fungal community. Nevertheless, while the fungal community
completely recovered in the SJF soil as already observed for
bacterial community (Romdhane et al., 2016), the recovery was
not observed in the P treated soil, although no more bioherbicide
remained. Contrary to the bacterial community (Romdhane et al.,
2016), the resilience of the fungal community is not obtained
for both soils even after the entire dissipation of leptospermone.
Taking together, our results showed that characterization of effect
of herbicides and/or bioherbicides on microbial community and
ecosystem functions, have to integrate both bacterial and fungal
communities. Indeed, treatments have shown to induce different
responses and led to promotion or suppression of beneficial
or pathogenic fungal taxa (Hartmann et al., 2015). However,

only two soil types and one concentration of application were
tested thereby burden with doubt any generalization. Further
study is needed to distinguish between direct and indirect (e.g.,
drift of the system) effects of leptospermone. This study showed
that a natural β-triketone herbicide had an effect on soil fungal
community α- and β-diversity underlining the need to even assess
the ecotoxicity of biocontrol product on non-target organisms
using microbial endpoints.
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