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Campylobacter is a major foodborne pathogen and can be acquired through
consumption of poultry products. With 1.3 million United States cases a year, the high
prevalence of Campylobacter within the poultry gastrointestinal tract is a public health
concern and thus a target for the development of intervention strategies. Increasing
demand for antibiotic-free products has led to the promotion of various alternative
pathogen control measures both at the farm and processing level. One such measure
includes utilizing essential oils in both pre- and post-harvest settings. Essential oils
are derived from plant-based extracts, and there are currently over 300 commercially
available compounds. They have been proposed to control Campylobacter in the
gastrointestinal tract of broilers. When used in concentrations low enough to not
influence sensory characteristics, essential oils have also been proposed to decrease
bacterial contamination of the poultry product during processing. This review explores
the use of essential oils, particularly thymol, carvacrol, and cinnamaldehyde, and their
role in reducing Campylobacter concentrations both pre- and post-harvest. This review
also details the suggested mechanisms of action of essential oils on Campylobacter.
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INTRODUCTION

Campylobacter is a leading cause of human gastroenteritis in the United States and worldwide
(Corcionivoschi et al., 2012; Sibanda et al., 2018). In the United States alone, the Centers for
Disease Controls and Prevention (CDC) estimates an annual 1.3 million cases occurring per year
(Centers for Disease Control and Prevention [CDC], 2018). From 1999 to 2008, Campylobacter was
estimated to cause an annual 8,463 hospitalizations and 76 deaths in the United States, along with
an annual $1.7 billion financial cost to the United States (Batz et al., 2012). In 2015, of the 4,598
hospitalizations caused by foodborne disease 1,087 were the result of Campylobacter (Centers for
Disease Control and Prevention [CDC], 2017a). This burden on public health was second only
to Salmonella when considering bacterial infections (Batz et al., 2012; Scallan et al., 2015). When
aggregating the loss of life and health due to illness, Scallan et al. (2015) determined that annually,
Campylobacter caused 22,500 disability-adjusted life years (DALY). Campylobacter was ranked 3rd

as the leading impact of public health due to foodborne illness behind non-typhoidal Salmonella
(32,900 DALY) and Toxoplasma (32,700 DALY). A systematic analysis from 1990 to 2013 identified
Campylobacter as the fourth leading cause of diarrheal disease behind rotavirus, typhoid fever,
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and cryptosporidiosis (Murray et al., 2015). According to the
World Health Organization (WHO), diarrheal diseases, viewed as
a whole, cause an estimated 550 million illness each year resulting
in the annual death of approximately half a million infants under
the age of two (World Health Organization [WHO], 2013).

In a population-based study on patients with diarrheal illness
induced by Campylobacter, over 95% of the 1,316 cases were
caused by Campylobacter jejuni (Friedman et al., 2004). This
species, along with pathogen Campylobacter coli, have been
found in the gastrointestinal tract (GIT) of poultry (Wang
et al., 2002; European Food Safety Authority [EFSA], 2010;
Centers for Disease Control and Prevention [CDC], 2017b).
Broilers and layer flocks have consistently been shown to contain
Campylobacter prevalences greater than 70% (Corry and Atabay,
2001; Stern et al., 2001; Ansari-Lari et al., 2011; Sahin et al.,
2015). Schets et al. (2017) found that 97% of layer and 93%
of broiler flocks tested positive for Campylobacter. Across eight
flocks in the Netherlands, 55 cecal samples were taken and
found that C. jejuni was the Campylobacter isolate for 100% of
cecal broiler samples where in layer hens 52% were C. coli, 40%
were C. jejuni (40%) and 7% were C. lari. Identical sequence
types were found in the soil, sediment, and surface water
which indicates potential contamination of the bird through
environmental means. Through contamination of the poultry
carcass, Campylobacter can cause foodborne illness and has been
the etiological agent in outbreaks caused by poultry products
(Nauta et al., 2009; Geissler and Powers, 2011). Therefore there
is a continued urgency to implement pre- and post-harvest
technologies to prevent Campylobacter contamination at all
stages of poultry production.

With the rise of multidrug-resistant bacteria, consumer
preference for antibiotic-free chicken, and government
regulations such as the European Union’s 2006 ban of antibiotics,
alternative antimicrobials have become necessary (Cervantes,
2015; Johnson, 2015; Shin et al., 2015). One alternative to
conventionally implemented pre- and post-harvest antimicrobial
strategies is the use of essential oils (EOs) (Tiihonen et al.,
2010; Amerah et al., 2012; Calo et al., 2015; O’Bryan et al.,
2015; Thibodeau et al., 2015; Micciche et al., 2018b). The EOs
industry had a United States market share of $6.6 billion in
2016, a 286% increase from the 2004 market share of $2.3 billion
(Zviely, 2004; Grand View Research, 2018). They are often used
as flavoring agents in food products and perfumes, embalmment,
anti-inflammatory and anesthesia remedies (Burt, 2004; Bakkali
et al., 2008). Some EOs, such as eugenol, have been reported to
have a preventative effect against cancer (Burt, 2004; Tsuneki
et al., 2005; Bakkali et al., 2008). Plant-based EOs such as eugenol,
thymol, carvacrol, and cinnamaldehyde have been examined
and screened for their antimicrobial properties against a number
of pathogens including Campylobacter (Friedman et al., 2002;
Chouliara et al., 2007; Thibodeau et al., 2015; Kelly et al., 2017;
Upadhyay et al., 2017). They are also commercially attractive
as alternative antimicrobials, because they are considered
acceptable for organic and non-conventional applications
(Micciche et al., 2018b; National Organic Program, 2018). They
may be useful not only in preventing human health-related
diseases but in improving the performance of the bird

(Alcicek et al., 2004; Hernandez et al., 2004; Diaz-Sanchez
et al., 2015; National Organic Program, 2018). As such, the
objective of this review was to discuss EOs as an intervention
approach for limiting Campylobacter contamination in the
poultry industry pre- and post-harvest. By investigating the
metabolic activity of Campylobacter, a greater understanding
of the mechanistic effects of EOs may be elucidated for more
optimal application approaches in the future.

Campylobacter CHARACTERISTICS AND
METABOLISM

Campylobacter belongs to family Campylobacteraceae, which
also includes Arcobacter and Helicobacter (Fitzgerald and
Nachamkin, 2011). They are non-sporulating Gram-negative
microorganisms, with an s-shape and cell dimensions between 0.5
and 5 µm and ranging in width from 0.2 to 0.9 µm (Vandamme
et al., 2006). A single polar flagellum is found in 20 of the 22
species with the exception being the non-motile C. gracilis and
C. showae that possess multiple flagella (Debruyne et al., 2008;
Facciolà et al., 2017). Campylobacter spp. are microaerophilic
and grow optimally in a gas composition of 5% O2, 10% CO2,
and 85% N2, pH of 6.5 to 7.57 and from 37 to 42◦C (Garénaux
et al., 2008; Davis and DiRita, 2017; Facciolà et al., 2017).
Campylobacter will not grow at temperatures below 30◦C, due to
an absence of a cold shock protein gene, or with a water activity
below 0.987, which is necessary to maintain turgor pressure
(Hazeleger et al., 1998; De Cesare et al., 2003; Wallace, 2003;
Levin, 2007; Facciolà et al., 2017). Cold shock proteins range
from 65 to 75 amino acids serve as nucleic acid chaperones that
prevent mRNA secondary structures from forming which enable
efficient transcription and translation (Phadtare and Severinov,
2010; Keto-Timonen et al., 2016). Interestingly, despite the
lack of a cold shock protein, biofilms of C. jejuni have been
found to form and persist in 13◦C conditions and formed
biofilms with the largest surface area compared to 20, 37, and
42◦C (Sanders et al., 2008). Attachment of planktonic cells
to the biofilms was not significantly impacted by temperature
(Sanders et al., 2008).

Compared to other foodborne pathogens occupying the
poultry GIT, Campylobacter possesses a metabolism that is
somewhat different and thus may be a challenge for some
intervention strategies. Campylobacter spp. do not utilize the
traditional glycolysis pathway, instead favoring amino acids
such as aspartate, glutamate, serine, and proline for their
cellular respiration pathways (Stahl et al., 2012). The traditional
glycolytic pathway is incomplete as genes encoding glucokinase
and 6-phosphofructokinase are absent (Parkhill et al., 2000).
Furthermore, despite a complete tricarboxylic acid cycle (TCA),
gluconeogenesis from glucose-6-phosphate to glucose is not
observed, and the genes necessary for encoding the proteins
associated with the pathway are absent (Parkhill et al., 2000;
Velayudhan and Kelly, 2002). Some of the gluconeogenesis and
glycolysis genes and respective proteins are present which has
led to the hypothesis that C. jejuni can catabolize intermediary
molecules (Stahl et al., 2012). For instance, Hofreuter et al. (2006)
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suggested that the presence of a glycerol-3-phosphate transporter
(GlpT) in C. jejuni 81176 could be indicative of the breakdown
of glycerol-3-phosphate to generate pyruvate and potential
further breakdown through the TCA cycle. Additionally,
the non-oxidative portion of the pentose pathway shunt
(transaldolase, transketolase, ribulose-3-phosphate epimerase,
and ribose-5-phosphate isomerase) is suggested to have the ability
to metabolize pentose sugars (Line et al., 2010).

Two studies independently identified novel l-fucose pathways
with a l-fucose permease that is homologous to the one
characterized in E. coli (Dang et al., 2010; Muraoka and Zhang,
2010; Stahl et al., 2011). Fucose is a component of eukaryotic
glycoproteins and is found in mucin (Allen and Griffiths, 2001;
Robbe et al., 2004). Campylobacter jejuni utilizes fucose as a
chemoattractant for mucin attachment (Hugdahl et al., 1988; Tu
et al., 2008; Gangaiah et al., 2010; Kassem et al., 2013). While
fucose uptake was phenotypically observed in C. jejuni strain
NCTC 11168 (isolated from human feces), it was not detected
in strains 81116 and 81176 (Muraoka and Zhang, 2010). This is
due to the presence of a genomic island cj0480c–cj0490, which
has been linked to an increase in virulence (Parker et al., 2006).
Stahl et al. (2011) noted that this metabolic pathway improved
colonization of the piglet model for human disease indicating its
importance in human-associated pathogenesis. Moreover, when
the l-fucose pathway genes were mutated, C. jejuni was still
able to colonize the ceca of chickens but was outcompeted in a
co-colonization experiment by the wild-type strain (Muraoka and
Zhang, 2010). Despite the presence of this metabolic pathway,
Campylobacter is largely asaccharolytic and relies primarily
on amino acids and organic acids for its energy and carbon
needs (Lin et al., 2009; Stahl et al., 2012; Kassem et al., 2013;
Kelly et al., 2017).

Amino acids utilized by Campylobacter as carbon and
energy sources include asparagine, glutamine, serine, aspartate,
and proline (Wright et al., 2009). Campylobacter jejuni will
preferentially utilize serine, aspartate, asparagine, and glutamate
(Guccione et al., 2008; Wright et al., 2009; Stahl et al.,
2012). Parsons (1984) determined the most common amino
acids within the ceca of leghorn hens through ion-exchange
chromatography. Serine ranked 4th (92.2 mmol/mol ceca
content), aspartate ranked 2nd (109.9 mmol/mol ceca content),
and glutamate ranked 1st (137.5 mmol/mol ceca content) as
the most concentrated amino acids within the ceca. Asparagine,
glutamine, glycine, cysteine, and tryptophan concentrations were
not reported. While these concentrations will vary depending
on diet, GIT microbial population, and bird type, the data
provides insight into why amino acid metabolism of C. jejuni
could play an essential role in its ecological niche within the
poultry GIT (Ravindran and Bryden, 1999; Stahl et al., 2012).
Whereas other species must rely on carbohydrate fermentation,
the plentiful concentration of amino acids in the poultry ceca,
due to protein-rich diets, allows Campylobacter to thrive (Józefiak
et al., 2004; Vegge et al., 2009; Hermans et al., 2012).

Not all poultry dietary components contribute directly to
the nutrition of the bird but may still interact with the GIT
microbial population including resident foodborne pathogens.
For example, there are primary plant compounds and secondary

plant metabolites present in the poultry GIT that may not
necessarily serve directly as nutrients but can still nutritionally
influence bird performance (Smithard, 2002). While some
fiber components, particularly lignin, are generally considered
indigestible in the avian GIT, they can still impact GIT
microbial composition, alter fermentation patterns, and influence
metabolite absorption (Ricke et al., 1982, 2013; Jung and Fahey,
1983; van der Aar et al., 1983; Dunkley et al., 2007; Baurhoo
et al., 2008; Sima et al., 2018). These high fiber sources have also
been shown to limit the establishment of foodborne pathogens
such as Salmonella Enteritidis in laying hens when serving as the
primary dietary source in laying hens (Ricke, 2003; Woodward
et al., 2005; Ricke et al., 2013). Plants also contain phenolic
monomers (Jung and Fahey, 1983). Phenolic monomers can not
only cross-link carbohydrates with lignin in the plant, decreasing
fiber degradation in the GIT, but in their free form can be
antimicrobial to aerobic and anaerobic bacteria (Zemek et al.,
1979; Jung and Fahey, 1983).

Aromatic compounds can also be modified anaerobically
(Tschech and Schink, 1985; Netzer et al., 2016). Often phenolic
compounds such as chlorophenol and chlorobenzoate can be
utilized as electron sinks, resulting in their reduction and
modification within the lower GIT (Häggblom et al., 1993; Frazer,
1994). While Campylobacter has been shown to utilize some
aromatic compounds such as resorcinol and β or γ-resorcylate,
this was only shown in the presence of Clostridium spp.
(Tschech and Schink, 1985; Evans and Fuchs, 1988). However,
other aromatic compounds can be utilized as energy sources
by some bacteria (Overhage et al., 2006). MetaCyc identifies
five complete aromatic degradation pathways present in E. coli
including cinnamate, phenylethylamine, nitroaromatic, and
phenols (version 22.5; BioCyc; Menlo Park, CA, United States)
(Caspi et al., 2015). Chlorobenzene, paraoxon, parathion,
and shikimate degradation pathways have been identified in
L. monocytogenes and degradation of p-cymene, along with other
aromatic compounds, have been characterized in Pseudomonas
spp. In Campylobacter, only the catechol degradation pathway
has been detected. Numerous biodegradation enzymes have been
elucidated in E. coli; for instance, eugenol has been shown to
be degraded to ferulic acid by the vaoA gene-encoded enzymes
(Díaz et al., 2001; Overhage et al., 2003, 2006). However, only
resorcinol, protocatechuate, and phloroglucionol degradation
enzymes are known to occur in Campylobacter (Evans and
Fuchs, 1988; Villemur, 1995). Given the limited metabolic
capacity of Campylobacter for modification, it would be intuitive
that aromatic compounds that exhibit antimicrobial properties
could effectively reduce Campylobacter populations in poultry
production. This is important since aromatic compounds are one
of the constituents present in phytobiotics.

PHYTOBIOTICS

Phytobiotics are plant-based compounds or extracts that have
been suggested for use in commercial, and possibly organic,
poultry production (Windisch and Kroismayr, 2007; Bakkali
et al., 2008; Diaz-Sanchez et al., 2015; Micciche et al., 2018b).
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Most phytobiotics are Generally Recognized As Safe (GRAS)
by the U.S Food and Drug Administration [FDA], 2018 and
are less toxic and typically more residual-free compared to
synthetic antibiotics (Diaz-Sanchez et al., 2015; U.S Food and
Drug Administration [FDA], 2018). Botanicals, a subset of
phytobiotics, are leaves, roots, bark, or other parts of a plant, and
the terminology is often used interchangeably with phytobiotics
(Windisch and Kroismayr, 2006; Mohammadhosseini et al.,
2017). Other types of phytobiotics include herbs, which are
derived from flowering non-persistent plants, oleoresins which
are non-aqueous extracts such as balsam, and EOs (Prior and
Cao, 2000). In this review, the focus will primarily be on the
activity of EOs, but other phytobiotic compounds such as herbs
will also be mentioned.

Essential oils, also known as volatile or ethereal oils, are
oily plant-based liquids that possess aromatic properties (Burt,
2004; Hardin et al., 2010). The term “essential oils” was first
coined by Paracelsus von Hohenheim in the 16th century
(Guenther(ed.), 1948). The term ‘essential’ relates to the effective
element in a medical preparation of the drug and is therefore
loosely defined (Oyen and Dung, 1999). Currently, there are over
3,000 known EOs with approximately 300 being commercially
relevant (Bakkali et al., 2008; Diaz-Sanchez et al., 2015). They
include oils such as turpentine, eugenol, and cinnamaldehyde,
and can be derived from other botanical compounds and herbs
such as thyme, oregano, rosemary, and lemon (Burt, 2004; Fisher
and Phillips, 2008; Diaz-Sanchez et al., 2015). Essential oils are
extracted from their corresponding plants by steam distillation,
hydrodistillation, or solvent extraction which all can create
a concentrate of aromatic and volatile compounds including
terpenoids and phenylpropanoids (Nakatsu et al., 2000; Hardin
et al., 2010; Raut and Karuppayil, 2014). The concentrations of
the ‘essential’ compounds in EOs vary wildly and are not typically
defined (Lee et al., 2004a; Benavides et al., 2012).

NON-ANTIMICROBIAL EFFECTS OF EOs
IN POULTRY

Essential oils have a wide range of applications including
turpentine for paint mixing or linalool and linalyl acetate that
are used as alternative sleep aides (Buchbauer et al., 1991; Burt,
2004). Many are incorporated as ingredients for their palatable
tastes and smells in foods and aromatic sprays (Franz et al., 2010).
Oregano, thyme, and cinnamon are well-known flavor enhancers
(Khan and Abourashed, 2011; Wang et al., 2013). Bergamon is
used for its aromatic properties of Earl Gray Tea, while synthetic
based citrus oils are an ingredient in soft drinks (Fabricant, 2008;
Gonzalez-Molina et al., 2009; Callaway et al., 2011). While 32.9%
of EOs are applied in the food and beverage industry, the second
largest application of EOs in 2015 was for spa or relaxation
purposes (30.84%) (Grand View Research, 2018).

In poultry, EOs have been utilized in preharvest management
settings for non-pathogen related benefits (Diaz-Sanchez et al.,
2015). Digestibility of poultry feed has been shown to be
improved by the addition of EOs (Williams and Losa, 2001).
CRINA R© (Akzo Nobel, Crina S.A, Switzerland) is a commercial

blend of EOs containing thymol, eugenol, and piperine. Broilers
fed 50 mg/kg of CRINA R©, exhibited improved activity of total
amylase, trypsin, and maltase of 40kU/pancreas, 63U/pancreas,
and 12.6 µM/g mucosa respectively, compared to the control
group activity of 29kU/pancreas, 42U/pancreas, and 10.6 µM/g
mucosa, respectively (Jang et al., 2004, 2007). This effect was not
observed; however, when 0.1% of lactate was also introduced into
the diet (Jang et al., 2004). The use of 200 ppm of a blend of
oregano, cinnamon, and pepper improved fecal digestibility of
dry matter (Hernandez et al., 2004). Ileal absorption levels of
amino acids such as threonine, serine, asparagine, phenylalanine,
histidine, and lysine were positively improved by 7.8 and 8.8%
by the addition of 150 and 300 ppm of a plant extract containing
capsaicin, carvacrol, and cinnamaldehyde (Jamroz et al., 2003).

Amino acid absorption studies have also been performed
using rat intestines. A catheter was attached to both ends of
a sector of the jejunum of anesthetized rats (Kreydiyyeh et al.,
2000). In the treatment groups, the jejuna were preincubated
with 1000 ppm cinnamaldehyde or 850 ppm of eugenol or a
saline control. Alanine was then fed through the jejuna, and it
was observed that after 40 min the jejuna preincubated with
cinnamaldehyde and eugenol absorbed 22 to 25 nmol of alanine
compared to 60 nmol in the control. This suggests reduced
nutrient absorption (Kreydiyyeh et al., 2000; Lee et al., 2004a).
However, conclusions drawn from this study may be difficult
to apply to production animals due to the high concentrations
necessary in the feed to result in similar concentrations in the
GIT as utilized in Kreydiyyeh et al. (2000). Lee et al. (2003)
observed that 100 ppm of thymol or cinnamaldehyde exhibited
no significant effect on pancreatic digestive enzyme activity at
day 21 or day 40 within female broilers (Lee et al., 2004a). This
study shows that thymol alone is unable to impact pancreatic
digestive enzymes within poultry and a combination of multiple
EOs, such as in Jang et al. (2004, 2007), may be necessary
to impact digestibility responses in broilers. However, it may
be specific combinations of EOs that impact digestibility and
nutrient absorption.

Improvements in nutrient absorption and digestibility can
result in improved growth rates within broilers (Gous, 2010).
Feed conversion ratio (FCR), the ratio between feed intake and
average weight gain, is one of the more commonly used metrics to
determine if a feed additive is beneficial to commercial livestock
production (Leenstra, 1986). Several studies have reported no
improvement in growth rate or FCR when diets have been
supplemented with EOs (Lee et al., 2003; Jang et al., 2004, 2007).
However, FCR and body weight gain (BWG) improvements
have been observed in other studies that utilized EOs (Denli
et al., 2004; Cabuk et al., 2006; Basmacioğlu Malayoğlu et al.,
2010). Cabuk et al. (2006) demonstrated that 24 or 48 mg/kg of
HeryumixTM significantly improved FCR on days 21 to 1.53 and
1.56 compared to the control at 1.62. On day 42, compared to the
control at 1.87, the FCR was also improved to 1.80 and 1.77 with
24 or 48 mg/kg of HeryumixTM (Cabuk et al., 2006). HeryumixTM

is composed of oregano, laurel leaf, sage, myrtle, fennel, and citrus
peel extracts (Herba Gida Maddeleri; Seferihisar, Turkey). Denli
et al. (2004) observed similar improvements in quail when their
diet was supplemented with 60 mg/kg of thyme or black seed oil.
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This discrepancy may be due to certain variables including
bird type, feed composition, and EO type. The intestinal mucosa
and GIT microbiome composition of birds vary depending on
the species and age of the bird (Zoetendal et al., 2004; Stanley
et al., 2014). While the phyla Bacteroidetes and Firmicutes are
dominant within quail and broiler chicken cecal microbiomes,
the represented genera are different (Oakley et al., 2014; Liu et al.,
2015). Over 117 different genera were identified by Wei et al.
(2013) in broiler chicken ceca. The quail microbiome, however,
is not as taxonomically rich at the genus level with only 32
genera being detected by Wilkinson et al. (2016). Furthermore,
while the top five most dominant genera based on taxa analyses
were Lactobacillus, Rumiunoccocus, Clostridium, Bacteroides,
Faecalibacterium in the chicken cecal microbiome, the quail
ceca microbiome was dominated by Bacteroides, Ruminococcus,
Faecalibacterium, Enterococcus, and Clostridium (Wei et al., 2013;
Wilkinson et al., 2016). These microbiome differences along with
unknown host-species interactions should be considered when
evaluating and comparing the effectiveness of any particular feed
amendment across species (Koutsos and Arias, 2006).

Additionally, the feed may play a major role in how EOs
improve FCR. As elucidated in Jamroz et al. (2003), EOs can
impact the absorption of amino acids and potentially other
nutrients in the ileum. As a consequence, the FCR should
be improved in birds on typical commercial diets amended
with EOs. Furthermore, improved absorption of amino acids
could conceivably also allow for the use of non-conventional
diets that contain less protein. In-depth studies employing not
only commercial bird performance measurements but intestinal
pathway and tissue profiling to screen and compare feed
composition and EO blend combinations would be necessary to
address this hypothesis.

Finally, while terpenoids are the main constituents of EOs,
their chemistry can vary widely (Jager, 2010). For instance,
carvacrol is a monoterpene alcohol and, in rats, its aliphatic group
readily undergo aromatic hydroxylation while its alcohol group
undergoes carboxylation (Jahrmann, 2007; Jager, 2010). Thymol
on the other hand forms derivatives of benzyl alcohol and
2-phenylpropanol when reduced (Austgulen et al., 1987). When
carvacrol was fed to rats, their excreted urine contained more
of 2-(3-Hydroxy-4-methylphenyl)propan-2-ol then carvacrol but
when thyme was fed to rats it was in the highest concentration
out of its five derivates (Austgulen et al., 1987). This suggests,
in rats, that carvacrol undergoes chemical interactions and
is metabolized more than thymol. This functional difference
between EO metabolism, along with the importance of bird type
and feed composition, may in part explain the variation in EOs
benefit to broiler nutrition.

Although there is variation in EOs benefit to poultry growth,
the antioxidant activity of many EOs is well-known (Baratta
et al., 1998; Ruberto et al., 2000; Martucci et al., 2015). Rosemary
oil, thymol, carvacrol, oregano, ginger, and coriander all possess
antioxidant activity (Wei and Shibamoto, 2007). An oxidation
deterioration test involving the application of EOs to lard
indicated that 0.20% oregano possessed the most antioxidant
capacity followed by thyme, dittany, marjoram, spearmint, then
lavender (Economou et al., 1991). Economou et al. (1991) also

found that combinations of thyme and marjoram and thyme
and spearmint EOs also had potential synergistic properties in
protecting lard from oxidation. These properties benefit bird
health and can be marketable if EOs are used on the finished
product (Lee et al., 2004b; Diaz-Sanchez et al., 2015).

Additionally, the sensory characteristics of EOs mean that
they can enhance the sensory characteristics of the final products
if used in the appropriate concentrations. The addition of
300 mg/kg of oregano, garlic, or an equal combination in the
diets was shown to significantly improve the flavor of frozen
chicken breasts up to 60 days (Kirkpinar et al., 2014). Birds fed
the EOs were processed, and the breasts were stored at−25◦C for
sensory analysis. Overall flavor evaluated on days 1, 15, and 30
indicated that all EOs treatments scored significantly higher than
the control. Overall acceptability scores of breast meat indicated
that only garlic resulted in a more palatable final product on days
1, 15, and 30. Overall acceptability scores were based on flavor,
appearance, and tenderness. Days 45 and 60 scores were not
analyzed statistically due to spoilage. On organic seabass filets, the
addition of 0.2% thyme oil improved the sensory characteristics
(Kostaki et al., 2009). A panel of seven judges evaluated the filets
on nine days within a 21-day storage trial where the filets were
held at−30◦C. While the control group reached the acceptability
limit on taste in 6 days the addition of 0.2% thyme improved
the sensory characteristics scores extending shelf life by 2 days.
When the filets were placed in modified atmospheric packaging
(MAP) (60% CO2; 30% N2; 10% O2), sensory characteristics
were improved to allow for a shelf life of 14 days. When thyme
oil was added to the MAP, shelf life was extended by 3 days.
Despite these potential benefits, their antimicrobial activities
might be some of their more important attributes to commercial
poultry production.

ANTIMICROBIAL MECHANISMS OF
ESSENTIAL OILS

Indirect Antimicrobial Mechanisms
There are indirect characteristics associated with the presence of
EOs that may play a role in reducing Campylobacter and other
pathogen loads on the final poultry meat product. While no
definitive mechanism has been elucidated, there have been several
potential antimicrobial outcomes that may indirectly impact
Campylobacter. For instance, the improved ileal absorption of
amino acids within broilers, as demonstrated by Jamroz et al.
(2003), may limit a required nutrient source for Campylobacter
in the ceca (Velayudhan et al., 2004). Improvement of the
immune response may also impact pathogen concentrations
(Diaz-Sanchez et al., 2015). Layer hens exhibited improved
antibody titer levels to Newcastle disease and infectious bursal
disease when their diets were supplemented with HeryumixTM

(Özek et al., 2011). In another study with HeryumixTM, the
humoral immune response of layer hens in heat stress was not
stimulated (Bozkurt et al., 2012). Basmacioğlu Malayoğlu et al.
(2010), noted that broilers fed 0, 250, or 500 mg/kg of oregano
exhibited IgG concentrations of 27.42, 30.50, and 39.41 mg/dL,
respectively. The IgM concentrations were 7.91, 9.58, and
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11.71 mg/dL, respectively (Basmacioğlu Malayoğlu et al., 2010).
However, while these concentrations of antibodies were higher,
they were not statistically significant (P > 0.05) (Basmacioğlu
Malayoğlu et al., 2010). As such, further research should be
conducted to elucidate the mechanism(s) of EOs on the poultry
immune system. Understanding how EOs improve the immune
system of poultry may be important because Campylobacter
colonization may elicit an immune response, and therefore there
is potential to reduce Campylobacter concentrations through
immune system modulation (Connerton et al., 2018). Essential
oils may also interact with Campylobacter populations directly.

Direct Antimicrobial Mechanisms
Much of the mechanisms associated with antimicrobial activities
of EOs have been elucidated from microorganisms other than
Campylobacter, and thus assumptions regarding Campylobacter
must be inferred to some extent. General antimicrobial
mechanisms associated with EOs have been extensively described
previously by O’Bryan et al. (2015) and will be discussed briefly
in the current review with specific emphasis on Campylobacter
where applicable. Essential oils have been shown to alter
proteomes and cell morphology of pathogenic bacteria (Nazzaro
et al., 2013; O’Bryan et al., 2015). Significant morphological
differences in cell shape have been observed when EOs such as
mint, thymol, and cinnamaldehyde have been applied to bacteria
(Kwon et al., 2003; Kalchayanand et al., 2004; Hajlaoui et al.,
2009). For instance, the use of cinnamaldehyde on Bacillus cereus
inhibited cell division resulting in elongated filamentous cells
that were clumped together with incomplete septa (Kwon et al.,
2003). After 1 h, almost all cells were in filamentous chains
with no clear septas. Salmonella enterica serovar Thompson
grown in the presence of a sub-lethal concentration of thymol
(0.01%) demonstrated an altered proteomic profile compared
to the control, which included downregulation of binding and
chemotaxis proteins, but resulted in upregulation of other
outer membrane proteins (Di Pasqua et al., 2010). In-depth
analysis using 2-D PAGE, followed by MALDI-TOF, revealed
that GroEL and DnaK were upregulated in the presence of
thymol. GroEL, along with GroES, as well as DnaK, along with
DnaJ, prevents misfolding and proper indiscriminate assembly
of polypeptides under stress conditions within the cytoplasm
(Fenton and Horwich, 1997; Motojima, 2015). Changes in
regulation were detected by spot detection, and the relative size
of the GroEL spot was 0.109 units in the control compared to
a spot size of 1.044 units. The DnaK spot was not detected in
the control but exhibited a size of 0.267 in the treatment with
thymol. Other downregulated proteins include CheW, which is
involved in transferring sensory signals from chemoreceptors
to flagellar motor proteins, and thioredoxin docking proteins
(Trx1). The spot size of CheW was 0.153 units and was not
detected in the thymol treated cells where the Trx1 spot was
0.223 units in the control and not detected in the thymol
treatment. Trx1 is an active oxidation–reduction protein that
has been found to be involved in cell division in E. coli,
which suggests thymol may play a role in the inhibition of
bacterial population growth (Kumar et al., 2004). Trx1 refolds
citrate synthase, an essential enzyme in the TCA cycle, and

by downregulating Trx1 with thymol, citrate synthase was not
present. In addition, enzymes of the reverse TCA cycle were
upregulated in the thymol treatment such as an increase of
citrate lyase from 0.08 units to 0.654. Acetate kinase was also
reduced from 0.567 units to 0.19 units within Salmonella.
These results may not be replicated in Campylobacter due
to its incomplete glycolytic pathways and studies investigating
the use of EOs to alter the proteome of Campylobacter
should be performed.

Another proposed mechanism for the effect of EOs on bacteria
such as Campylobacter is their potential to disrupt the outer
membrane and initiate cell lysis (O’Bryan et al., 2015). Attributed
largely to EOs hydrophobicity, the outer membrane lipids may
be disrupted, sheared, or penetrated, allowing for an increase in
permeability (Fisher and Phillips, 2009; Brenes and Roura, 2010;
Guinoiseau et al., 2010). Carvacrol and thymol, in 200 mg/L
concentrations, have been demonstrated to inhibit E. coli through
fluorescent flow cytometry (Xu et al., 2008). The mechanism
proposed in this study, supported by Helander et al. (1998), was
that EOs disrupt the lipopolysaccharides membrane structure
and alter the proton gradient (Xu et al., 2008). This effect
may not occur in Campylobacter spp. due to their reliance on
fermentation pathways and would have to be investigated (Line
et al., 2010). Alterations of the lipopolysaccharide membrane can
still lead to disruption of the cytoplasmic membrane and cell
lysis (Xu et al., 2008). Electron microscopy has demonstrated
the E. coli treated with oregano oil resulted in cell membrane
collapse and leakage of contents (Sikkema et al., 1995; De Sousa
et al., 2012). Cumin derived p-cymene has been demonstrated
to swell bacterial cell membranes and has been suggested to be
used synergistically with carvacrol to lyse bacterial membranes
(Ultee et al., 2002). Other phenolic compounds have been
observed to demonstrate this effect on the bacterial membrane
(Cosentino et al., 1999; Juliano et al., 2000; Lambert et al., 2001;
Brenes and Roura, 2010).

Essential oils have also been shown to impact Gram-positive
organisms (Si et al., 2006). Cinnamaldehyde and eugenol, only
when used in combination, were shown to inhibit Staphylococcus,
Micrococcus, and Bacillus (Moleyar and Narasimham, 1992).
Moreover, when considering the 300 commercially viable
EOs, it is quite likely not all EOs may operate under the
same mechanism (Diaz-Sanchez et al., 2015). They may even
operate in concert with a series of mechanisms that represent
contradictory activities against bacterial cellular processes. While
some EOs blends promote the growth of beneficial bacteria
others have inhibited beneficial bacteria such as Lactobacillus,
and even some Bacillus species (Kivanç et al., 1991; Manzanilla
et al., 2001; Delaquis et al., 2002; Jamroz et al., 2003; Donsi
et al., 2011). Furthermore, the antimicrobial activity may
not be attributable to one specific mechanism (Skandamis
et al., 2001; Carson et al., 2002). When considering all of
the proposed mechanisms it seems more than likely that
multiple mechanisms are responsible for the effect of EOs
against pathogens including Campylobacter (Diaz-Sanchez et al.,
2015). As a consequence, the impact of EO blends on
Campylobacter populations may vary considerably in pre and
post-harvest applications.
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ANTIMICROBIAL EFFECTS OF EOs ON
Campylobacter IN POULTRY
PRE-HARVEST ENVIRONMENTS

Transmission and Colonization of
Campylobacter in the Poultry GIT
The use of EOs in pre-harvest environments has focused
on preventing pathogen colonization or reducing their
concentration in the GIT (Brenes and Roura, 2010).
Campylobacter resides in the intestinal mucosa of the avian
GIT and can be rapidly transmitted throughout a flock via
the drinking water and fecal-oral route (Montrose et al., 1985;
Beery et al., 1988; Keener et al., 2004). Campylobacter virulence
factors that impact colonization include, motA, fliA, jlpA,
and racR and were discussed in Upadhyay et al. (2017) and
reviewed in Bolton (2015). While there is still controversy
over how and when Campylobacter colonize the ceca, the
most common route is believed to be horizontal transmission
throughout the flock (Cox et al., 2010; Silva et al., 2011). Vertical
transmission has been reported from parent to fertile egg and
studies have detected 35% inoculation of the progeny (Clark
and Bueschkens, 1985; Chuma et al., 1994; Cox et al., 2010).
However, in a study with 60,000 progeny-parent breeders there
was no evidence of vertical transmission, and therefore more
emphasis is placed on Campylobacter colonization occurring
through horizontal or environmental transmission (Callicott
et al., 2006; Silva et al., 2011). Campylobacter can spread
through water supplies, insects, litter, rodents, fecal content,
and from bird to bird contact (Aarts et al., 1995; Adkin et al.,
2006; Horrocks et al., 2009). Campylobacter colonization is
usually detected at approximately 3 weeks of age and with
concentrations rapidly reaching 107 CFU/g (Corry and Atabay,
2001). The ceca, containing up to 109 CFU/g, contains the
largest concentration of Campylobacter within the avian GIT
due to the abundance of nutrients, including amino acids,
and the temperature in the avian ceca being approximately
42◦C, which is optimal for Campylobacter growth (Stern,
2008; Gerwe et al., 2010; Troxell et al., 2015). The ceca are
closed pouches between the ileum and the colon (Duke, 1986).
This site is an important consideration for food safety as
the ceca may rupture during poultry processing leading to
contamination of the finished poultry product if not properly
handled (Hargis et al., 1995).

EOs and Campylobacter in the Ceca
When examining responses of cecal contents in vitro, 20 mM
(approximately 0.3%) of cinnamaldehyde, thymol, eugenol,
or carvacrol were all independently effective in significantly
reducing Campylobacter concentrations after 15 s of incubation
(Kollanoor-Johny et al., 2010). By 8 h incubation, 10 mM
concentrations of cinnamaldehyde, thymol, eugenol, or carvacrol
were sufficient in decreasing C. jejuni by at least 5-log colony
forming units (CFUs)/mL (Kollanoor-Johny et al., 2010). Kurekci
et al. (2013) spiked 3 × 108 CFU/ml of C. jejuni C338 into
20-day old chicken cecal contents that previously contained
no detectable Campylobacter. One gram of cecal contents was

mixed with 19 mL of an anaerobic media containing 0.05 or
0.025% lemon myrtle oil. The media comprised of MgSO47H2O,
0.5 g; CaCl2, 0.02 g; K2HPO4, 0.75 g; NaH2PO4H2O, 0.25 g;
yeast extract 1.0 g; resazurin, 1 mg; and cysteine-HCl, 0.5 g
per liter of deionized water was kept in an anaerobic chamber
(Laanbroek et al., 1977). Cultures were incubated for 48 h
at 39◦C and plated. While the positive control retained a
concentration of 6.11 log CFU/mL, broths containing EOs
reduced Campylobacter concentrations below the limit of
detection (less than 3.3 log CFU/mL).

Caprylic acid, a component of coconut oil and palm kernel oil,
significantly reduced Campylobacter cecal concentrations when
administered in feed at concentrations below 1% (Los Santos
et al., 2008, 2009). This was observed in market age and 10-day
old broilers and did not affect FCR or BWG. However, the
in vivo Campylobacter reducing effects of caprylic acid have been
demonstrated to be mitigated when applied as caprylate in feed
and water (Hermans et al., 2010; Metcalf et al., 2011).

Arsi et al. (2014) investigated the use of thymol, carvacrol,
or a combination, as a feed amendment to prevent C. jejuni
colonization. Ten birds per treatment were inoculated on day
3 with a 5-strain mixture of C. jejuni that were previously
isolated from chicken ceca and susceptible to ciprofloxacin
or fluoroquinolone. Birds were euthanized on day 10. Cecal
Campylobacter counts were enumerated using Campylobacter
Line agar (Line, 2001) and confirmed using latex agglutination.
Individual strains were not distinguished. Four trials were
performed of this experiment with the only difference between
trials was the inclusion of a 2% (Trials 1 and 2) or 0.125%
treatment group and the use of EO combinations (Trials 3
and 4). While significant reductions of Campylobacter in the
0.25% thymol, 2% thymol, 1% carvacrol, and 0.5% thymol
and carvacrol treatments existed, these reductions were not
observed across all trials and were not detected in birds fed
other concentrations. Thymol, at a concentration of 0.25%,
reduced Campylobacter by 0.6 log CFU/mL cecal contents
during only one trial out of four. A 2 log CFU reduction
was observed with 2% thymol for only one trial out of two.
Additionally, 2 log CFU/mL cecal contents were observed
for one trial using 0.5% thymol and carvacrol, but this
was not repeated.

Campylobacter jejuni-infected broilers in a seeder model
that were given feed coated in 0.3% trans-cinnamaldehyde
did not exhibit any significant reduction in Campylobacter
cecal populations after 1 week (Hermans et al., 2011a).
In this model, six pens were set up each containing nine
chickens with half of the pens receiving cinnamaldehyde. At
day 15, three chicks per pen were given 108 CFU/mL of
C. jejuni KC 40. At day 21, the chickens were euthanized.
All ceca within the treatment groups contained C. jejuni.
When the cecal populations of Campylobacter were averaged
per pen, significant differences between treatment and control
group were not observed. Cinnamaldehyde degrades quickly
in the upper GIT of piglets, and this may explain the lack
of differences within the populations for the chicken-based
studies as well (Michiels et al., 2008). A commercial blend
of garlic and cinnamon, Alliin Plus (Orffa, Werkendam,
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Netherlands), was found to cause a 1 log CFU/g reduction
of Campylobacter cecal counts 3 days post-infection (day 11)
but no significant effects were detected on day 35 or day 42
(Guyard-Nicodeme et al., 2015).

Combinations of EOs and Other
Antimicrobial Compounds
Numerous alternative antimicrobials have been implemented
in pre-harvest poultry environments to inhibit foodborne
pathogens such as Campylobacter (Umaraw et al., 2017). These
include bacteriophages, bacteriocins, prebiotics, probiotics, and
organic acids (OAs), and EOs (van der Wielen et al., 2000;
Edris, 2007; Umaraw et al., 2017). With different mechanisms
of action, these remediation techniques may have synergistic
potential. As such, this section will review combinations of
EOs and other alternative non-EO antimicrobials, notably OAs
against Campylobacter.

Gracia et al. (2015) evaluated the effectiveness of a 0.03%
blend of thymol, eugenol, piperine, and benzoic acid or 0.08%
garlic oil. Chickens were inoculated with 0.1 mL of 105

CFU/mL of C. jejuni at day 14 by Gracia et al. (2015). On
days 21 to 42, birds in treatment groups were administered
the EOs benzoic acid blend or garlic oil. In the control
groups, C. jejuni populations were 7.33 and 7.38 log CFU/g.
In the treatment group with the EOs blend, concentrations
of C. jejuni were 7.66 log CFU/g, and in the garlic oil
treatment, C. jejuni concentrations were 7.26 log CFU/g.
Both these treatments were not able to statistically reduce
Campylobacter concentrations.

An OA and EO treatment combination was administered
to broilers by Thibodeau et al. (2014). This blend contained
sorbate, fumarate, and thymol. Sorbate has been demonstrated
to disrupt the cell wall of Gram-negative bacteria and lower
pH of the GIT, while fumarate indirectly affects intestinal
bacteria by lowering the pH of the stomach (Diener et al.,
1993; Papatsiros et al., 2013; Dittoe et al., 2018). Because these
OAs operate differently than the proposed EO mechanism, they
may have synergistic potential, although fumarate has been
demonstrated to be metabolized by C. jejuni (Hinton, 2006).
Feed was amended with 500 ppm of the EOs-OA blend and
provided to broilers (Thibodeau et al., 2014). On day 14, these
birds were administered 1 mL of inoculum containing 105

CFU/mL of two strains of Campylobacter (designated #1 and
2). One, two, and three weeks after inoculation Campylobacter
concentrations were enumerated in the ceca and on the whole
carcass post-processing. This experiment was repeated using a
different set of strains (3 and 4) with lower adhesion properties.
In the trial with strains 1 and 2, counts of Campylobacter
were not significantly different when compared to the control.
In the trial with strains 3 and 4, cecal populations were
significantly higher 3 weeks after inoculation by approximately
1.5 log CFU/g, but carcass rinses were significantly lower
by approximately 2 log CFU/mL. This suggests the adhesion
properties may impact the efficacy of the EO treatment, however
other variations between the strains may be impacting the results.
These adhesion properties are necessary for binding to the

intestinal cell wall within poultry, which may also be impacted
by EOs (Vidanarachchi et al., 2005).

Impacts on the Intestinal Mucosal Layer
and Microbiota
The proposed mechanism of protecting the intestinal mucosa
from colonization has been demonstrated by studies involving
prebiotics, which are typically oligosaccharides utilized for
the protection of the mucosal layer or improvement of the
colonization of beneficial bacteria (Lee et al., 2002; Vidanarachchi
et al., 2005; Johnson et al., 2015; Roto et al., 2015; Micciche
et al., 2018a; Ricke, 2018). The intestinal mucosa consists of
the epithelium and lymphoid tissue along with the mucus that
is primarily comprised of glycoproteins referred to as mucins
(Montagne et al., 2003). Mucins range from 0.5 to 20 Mda
in size, and the saccharide component of the avian mucins
includes fucose (15.29 ng/µg of mucin), N-acetyl-galactosamine
(5.3 ng/µg), N-acetyl-glucosamine (47.72 ng/µg), galactose
(24.67 ng/µg), glucose (5.15 ng/µg), and mannose (15.44 ng/µg)
(Bansil and Turner, 2006; Looft et al., 2019). These carbohydrates
comprise 80% of the glycoprotein weight and are oligosaccharide
chains consisting of 5 to 15 monomers attached to the protein
core (Bansil and Turner, 2006). Approximately 60% of the
protein core consists of serine, threonine, and proline repeats and
this is interspersed with approximately 10% cysteine and connect
to the oligosaccharide chains via O-glycosidic bonds (Perez-Vilar
and Hill, 1999; Gongqiao et al., 2003; Bansil and Turner, 2006).

Mucus protects the GIT epithelial layer from exposure to
the digestive enzymes and corrosive gastric fluids and serves
as a matrix for the entrapment of bacteria (Turnberg, 1987;
Perez-Vilar and Hill, 1999; Lien et al., 2001). For instance,
L-fucose, serine, and cysteine of mucins have been demonstrated
to exhibit a positive chemotaxis response on C. jejuni, attracting
the bacteria to the chemical compound (Hugdahl et al., 1988).
Campylobacter jejuni have also been found to preferentially
attach to avian mucins compared to cow, deer, horses, mice,
sheep, pigs, and rat mucins (Naughton et al., 2013). These
entrapped bacteria can, in turn, modulate gene expression of
epithelial cells, impact lymphoid cells, and affect the overall health
of the host by degrading complex oligosaccharides and producing
short-chain fatty acids (SCFAs) (Hooper et al., 2001; Guarner and
Malagelada, 2003; Sergeant et al., 2014). In chickens, the intestinal
microbiota within this mucosal layer is diverse and complex, and
in the ceca, the microbiome is primarily colonized by Firmicutes,
Bacteriodetes, and Proteobacteria (Wei et al., 2013).

Detectable Campylobacter colonization usually occurs after
14 days of age and growth is often correlated with the presence
of other microbiota, although Campylobacter’s interaction with
the microbiome is poorly characterized (Hermans et al., 2011b;
Indikova et al., 2015; Thibodeau et al., 2015). In humans,
C. jejuni colonization is associated with a decrease of the
butyrate producer, Faecalibacterium, which suggests these two
bacteria may share a similar ecological niche (Hansen et al.,
2014; Thibodeau et al., 2015). Lower abundances of Lactobacillus
and Corynebacterium have also been associated with C. jejuni
colonization, along with higher concentrations of Streptococcus
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and Ruminococcaceae (Kaakoush et al., 2014). These findings
indicate that there is an interaction between the intestinal
microbiota and C. jejuni colonization. Therefore, utilizing
EOs to alter the mucosal layer, possibly through microbiome
modulation, or interfering with C. jejuni binding properties,
would be beneficial to preventing intestinal colonization and
downstream product contamination.

One mechanism for bacterial adhesion to the poultry GIT
is through lectin-carbohydrate receptors (Vidanarachchi et al.,
2005). Mutants of C. jejuni without CadF protein synthesis
capabilities are unable to produce a lectin protein that specifically
binds to fibronectin (Ziprin et al., 1999; Rubinchik et al., 2012).
CadF is a membrane-bound protein that mediates the binding
of Campylobacter to fibronectin within the intestinal mucosa,
which is necessary for Campylobacter colonization (Quaroni
et al., 1978; Ziprin et al., 1999; Monteville et al., 2003). CadF
operates by modulating the level of tyrosine phosphorylation of
paxillin, which is a focal adhesion signaling molecule (Konkel
et al., 2005). These mutants were unable to colonize the poultry
GIT, because of the absence of the carbohydrate binding adhesion
protein (Ziprin et al., 1999). Piva and Rossi (1998) postulated
that oligosaccharides, such as mannan-oligosaccharides, would
bind to enterocyte receptors on pathogenic cell walls which would
also prevent colonization (Micciche et al., 2018a). Essential oils
have not yet been found to inhibit colonization of Campylobacter
through preventing lectin-carbohydrate binding.

Similar to prebiotics, such as pectin and oligosaccharides,
EOs have been shown to improve the qualities of the mucosal
layer of the intestine (Bengmark, 1998; Vidanarachchi et al.,
2005; Wang et al., 2016). As with EOs impacting the immune
response in layer hens against NCV, prebiotics has been shown
to upregulate immune response cells in the intestinal mucosal
such as CD4+ and CD8+ (Lourenço et al., 2015). Immune
responses by prebiotic supplementation have been extensively
reviewed in Hardy et al. (2013). Additionally, mucins, which can
subvert the adherence of pathogenic E. coli have been upregulated
by Lactobacillus plantarum 299V and Lactobacillus rhamnosus
GG (Mack et al., 1999; Hardy et al., 2013). Lactobacillus can
be promoted by prebiotics and potentially EOs, and this can
potentially create a positive feedback loop as mucins have also
been demonstrated to improve bacterial growth as they can be
up to 90% carbohydrate by weight (Perez-Vilar and Hill, 1999;
Manzanilla et al., 2004; Eeckhaut et al., 2008; Emami et al., 2012;
Hardy et al., 2013; Yousaf et al., 2017).

The influence by EOs on the intestine has primarily focused on
crypt depth and mucosal thickness (Vidanarachchi et al., 2005).
Broiler diets supplemented with 100 mg/kg of 5% carvacrol,
3% cinnamaldehyde, and 2% of capsicum oleoresin exhibited an
impact on the jejunal mucosa. A higher jejunal wall villi layer
was observed along with an increase in thickness of the mucosa
layer, which helps prevent bacterial colonization (Jamroz et al.,
2006). This is because while the thicker mucosa may potentially
entrap more bacteria, a thick mucosal layer may also prevent
adhesion to the intestinal villi and subsequent GIT colonization
by decreasing the proximity of bacteria to the intestinal binding
sites (Turner, 2009). Broilers supplemented with thymol or garlic
powder (1 g/kg) in their diet showed similar effects in the

intestinal morphology (Demir et al., 2005). However, in pigs, villi
length was either decreased or unaffected by supplementation
of EOs (Namkung et al., 2004; Nofrarias et al., 2006; Kroismayr
et al., 2008). Prevention of bacterial adhesion would be beneficial
for inhibiting Campylobacter but could have deleterious effects
on nutrient absorption due to changes within the GIT microbial
community. For instance, SCFA producing bacteria, such as
Lactobacillus and Bifidobacterium, have been shown to have
positive impacts on nutrient absorption and overall bird health
and antimicrobial strategies that prevent their growth could
be detrimental. However, EOs have been reported to improve
the colonization of bacteria that are non-pathogenic and may
benefit the overall health of the microbiota (Wenk, 2003;
Windisch and Kroismayr, 2007).

Growth rate improvement of Lactobacillus, Bifidobacteria,
and other probiotic bacteria in avian hosts is viewed as a
potential mechanism inhibiting avian colonization of foodborne
diseases such as Campylobacter (Santini et al., 2010). In simulated
environments, Lactobacillus has been shown to inhibit the
colonization of undesired bacteria such as Campylobacter (Chang
and Chen, 2000). Four strains of Lactobacillus (104/ml) and
C. jejuni (106/mL) were added to a simulated chicken digestive
system consisting of pH adjusted veronal buffers. Veronal buffer
contains 0.15 mM CaCl2, 141 mM NaCl, 0.5 mM MgCl2,
0.1% gelatin, 1.8 mM sodium barbital, and 3.1 mM barbituric
acid (Sigma-Aldrich; St. Louis, MO, United States) and was
subsequently adjusted to a pH of 4.5, 4.4, 2.6, 6.2, and 6.3
to represent the crop, proventriculus, gizzard, small intestine,
and large intestine, respectively. A simulated chicken digestive
system was also created by adjusting each veronal buffer with
0.1N HCl or with veronal buffer at pH 9.6 to simulate passage
within each intestinal organ. Within individually simulated GIT
compartments, and the simulated chicken digestive system as
a whole, significant Campylobacter reductions were observed
compared to the control with no addition of Lactobacillus.
In the gizzard, while a reduction from approximately 6 log
CFU/mL to approximately 4 log CFU/mL of Campylobacter was
observed within 90 min, likely due to the low pH, a 4 log
reduction was observed when 6 log CFU/mL of Lactobacillus
was added. These results might in part be due to the ability
for Lactobacillus to produce bacteriocins that are inhibitory to
C. jejuni (Messaoudi et al., 2012). Stern et al. (2006) applied
purified bacteriocin OR-7, produced by Lactobacillus salivarius
NRRL B-30514, to the feed of broilers that were challenged
with C. jejuni. Compared to controls, 6 log CFU/g cecal
content reductions were observed independently of the C. jejuni
strain utilized.

Lactobacillus has also been known to produce SCFAs that
can reduce C. jejuni populations (Awad et al., 2018). When
SCFAs were tested in vitro, butyrate was determined to be
bactericidal toward C. jejuni at a concentration of 12.5 mM,
and acetate and propionate were bacteriostatic at 50 mM (Van
Deun et al., 2008). Campylobacter has been demonstrated to
produce acetate as a by-product of serine catabolism and utilize
it as an energy source, which could explain the variation
between it and butyrate inhibition (Parker et al., 2007; Stahl
et al., 2012). This does not explain the variation between
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propionate and butyrate. While it has been demonstrated that
C. jejuni can metabolize acetate and the OA lactate, no known
pathways have been elucidated for the transport or metabolism of
propionate or butyrate (Wright et al., 2009; Thomas et al., 2011;
Anand et al., 2016).

Lactobacillus and Enterococcus strains, which can produce
SCFAs, were tested in vitro and were also found to be inhibitory
to C. jejuni (Chaveerach et al., 2004; Allameh et al., 2017).
Chaveerach et al. (2004) cultured five Enterococcus and five
Lactobacillus strains from healthy chickens and grew them in
Mueller-Hinton broth. The broth was subsequently centrifuged,
and the supernatant was separated from the bacteria. The
supernatant was neutralized to a pH of 6.2 and treated with
pronase and catalase to break down bacteriocins and hydrogen
peroxide, respectively. Once the supernatants were confirmed
to be free of bacteria, they were applied in a well-diffusion
agar assay against 10 individual strains of C. jejuni. The
supernatant with the highest bactericidal activity came from
a Lactobacillus strain labeled P93, which produced a zone of
inhibition of 9 to 15 mm and was able to impact the growth
of all 10 strains of C. jejuni. This strain was also grown in
co-culture with C. jejuni C2150, each at an initial inoculum
of 7 log CFU/mL, and after 48 h, Campylobacter was not
isolated from the culture. Campylobacter jejuni C2150 was also
grown with Lactobacillus strain P104, which did not exhibit
any antimicrobial effects in the well-diffusion agar, but by
72 h Campylobacter concentrations were approximately 1.5 log
CFU/mL lower than the positive control at 7.5 CFU/mL. This
study indicates that not only can Lactobacillus directly compete
for nutrients and colonization niche with Campylobacter, but
some strains can also employ antimicrobials to reduce their
population numbers further.

Plant-derived compounds such as cumin, oregano, and
extracts of capsaicin, cinnamaldehyde, and carvacrol have been
shown to improve the growth of Lactobacillus, Bifidobacteria,
and Enterococcus, and therefore may indirectly impact pathogen
concentrations through competitive exclusion (Kivanç et al.,
1991; Jamroz et al., 2003; Manzanilla et al., 2004). Manzanilla
et al. (2001) demonstrated how XT, a mixture of carvacrol,
cinnamaldehyde, and capsaicin, increased Lactobacillus cecal
counts in post-weaning pigs when provided in the feed.
However, these interactions are complicated as the addition of
C. jejuni has been attributed to an increase in Bifidobacterium
(Thibodeau et al., 2015). Further research must be performed
to determine if, or which, EOs exhibit antimicrobial qualities
against Campylobacter that may also simultaneously support GIT
bacteria that are antagonistic to Campylobacter. While EOs do
not appear to operate as substrates for Lactobacillus or other
probiotics and are therefore not prebiotics, their indirect impacts
on the intestinal mucosal layer promote an environment suitable
for the growth of “beneficial” bacteria, which in turn, have the
potential to reduce Campylobacter concentrations. Other studies
found that EOs, including cumin, orange oil, and oregano, have
an inhibitory effect on Lactobacillus spp. (Kivanç et al., 1991;
Elgayyar et al., 2001; Delaquis et al., 2002; Chalova et al., 2010).
As such, there are limitations for the application of EOs to poultry
that must be addressed.

Potential Limitations and Future
Directions for Preharvest EOs
Application
There appears to be inconsistency in responses of birds infected
by Campylobacter when administered EOs compared to in vitro
responses as well as among individual bird trials. Understanding
the underlying factors and potential limitations may give insight
into how EOs can be applied in the future. One primary
limitation of EOs is that they can be rapidly absorbed in the
GIT (Meunier et al., 2006). This rapid absorption has been
observed in pigs and humans (Kohlert et al., 2002; Meunier
et al., 2006). Absorption by the stomach and small intestine
before they can affect cecal concentrations may be occuring
in in vivo studies (Arsi et al., 2014). To test this potential
limitation, intestinal absorption resistant EOs derivatives can
be applied. Thymol-β-d-glucopyranoside is more resistant to
intestinal absorption than thymol and has been shown to have
similar antimicrobial effects in vitro (Epps et al., 2015). However,
while a 1 log reduction of Campylobacter was observed in
the crops of market-aged broilers with this absorption-resistant
compound, no significant impacts were found in the ceca with
either thymol-based treatment (Epps et al., 2015).

Microencapsulation may also be utilized (Calo et al., 2015).
Microencapsulation is a process in which liquid particles are
surrounded in polymeric compounds (Bansode et al., 2010).
Typical water-soluble coating materials can include gelatin, gum
arabic, and polyacrylic acid (Jyothi et al., 2012). The intention
of microencapsulation with preharvest remediation techniques
is to prevent the therapeutic compound from absorption before
reaching the target area within the GIT (Van Immerseel et al.,
2004). For instance, Pan et al. (2014) found that encapsulated
thymol inhibited pathogens more effectively in milk due to
enhanced solubility. As such, microencapsulated EOs have been
suggested as a methodology for improving the in vivo effects of
EOs (Calo et al., 2015). Utilizing a feed-based microencapsulated
blend of thymol and eugenol, along with propionic and sorbic
acids, Grilli et al. (2013) was able to reduce C. jejuni in layer
hens. During a 42-day trial, birds were provided this blend,
labeled CTR, at varying concentrations (0.1, 0.3, 0.5, or 1.0%),
and were infected with 107 CFU/mL C. jejuni on day 22.
Campylobacter concentrations were measured by plating cecal
contents onto modified Charcoal-Cefoperazone-Deoxycholate
Agar (mCCDA). The CTR blend was effective in reducing C.
jejuni at all concentrations (0.1, 0.3, 0.5, or 1.0%) on days 35
and 43, with 1% CTR exhibiting a 5 log CFU/g reduction at day
42 compared to the control. At day 42 the 0.1% concentration
reduced Campylobacter populations by 3 log CFU/g. In a second
experiment utilizing either 0.1 or 0.3% of this blend, birds were
given either the blend before or after the day 22 infection
with Campylobacter. Statistically significant reductions were still
observed within each treatment group, except with 0.1% CTR
at day 35, but the reductions were significantly lower for the
group given the treatment after infection instead of before. The
CTR blend at a concentration of 0.3% given from day 0 to 21
reduced C. jejuni by 1.5 log CFU/g at day 35 where 3 log CFU/g
reductions were observed when the 0.3% CTR blend was applied
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on day 22. However, in a cecal loop model study by Hermans et al.
(2011a), involving direct injection of the trans-cinnamaldehyde
into ceca infected with C. jejuni they failed to detect significant
reductions in Campylobacter concentrations. This indicates that
the absorption of the EOs in the upper GIT is not the only reason
for variation between in vivo and in vitro trials (Arsi et al., 2014).
Further experiments utilizing microencapsulation of combined
EO blends, along with comparisons with their unencapsulated
counterparts, is necessary to determine the specific effectiveness
of utilizing microencapsulation.

Additionally, the observed reductions using blends of EOs
can help reduce the incidence of Campylobacter at time of
slaughter, which can lead to reductions of human incidences
of campylobacteriosis (Rosenquist et al., 2003; Chapman et al.,
2016). Furthermore, an investigation into EOs impact on the GIT
microbiome may also represent a pertinent future direction. For
instance, increasing the concentrations of certain members of the
GIT microbiome through EOs may generate a GIT less suitable
or more hostile for initial C. jejuni colonization (Kaakoush et al.,
2014). Once the interactions between C. jejuni, the microbiome,
and EOs remediation are fully elucidated a more targeted
remediation technique may be possible. For instance, specific
EOs blends could be designed to modulate the microbiome to
prevent C. jejuni colonization. While in vivo EOs application
may not be able to eliminate Campylobacter concentrations at the
time of slaughter, it does provide a hurdle that the bacteria must
overcome before contamination of the final product (Leistner,
2000; Holley and Patel, 2005).

ANTIMICROBIAL EFFECTS OF EOs ON
Campylobacter IN POULTRY
PROCESSING

Campylobacter contamination on poultry products is one of the
more common causes of campylobacteriosis in humans (Keener
et al., 2004). Incidence rates in a study of 425 broiler carcasses
over 12 months revealed 87.5% of the post-chill carcasses were
contaminated with Campylobacter in a French slaughterhouse
(Hue et al., 2010). In the United States, 52% of post-chill carcasses
(n = 325) were contaminated with Campylobacter with 100%
of the carcasses being contaminated pre-chill (Son et al., 2007).
The most frequent method for this contamination event is for
the GIT to rupture during processing and contaminants to spill
onto the carcass (Berrang et al., 2001). If not properly treated
during carcass rinses, cross-contamination can occur, especially
within chiller tanks (Bashor et al., 2004). As such, to prevent
cross-contamination, it is vital that carcass rinses and sprays be
applied as appropriate sanitation techniques. Essential oils may
serve as an alternative sanitizer for processing washes.

In vitro laboratory experiments may have more relevance
to post-harvest interventions than pre-harvest mediations due
to the complexity of the poultry GIT that cannot easily be
modeled in a laboratory environment (White et al., 1997).
For instance, in a series of benchtop studies orange oil was
found to be inhibitory to C. jejuni, C. coli, L. monocytogenes,
Salmonella, and Pseudomonas (O’Bryan et al., 2008; Nannapaneni

et al., 2009; Chalova et al., 2010). Nannapaneni et al. (2009)
tested seven orange oil fractions on 3 Arcobacter strains and
21 Campylobacter strains, including 14 C. jejuni strains, four
of which were isolated from poultry. When viewed on disk
diffusion agar, cold pressed (CP) terpeneless Valencia orange oil
produced the largest zones of inhibition (in mm) of C. jejuni
including those isolated in poultry, whereas other orange oil
fractions produced more limited zones of inhibition. Valencia
orange oil was also reported to be inhibitory toward C. coli
and Arcobacter. Kurekci et al. (2013) found tea tree oil at a
concentration of 0.001% to be inhibitory against two strains
of C. jejuni on nutrient agar. Wild carrot oil, when used
in agar plates as an antimicrobial against Campylobacter spp.
including a multidrug-resistant strain, C. jejuni 99T403, exhibited
a minimum inhibitory concentration (MIC) of 125 to 500 µg/mL
depending on the species or strain (Rossi et al., 2007). Isoeugenol
and E-methyl isoeugenol are extracts of carrot oil and when tested
against C. jejuni resulted in an MIC of 125 µg/mL (Rossi et al.,
2007). Thymol, in a concentration of 0.25 µmol/mL, reduced
C. jejuni and C. coli by 5 logs CFU/mL in Bolton broth from
an initial concentration of 7 log CFU/mL (Anderson et al.,
2009; Carocho et al., 2014). An EO extract from Origanum
minutiflorum, composed primarily of carvacrol and p-cymene,
has been shown to be effective in inhibiting C. jejuni in
concentrations as low as 12.5 µg/mL on Mueller-Hinton agar
(Aslim and Yucel, 2008). However, these MICs were strain-
specific, as of the 12 C. jejuni strains tested, only C. jejuni 118d
was inhibited at the concentration of 12.5 µg/mL, while C. jejuni
113k, 7d, and 9a required 700 µg/mL to be inhibited (Aslim
and Yucel, 2008). Cinnamon, clove, thyme, and bay leaf oils
were found to be bacteriostatic at a concentration of 0.075%
against C. jejuni, S. Enteritidis, E. coli, Staphylococcus aureus,
and L. monocytogenes when tested in tryptic soy broth (TSB)
(Smith-Palmer et al., 1998).

Other studies reported similar inhibitory and bacteriostatic
effects of oregano, eucalyptus, marigold, ginger, jasmine,
cedarwood, carrot, mugwort, bergamot, and other EOs, against
Campylobacter and other foodborne pathogens (Friedman
et al., 2002; Moreira et al., 2005; Fisher and Phillips, 2006;
Thanissery et al., 2014). The MIC of EOs on other foodborne
pathogens were collected and reviewed in Hyldgaard et al.
(2012). Friedman et al. (2002) tested 119 EOs against C. jejuni,
E. coli O157:H7, L. monocytogenes, and S. enterica in PBS
for 60 min at 37◦C (42◦C for C. jejuni) followed by plating
on appropriate media for each species, including an iron-
supplemented Brucella agar for C. jejuni. The EO concentration
that resulted in the bactericidal activity of a 50% CFU decrease
relative to the control was determined for each EO bacterial
species combination. Marigold taegetes (0.003%), ginger root
(0.005%), jasmine (0.006%), patchouli (0.007%), and gardenia
(0.007%) were the most effective oils against C. jejuni RM1221
followed by cedarwood (0.0075%), carrot seed (0.0078%), celery
seed (0.0085%), mugwort (0.009%), spikenard (0.009%), and
orange bitter oils (0.009%). In this study, 39 EOs were tested
against all four foodborne pathogens. When their bactericidal
activities were averaged, the five most effective EOs were
cinnamaldehyde (0.03%), thymol (0.05%), Spanish oregano
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(0.05%), carvacrol (0.06%), and Oregano origanum (0.06%).
Of these five EOs, C. jejuni was impacted the most by the
lowest percent concentration compared to the other tested
foodborne pathogens.

This suggests that not only may C. jejuni be a prime target for
EO remediation, but EO that have not been extensively tested
may be more optimal candidates to utilize, such as marigold
and jasmine. Disk diffusion methods indicated that lemon, sweet
orange and bergamot were effective against L. monocytogenes,
S. aureus, B. cereus, E. coli O157:H7, and C. jejuni (Fisher
and Phillips, 2006). Each oil was added to a 2 cm disk and
then placed on agar plates in the presence of the bacteria of
interest, with C. jejuni SR 117 being plated on Campylobacter
agar base with 5% horse blood and incubated at 42◦C. No zones
of inhibition were detected for C. jejuni when orange or citral
was added. Bergamot produced a zone of inhibition of 23 mm,
and lemon produced a zone of inhibition of 18 mm, which
were the smallest zones compared to the other tested bacteria.
The zone of inhibition for linalool was greater than 90 mm.
The MIC was also determined for bergamot (greater than 4%),
lemon (greater than 4%), and linalool (0.06%). While no zone
of inhibition was visually detected for orange oil by Fisher and
Phillips (2006), when orange oil was supplemented with thyme,
the combination EOs demonstrated antimicrobial activity against
Campylobacter (Thanissery et al., 2014). Similar to Fisher and
Phillips (2006), a disk diffusion test was performed using thyme,
orange, rosemary, clove, and a 1:1 ratio of thyme and orange
oil. This was tested on C. jejuni 11601 MD, C. jejuni RM1221,
and C. coli RM2228 along with a cocktail of the three strains.
No visible growth on disk diffusion assay across all strains and
in the cocktail was visualized when exposed to thyme or clove.
For the cocktail, orange oil, rosemary, and the combination
of thyme and orange oil produced zones of inhibition of 17,
11, and 20 mm, respectively. A macro-broth dilution assay was
also performed using Mueller Hinton broth to determine the
MIC and minimum bactericidal concentration (MBC) of these
oils. However, the exact MIC and MBC was not determined as
0.0008% concentrations of the oils were sufficient for inhibiting
bacterial growth.

Synergistic effects have also been detected (Nguefack et al.,
2012). For instance, a combination of oregano and thyme
or oregano and cinnamaldehyde required 80% less EOs to
produce the same inhibitory effects in nutrient broth with
a Campylobacter growth supplement (Navarro et al., 2015).
Thymol and geraniol reduced Clostridium difficile in feces at
500 ppm, which was five times the concentration utilized for
a significant reduction in pure cultures. When 0.16 mg/mL
of rosemary oil, consisting of carnosic acid, carnosol, and
rosmarinic acid was applied in the laboratory, a 2 log
CFU/mL reduction in C. jejuni was observed in Mueller-Hinton
broth when the initial concentration was at 7 log CFU/mL
(Klancnik et al., 2009; Piskernik et al., 2011). However, four
times the concentration was needed to achieve the same
reduction in chicken meat juice, isolated from thawed previously
frozen carcasses, unless supplemented with nisin, a bacteriocin
(Piskernik et al., 2011). While the complete composition was not
provided in Piskernik et al. (2011), it was suggested that lipids

and proteins within the juice matrix might have partly inhibited
the EO therapy. Burt (2004) suggested that the decreased
EO effectiveness in the food matrix compared to the broth
experiment may be because in an oil-in-water emulsion that
allows the bacteria to grow as films and in colonies, which
can shield interior cells from therapeutics. As a consequence,
while in vitro laboratory models are important, to elucidate the
potential impact of EOs, poultry product matrices as well as
processing environments must be considered.

The use of EOs in the post-harvest environment has focused
on their bactericidal activity within carcasses washes and finished
products (Calo et al., 2015; Dima and Dima, 2015). A 0.5%
50:50 mixture of thyme oil and orange oil was used in a
marinade for chicken wings dip-inoculated with 107 CFU/mL of
a nalidixic acid resistant strain of C. coli (Thanissery and Smith,
2014). While cross-contamination events were observed via the
marinade, C. coli concentrations on treated wings were reduced
by 3.0 log CFU/mL, as determined through plating of rinsates.
Skinless chicken breasts experimentally infected with 5 × 105

CFU/g of C. jejuni were subjected to stinkwort (0.2%; Inula
graveolens), bay leaf (0.6%; Laurus nobilis), mastic tree (0.6%;
Pistacia lentiscus), and winter savory (0.6%; Atureja gontana)
(Djenane et al., 2012). After 8 days of refrigerated storage under
microaerophilic conditions, greater than 5 log CFU/g reductions
of C. jejuni were observed compared to the control inoculated
with 5 × 105 CFU/g. Sensory analysis indicated these EOs
improved or did not impact the odor of the refrigerated samples
according to a six member trained panel. Within 60 s, 0.06%
linalool oil reduced C. jejuni on 2 cm × 2 cm pieces of cabbage
leaf and chicken skin by greater than 5 log CFU and 2 log CFU,
respectively (Fisher and Phillips, 2006). Cold pressed Valencia
orange oil has also been shown to reduce C. jejuni UAF 244 on
retail chicken thighs and legs (Nannapaneni et al., 2009). Chicken
thighs and legs were dipped in a 0.8% saline solution containing
106 CFU/mL C. jejuni UAF 244 for 5 min and then submerged
for 2 min in 20% (v/v) Valencia orange oil or 20% (v/v) limonene.
The samples were then rinsed and plated. Across both types of
chicken pieces, 1.5 to 2 log CFU/mL reductions were observed,
compared to the control. Treatments with limonene resulted in
reductions without detectable recovery of viable bacterial cells,
although the limit of detection was not provided by the authors.
Moreover, while taste panels have found concentrations of orange
oil up to 0.1% to be acceptable in milk, chicken patties and
marinades, a 20% part dip has not been investigated for impacts
on sensory characteristics (Jo et al., 2004; Fisher and Phillips,
2008; Rimini et al., 2014).

Other factors may confound EO efficacy toward
Campylobacter in poultry products. For example, one major
concern for poultry industries is the ability for pathogens to form
biofilms (Srey et al., 2013). Biofilms are bacterial communities
within a polysaccharide matrix that can readily form and attach
on processing surfaces (Costerton, 1995; Donlan and Costerton,
2002). Biofilms can be difficult to remove by antimicrobials
and processing sanitizers such as chlorine and peracetic acid,
which are commonly used in the industry (Frank et al., 2003;
Ryu and Beuchat, 2005; Scher et al., 2005; Deborde and Von
Gunten, 2008). Campylobacter is known to form biofilms on
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stainless steel, polystyrene, and glass (Gunther and Chen, 2009).
Coriander oil and its antimicrobial component linalool were
found to affect biofilm formation of Campylobacter planktonic
cells and pre-established biofilms (Duarte et al., 2016). When
coriander and linalool were used at 2 µg/mL (approximately
four times the MIC) C. jejuni and C. coli biofilms were reduced
in size by 70 to 80% after 48-h incubation in a crystal violet
assay (Duarte et al., 2015, 2016). Even when using half the
MIC, coriander, and linalool reduced the biofilm by 20 to 25%
(Duarte et al., 2016). Results of biofilm inhibition varied more
wildly from planktonic cells, but all concentrations (0.025 to
2 µg/mL) successfully inhibited biofilm growth compared to the
control, with linalool reducing some biofilm formation between
10 and 20% of the control (Duarte et al., 2016). Thyme, oregano,
and cinnamon EOs, when used at concentrations below the
MIC, were also found effective against biofilms of Acinetobacter,
Sphingomonas, and Stenotrophomonas spp. that were isolated
from biofilms within the food industry (Szczepanski and Lipski,
2014). Sphingomonas biofilms were reduced by 50% by thyme
oil at a concentration of 0.001% where the MIC was 0.008%
(Szczepanski and Lipski, 2014). Similar results were found using
thyme and balsam on Pseudomonas and S. aureus biofilms
(Kavanaugh and Ribbeck, 2012; Kerekes et al., 2015).

CONCLUSIONS

The effectiveness of EOs in poultry has not been clearly defined
yet. Product advantages have been noted in several studies, but
studies also exist that display no impact on FCR or BWG. Other
advantages of EOs include the potentially improved flavor of
the carcass, antioxidant capacity, and improved feed digestibility.
There is also evidence that EOs can be utilized in vitro to impact
pathogen concentrations, including Campylobacter. However,
this depends largely on the EO utilized as the mechanism(s)
of action are not well-defined. With over 300 commercially
available EOs, precisely elucidating the underlying mechanisms
may prove difficult (Bajpai et al., 2012). Less information is
available regarding the mechanistic role of EOs used in vivo.
Their potential ability to improve amino acid absorption in the
ileum may allow for generating a GIT environment unfavorable
to Campylobacter in the ceca due to diminished substrate

availability, which is further downstream. To fully elucidate
the impact EOs have on Campylobacter concentrations in vivo,
further research on the mechanism(s) and effects of EOs
must be performed.

More targeted delivery of EOs to certain sites in the avian
GIT may be warranted as well. Microencapsulation may help to
stabilize the chemical activity of the EO until it reaches its target
site in the GIT, thus ensuring less variability. Microencapsulation
also holds promise in addressing the intestinal absorption of
an antimicrobial. However, investigations into the duration the
encapsulated EOs remains in the GIT need to be performed to see
when the remediation should be administered. In post-harvest
settings, further studies should be performed involving the
addition of EOs to sprays, washes, or within the chiller tank.

To determine the specific antimicrobial effects of EOs, the
mechanism(s) must be elucidated. This is essential because, with
a wide variety of EOs, there may be multiple mechanisms at
work and thus synergistic potential which cannot be determined
without proper identification of the mode of inhibitory action
for each individual EO. Toward this effort, molecular approaches
such as transcriptomics and proteomics may be employed to
determine which pathways EOs inhibit will lead to further
understanding of their impact on Campylobacter. While there
have been suggestions to utilize EOs as a hurdle technology
in poultry production pre- and post-harvest, mechanisms of
action against Campylobacter and the optimal GIT locations and
processing steps must first be established before any practical
recommendations can be given.
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