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Berberine (BBR), an isoquinoline alkaloid, is a major pharmacological component of
the Chinese herb Coptis chinensis, which has been listed in the Chinese Fisheries
Pharmacopeia as a common drug for the control of bacterial fish diseases. However,
BBR is poorly absorbed into the systemic circulation but is significantly accumulated in
the intestine. It is difficult to explain the mechanism of clinical effects of BBR based on
systemic genes and pathways; it has been proved that the function of BBR in mammals
is associated with the host metabolic phenotypes mediated by the structural modulation
of gut microbiota. The mechanism of pharmacological effects of BBR in fish remains
unclear. Here, we fed grass carp (Ctenopharyngodon idellus) a diet supplemented with
BBR at a dose of 30 mg/Kg body weight daily and compared them with grass carp fed
a regular fish feed diet. Biochemical analysis revealed that fish fed BBR had significantly
reduced serum glucose, total cholesterol (TC), and triglyceride (TG) levels, and increased
TC (p < 0.05) and TG (p < 0.01) levels in the liver. Deep amplicon sequencing of the
V4 region of 16S rRNA genes of the gut microbiota revealed: (i) the composition of gut
microbiota after BBR feeding was more diverse than that in the control group; (ii)before
fish were fed BBR, the enriched operational taxonomic units (OTUs) mainly belonged
to Firmicutes while most enriched OTUs came from Proteobacteria, Planctomycetes,
Bacteroidetes, and Firmicutes during BBR feeding and after BBR feeding stopped; (iii)
the ratio of Firmicutes to Bacteroidetes was significantly decreased in fish fed BBR.
Spearman’s rank correlation showed that 32 berberine-OTUs were significantly negative
correlated with glucose (p < 0.05). It indicates that BBR may affect the levels of serum
glucose by the structural modulation of gut microbiota. Our results provide insight into
the effect of BBR on fish metabolism and gut microbiomes, which would be beneficial
for the fish welfare.
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INTRODUCTION

The grass carp is a herbivorous freshwater fish and one of the most important economic farmed fish
in China; it has been introduced into more than 100 countries (Wu et al., 2012; Hao et al., 2017).
Generally, fish do not utilize dietary carbohydrate effectively (Furuichi and Yone, 1980; Walton
and Cowey, 1982; Shiau, 1997; Stone, 2003; Polakof et al., 2012) and most carnivorous fish exhibit
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a persistent postprandial hyperglycemia (Furuichi and Yone,
1981; Wilson and Poe, 1987; Harmon et al., 1991; Shiau,
1997; Barma et al., 2006; Gleeson et al., 2007; Polakof et al.,
2012). Although grass carp can utilize dietary carbohydrate
better than other carnivorous fish species (Stone, 2003), they
utilize carbohydrates less efficiently than lipids (Gao et al.,
2010). In addition, current commercial feeds have a high
carbohydrate content. Thus, commercial feeds have been blamed
for causing grass carp diseases, such as “big belly grass
carp” (Tian et al., 2004).

Berberine (BBR), an isoquinoline alkaloid, is a major
pharmacological component of the Chinese herb Coptis chinensis
(Huang-Lian, a common herb in traditional Chinese medicine).
As a botanical drug, BBR or BBR-containing herbs have been used
to treat intestinal infections, particularly bacterial diarrhea, for
at least 2000 years in China (Tang et al., 2009). BBR has been
listed in the Chinese fisheries pharmacopeia as a prescription
drug for the control of bacterial fish diseases (Yang, 2005).
Recently, accumulative evidence demonstrated that berberine
is clinically effective in anti-diabetes in mammals due to its
significant hypoglycemic (glucose-lowering) and hypolipidemic
(lipid-lowering) effects (Chen and Xie, 1986; Zhang et al., 2008;
Zhang H. et al., 2010; Cicero and Tartagni, 2012; Dong et al., 2013;
Lan et al., 2015; Zhao et al., 2017). BBR also show hypolipidemic
(lipid-lowering) effects in the freshwater fish, blunt-snout bream
(Megalobrama amblycephala) (Xu et al., 2017). However, the
hypoglycemic (glucose-lowering) effects of BBR in fish have not
been reported to date.

The proposed mechanisms of action of BBR include
stimulation of glycolysis in peripheral tissue cells (Yin et al.,
2008), inhibition of liver gluconeogenesis (Xia et al., 2011),
activation of AMP-activated protein kinase in both adipose and
muscle tissues (Lee et al., 2006), and upregulated expression of
genes involved in lipid metabolism (Lu et al., 2016). A paradox
remains regarding the mode of action of BBR due to its
poor bioavailability (Zhang et al., 2012; Sun et al., 2016).
Pharmacokinetic studies have shown that BBR was poorly
absorbed into the body; therefore, the levels of berberine
in the blood and target tissues were far below the effective
concentrations (Gu et al., 2015). Moreover, it has an extreme
low absolute bioavailability of 0.68% in rats (Chen et al.,
2011) and the maximum concentration (Cmax) of BBR in
the plasma of rats is 4 ng/ml after oral administration of
100 mg/kg BBR (Liu et al., 2009; Zhang et al., 2012). The
maximum concentration (Cmax) of BBR in the plasma of tilapia
(Oreochromis niloticus) is 2.95 ng/mL after oral administration
of 30 mg/kg BBR (Qin, 2014). As BBR is poorly absorbed
into the systemic circulation but significantly accumulated
in the intestine (Gu et al., 2015), the primary action site
of BBR is the gut (Sun et al., 2016). It has been proved
that the action of BBR in rats is associated with the host
metabolic phenotypes mediated by the structural modulation
of gut microbiota (Zhang et al., 2012; Zhang et al., 2015b;
Li et al., 2016; Wang Y. et al., 2017). Furthermore, BBR
directly impacts the gut microbiota, thereby altering bile acid
metabolism and activating intestinal farnesoid X receptor,
which lead to lipid-lowering effects in mice (Sun et al., 2016;

Tian et al., 2018). However, the association between the
hypoglycemic/hypolipidemic actions of BBR and the gut
microbiome in fish remains unknown.

We conducted a BBR feeding experiment to understand the
effects on the community structure of gut microbiome and their
association with the levels of glucose and lipids in grass carp. We
orally administered 30 mg/Kg fish body weight daily, which is the
Highest Permission Dosage for controlling bacterial diseases such
as enteritis in fish (Yang, 2005), and measured the glucose, TG
and TC levels in serum and liver. We also conducted amplicon
sequencing of the prokaryotic 16S rRNA gene V4 region. The
results of this study may suggest methods of disease control in
farmed freshwater fish using BBR.

MATERIALS AND METHODS

Drug and Diet
Berberine chloride (BBR, analytical reagent) was purchased from
Sigma-Aldrich (United States). BBR was suspended in distilled
water before being sprayed evenly onto grass carp feeds. The
formulated grass carp diet included the following: fish meal,
5 g·kg−1; soybean meal, 215 g·kg−1; cottonseed meal, 80 g·kg−1;
rapeseed meal, 200 g·kg−1; wheat flour, 180 g·kg−1; rice bran,
150 g·kg−1; lees powder, 50 g·kg−1; malt root, 50 g·kg−1; choline
chloride, 20 g·kg−1; mineral mixture 20 g·kg−1; vitamin mixture,
30 g·Kg−1 (Yu et al., 2017).

Fish and Feed
Juvenile grass carp with mean body weight 34.0 g (standard
deviation (SD) 0.73) and mean total length 14.8 cm (SD 0.26)
were collected from the same spawn and kindly provided
by the farm of PRFRI. The fish were maintained in tanks
with filtered water in a flow-through system. All experimental
protocols were approved by the animal Ethics Committee of
the Guangdong Provincial Zoological Society, China (permit
number: GSZ-AW003). To remove parasites or pathogens from
the fish and feed, fish skin and gills were checked using a
microscope, and bacterial and viral contamination was checked
using bacterial isolation and reverse transcription quantitative
real-time PCR (RT-PCR), respectively (Zhang L. et al., 2010).
The fish were fed 2% of their body weight twice daily for
2 weeks in acclimatization culture prior to the experiment
(Wang J. et al., 2017). The experiment used a complete block
design (2 treatments: BBR-supplemented and control). For the
BBR group, fish were fed with feeds that were supplemented
with 30 mg/Kg body weight of BBR daily (Yang, 2005) for
the first 7 days. Then, from the 8th to 56th day, BBR fish
were fed feeds without the BBR supplement. The fish from
the control group were fed with feeds without BBR throughout
the whole experimental period. Water temperature, dissolved
oxygen, ammonia-nitrogen, and nitrite nitrogen were maintained
at approximately 28± 1◦C, 5–6 mg·L−1, and <0.35 mg·L−1, and
<0.01 mg·L−1, respectively. For 56 days, the fish received a daily
feeding rate of approximately 2% body weight. The weight of fish
in each group was determined 0, 7, 14, 28, 42, and 56 and the daily
ration adjusted accordingly.
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Growth Performance and Sample
Collection
Before sampling collection, fish were anesthetized by immersing
in 60 mg·L−1 MS-222 (Sigma, United States). Then the body
length and weight of each fish was measured. Random samples
of blood, liver, and the hindgut were taken from the BBR
group and control group on days 0, 1, 3, 7, 9, 14, 21, and
28 under strictly sterile conditions. Fish bled from the caudal
vein using non-heparinized sterile syringes. To isolate serum,
blood samples were left at room temperature in sterile centrifuge
tubes for 30 min to allow clotting, and then centrifuged at
3000 × g for 10 min at 4◦C (Xu et al., 2017) to collect the
supernatant. Serum samples were stored at −80◦C for further
biochemical analyses. For liver tissues and hindgut samples,
grass carp were dissected on a sterile bench. Approximately
0.5–1.0 g of liver tissue was collected. Approximated 2.0 cm
of hindgut containing the contents of the intestinal tract was
collected from each fish. Each sample (liver or hindgut) was
pooled into a 2.0-mL pre-labeled aseptic Eppendorf tube, and
then immediately placed into liquid nitrogen and stored at
−80◦C for further analysis (Lu et al., 2016). All samples
collected under strictly sterile conditions. For each sample
collection, we collected 10 fish each timepoint from the BBR
and control groups.

Biochemical Assays of Serum and Liver
The levels of glucose, total cholesterol (TC), and triglyceride
(TG) in the serum, and TC and TG in the liver were
measured using commercial kits (Kehua, China) and a fully
automatic biochemical analyzer (Hitachi 7020, Japan) following
the manufacturer instructions. Briefly, the glucose level was
measured using the GOD-PAP method (Zhang et al., 2012). TC
and TG levels were measured using the colorimetric enzyme
COD-PAP and GPO-PAP methods, respectively (Xu et al.,
2017). SPSS software (version 20.0, IBM, United States) was
used to analyze biochemical data. The differences between
the BBR and control groups were assessed using a One-
way ANOVA test. Statistical significance was determined
at p < 0.05.

DNA Extraction, Amplification, and
Sequencing of 16S rRNA Genes
All genomic DNA of fish gut microbes was extracted using an
E.Z.N.A. R© stool DNA Kit (Omega, United States) following the
manufacturer instructions under required aseptic conditions (Li
et al., 2017). The quality, integrity, and concentration of each
DNA sample was determined by 1% agarose gel electrophoresis
and a NanoDrop ND-2000 spectrophotometer (Thermo Fisher
Scientific, United States). We used the primer set (515F and 806R)
and methods previously described (Caporaso et al., 2011, 2012)
for PCR amplification of the V4 hypervariable region of 16S
rRNA genes (Liu et al., 2016). The pair-end library construction
and sequencing of 16S rDNA amplicons was carried out using
an Illumina HiSeq 2500 sequencing platform. All raw sequences
were deposited in the NCBI Sequence Read Archive with SRA
number SRP142659.

Sequence Analysis
Raw sequences were de-multiplexed, trimmed, and filtered to
remove low-quality reads using the open-source software system
Quantitative Insights into Microbial Ecology (QIIME) quality
filters (Caporaso et al., 2010). The high-quality, paired-end reads
were merged to generate the 16S rDNA V4 fragment sequences
using FLASH software (Magoc and Salzberg, 2011). Then, all the
merged sequences were mixed to pick Operational Taxonomic
Units (OTUs) with an identity threshold of 97% using the
UPARSE pipeline (Edgar, 2013). The representative sequences for
each OTU, RDP classifier tools and the Silva database were used
to obtain the taxonomic information for the OTUs. OTUs that
were defined as “Unknown,” “Cyanobacteria,” “chloroplast,” or
“mitochondria” were removed. The normalized OTU abundance
profile was generated for downstream analysis on the assumption
that the raw OTU read counts were rarefied to the same counts
for each sample.

Diversity and Statistical Analysis
Based on the normalized OTU abundance profile, the four
alpha diversity indices (Chao1, Shannon, Observed species,
and Phylogenetic distance whole tree) were calculated to
estimate the species diversity and richness for each sample
using QIIME software (Caporaso et al., 2010). The rarefaction
curves of the four alpha diversity indices were obtained
using a maximum rarefaction depth of 30,000 reads. The
distances of fish gut microbial communities between different
samples were calculated using Bray-Curtis, weighted and
unweighted UniFrac beta-diversity metrics. Welch’s t-test for
two sample groups and Kruskal-Wallis rank sum test for
multiple sample groups was used to identify the significant
differences in alpha and beta diversity between and among
different groups (Zhang et al., 2013). We also used the
Kruskal-Wallis rank sum test for multiple sample groups and
Wilcoxon rank sum test for two sample groups to identify
the significantly enriched OTUs for each treatment group
(Zhang et al., 2013). The P-values were corrected using the
Benjamini and Hochberg (1995) method to account for multiple
statistical testing. Correlations between the phenotypic traits and
significantly enriched OTUs were calculated using Spearman’s
rank correlation (Zhang et al., 2015a). Significant correlations are
shown using Heatmap in R software.

RESULTS

Berberine Significantly Affected the
Levels of Glucose and Lipids in Grass
Carp
Although the body weight and relative fatness (condition factor)
were not significantly different between the BBR-fed and control
group (Supplementary Figure S1), the levels of glucose and
lipids in serum and liver were significantly affected by BBR in
grass carp (Figure 1). The levels of glucose, TC, and TG in
blood sera in the BBR-fed group were significantly (p < 0.05,
p < 0.05 and P < 0.05, respectively) lower than those in the
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FIGURE 1 | Effect of berberine (BBR) on serum and liver biochemical parameters of grass carp. (A) Blood glucose; (B) blood total cholesterol; (C) blood
triglycerides; (D) liver total cholesterol; (E) liver total triglycerides. Values are expressed as means ± SD. Differences were assessed using ANOVA and denoted as
follows: ∗p < 0.05; ∗∗p < 0.01; NS, not significant.

control group from days 3 to 9; however, these significant
differences disappeared after day 14 when BBR-supplemented
feeding stopped (Figures 1A–C). Compared with the control
group, the levels of TC and TG in the liver were significantly
higher (p < 0.05, p < 0.01, respectively) in the BBR group from
day 7 to 21, but there were no significant differences days 1 to
3 before BBR-supplemented feeding, or on day 28 after BBR-
supplemented feeding had stopped for 3 weeks (Figures 1D–E).

Berberine Affected the Composition of
Gut Microbiota
After trimming and filtering, a total of 4,142,382 high-quality
reads were generated from 108 samples. More than 98% of
the high-quality reads were retained and clustered to 1670
OTUs with 97% similarity after removing the ‘Unknown,’
“Cyanobacterial,” “chloroplast,” or “mitochondria” sequences.
A total of 1561 OTUs were assigned to defined phyla
using a RDP classifier with a bootstrap cutoff of 80%. The
most abundant species of grass carp gut microbiota at the
phylum level were Fusobacteria, Firmicutes, Bacteroidetes, and
Proteobacteria (Figure 2A, more than 99% in total), while
Cetobacterium, Bacteroides, Bacillus, Lactococcus, Enterococcus,
Erysipelatoclostridium, and Proteocatella were dominant at
the genus level (Figure 2C, more than 75% in total). The
composition of gut microbiota changed dynamically as fish
grew, both in the control and BBR-fed groups (Figure 2).
For example, compared with day 0, the relative abundance of

Fusobacteria, including Cetobacterium, increased significantly
(from 25 to 75%), while the Firmicutes, including Bacillus,
Lactococcus, and Enterococcus significantly decreased (from 55
to 10%) by day 28 in the control group. In addition, the
relative abundance of Bacteroides was obviously increased from
the beginning to the mid-sampling days, and significantly
decreased at the end of the sampling days in the control group
(from 5 to 40%, then to 15%). At the end of the sampling
days, the relative abundance of potential pathogenic bacteria
such as Vibrio was also significantly increased in the control
group (Figures 2A,C).

The strong antimicrobial activity of BBR on both gram-
positive and negative bacteria changed the pattern of gut
microbiota, and the composition was significantly different in
the BBR-fed group (Figures 2B,D) compared to the control
group (Figures 2A,C) as the fish grew. Even though the
diversity and relative abundance of some beneficial bacterium,
such as Bacteroides were slightly decreased during BBR feeding
(19.04, 12.77, and 6.24% on days 1, 3, and 7, respectively), the
composition of gut microbiota was more diverse and stable
after the BBR feeding was stopped than in the control group.
For example, compared to the control group, the relative
abundance of Firmicutes, Bacteroidetes, and Proteobacteria were
significantly increased at day 28, while the abundant bacteria
Fusobacteria were significantly decreased in the BBR group.

Even though most gut microbes were found in both
groups, some species were enriched in different groups
(Figure 3). In total, 51, 28, and 32 OTUs were enriched before
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FIGURE 2 | Average relative abundance of bacterial phyla and genera detected in gut microbiota of berberine-fed (BBR) and control grass carp. (A) Phyla structure
in control group; (B) phyla structure in BBR-fed group; (C) genus structure in control group; (D) genus structure in BBR-fed group.

BBR feeding, during BBR feeding, and after BBR feeding,
respectively. The enriched OTUs before BBR feeding mainly
belonged to Firmicutes, while most enriched OTUs during and
after BBR feeding came from Proteobacteria, Planctomycetes,
Bacteroidetes, and Firmicutes. When we compared the relative
abundance of gut microbes on the same sampling day
between the control and BBR group, we found that 48,
25, and 162 OTUs were significantly different on days 3,
7, and 28, respectively, further suggesting that BBR affected
the composition of fish gut microbiota. The significantly
enriched OTUs in the BBR group on day 28 were mainly
Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. In

addition, the ratio of Firmicutes to Bacteroidetes was significantly
decreased as the fish grew during BBR feeding (from 8.33
to 1.45). Interestingly, this ratio significantly decreased from
8.33 to 0.25 between days 0 and 9 during BBR feeding, and
increased from 0.25 to 1.45 from day 9 to 28 after BBR
feeding stopped.

Berberine Affected the Diversity of Gut
Microbiota
All the rarefaction curves indicated that the sequencing depth
was sufficient for each sample (Supplementary Figures S2,3).
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FIGURE 3 | Specific enriched species at different growth stages (Control 0,
during berberine (BBR) feeding and after BBR feeding was stopped) in
BBR-fed group. Blue, enriched OTUs Control 0; Orange, enriched OTUs
during BBR feeding; Green, enriched OTUs after BBR feeding stopped.

Compared with day 0, the alpha diversity on day 28 was
significantly decreased in the control group (Kruskal-Wallis
rank sum test, p < 0.0001, Figure 4). At the same time,
the alpha diversity changed dynamically in the BBR feeding
group (Kruskal-Wallis rank sum test, p < 0.05, Supplementary
Figure S5) between days 0 and 28. The alpha diversity was
significantly decreased during BBR feeding from days 3 to
7, and was significantly increased after BBR feeding stopped
(from days 14 to 28). Compared to the control group, the

alpha diversity was lower during BBR feeding, and became
higher after BBR feeding stopped in the BBR group (Welch’s
t-test, p < 0.05).

Compared with the control group, the gut microbial
community distances were significant decreased from days 0 to
28 (Kruskal-Wallis rank sum test, p < 0.005, Supplementary
Figure S4). In the BBR group, the distances between fish gut
microbial communities within sample groups were significantly
decreased during BBR feeding, and were significantly increased
after BBR feeding stopped (Kruskal-Wallis rank sum test,
p < 0.00001, Figure 5).

Gut Microbiota Were Correlated With
Biochemical Parameters of Serum and
Liver
The levels of glucose, TC, and TG in serum were significantly
reduced during BBR feeding (Figures 1A–C). In total, 42
high abundance OTUs (relative abundance >0.01%) were
significantly correlated with the levels of glucose, TC, and
TG in serum and liver (Figure 6). Interestingly, 32 of 42
OTUs mainly distributed in Proteobacteria (9), Bacteroidetes
(5), Actinobacteria (5), Verrucomicrobia (4), Firmicutes (3),
Planctomycetes (3), Fusobacteria (1), Saccharibacteria (1), and
Tenericutes (1) were significantly, negatively correlated with
weight, body size, fatness, and the levels of glucose and
TC in serum, and significantly, positively correlated with
serum TG, liver total cholesterol and TG. Furthermore,
most of the 32 OTUs were more abundant in the BBR
group than the control group (Supplementary Figure S6),
indicating these OTUs may have been affected by BBR.
Besides the potential beneficial gut microbes, 10 of 42 OTUs
were strongly, positively correlated with weight, body size,
fatness, and the levels of glucose and TC in serum, and

FIGURE 4 | Species richness of control group of four alpha diversity indexes. (A) Shannon index; (B) Chao1 index; (C) Observed species index; and
(D) Phylogenetic distance whole tree index. Significant differences were determined using the Kruskal-Wallis test.
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FIGURE 5 | Sample distance within berberine (BBR) fed group on three beta-diversity metrics. (A) Bray Curtis; (B) Unweighted, and (C) weighted UniFrac
distance index.

significantly, negatively correlated with the level of serum TG,
liver TC, and TG.

DISCUSSION

Berberine can significantly reduce glucose levels in mammals
(Leng et al., 2004; Yin et al., 2008; Zhang H. et al., 2010; Zhang
et al., 2012; Xia et al., 2011; Dai et al., 2015; Wang Y. et al.,
2017). The oral bioavailability of BBR is relatively low (Hua
et al., 2007; Vuddanda et al., 2010; Chen et al., 2011). The
maximum concentration (Cmax) of BBR in the plasma of rats
is 4 ng/ml after oral administration of 100 mg/kg BBR (Liu
et al., 2009; Zhang et al., 2012). The maximum concentration
(Cmax) of BBR in the plasma of tilapia (Oreochromis niloticus)
is 2.95 ng/mL after oral administration of 30 mg/kg BBR (Qin,
2014). Effective concentrations required for regulation genes
or pathways in in vitro assays cannot be achieved as a result
of low bioavailability of BBR (Zhang et al., 2012; Gu et al.,
2015). Therefore, It is difficult to explain the mechanism of
clinical effects of BBR based on systemic genes and pathways.
However, it has been proved that the main action site of
BBR is the gut (Sun et al., 2016). BBR directly impacts the
gut microbiota of mice and causes lipid-lowering effects via
sequential events (Sun et al., 2016; Tian et al., 2018). It has
been also proved that the glucose-lowering effect of BBR in
rats is associated with the shift of the gut microbiota structure
in BBR-treated rats (Zhang et al., 2012). The dosage of BBR

for anti-bacterial diseases in fish in the Chinese fisheries
pharmacopeia is 15–30 mg/kg body weight (Yang, 2005). The
present study is the first to report that oral administration of
30 mg/kg BBR, which is the Highest Permissible Dosage in the
Chinese fisheries pharmacopeia, strongly reduced glucose level
in grass carp. The mechanism by which BBR reduces glucose
levels in grass carp was presumed to be the modulation of gut
microbiota after oral administration. This was inferred from
our results, as 32 high abundance OTUs (mainly in the BBR
group) were significantly negatively correlated with levels of
glucose (p < 0.05). These results broaden our view that BBR
lowers blood glucose level in teleost fishes as well as mammals.
In addition, BBR or BBR-derived products may be useful in
the regulation of blood glucose levels and gut microbiota in
grass carp culture.

Besides the effects on fish metabolism, BBR also dramatically
affected the structure of host gut microbiota. Consistent with
previous findings in mice (Zhang et al., 2012), we found
that the structure and diversity of grass carp gut microbiota
was significant affected by BBR, indicating its antimicrobial
activity (Wu et al., 2012; Wang Y. et al., 2017). Interestingly,
the diversity of grass carp gut microbiota was higher in
the BBR group after it was stopped being fed BBR than in
the control group, suggesting that BBR may maintain the
stability and health of grass carp gut microbiota. Furthermore,
due to the antimicrobial activity of BBR, some abundant
bacteria, such as Firmicutes and Fusobacteria, were inhibited,
releasing limited food and niche resources. Meanwhile, other

Frontiers in Microbiology | www.frontiersin.org 7 May 2019 | Volume 10 | Article 1066

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01066 May 8, 2019 Time: 14:46 # 8

Pan et al. BBR Maintained Fish Gut Microbiome

FIGURE 6 | Correlation between host phenotype and gut bacterial species. ∗denotes p < 0.01; +denotes p < 0.05.

gut microbes, such as Bacteroidetes, Proteobacteria, and
Actinobacteria may have used these resources increasing
the diversity of gut microbiota. Additionally, the ratio of
Firmicutes and Bacteroidetes was significantly correlated
with the fatness, TC and TG of serum in mammals (Ley
et al., 2005, 2006; Eslinger et al., 2014; Hussain et al., 2016).
Interestingly, we also found that the ratio of Firmicutes
and Bacteroidetes was decreased as glucose, TC, and TG
in serum decreased in the BBR group, indicating that BBR
may affect the levels of serum glucose, TC, and TG by
modifying the ratio of Firmicutes and Bacteroidetes. We
also found that 10 and 32 abundant OTUs were significantly,
positively and negatively correlated with serum glucose,
respectively. Interestingly, some of the negatively correlated
OTUs belonged to the potentially beneficial Bacteroidetes,
while some of the positively correlated OTUs belonged to
potential pathogens, such as Vibrio. Furthermore, most of
the 32 negatively corelated OTUs were more abundant in the
BBR group than in the control, indicating that these OTUs
may have been affected by BBR and further affected the
metabolism of grass carp.

CONCLUSION

In summary, the levels of glucose, TC, and TG in blood
were significantly decreased, and the diversity and structure
of intestinal microbial bacteria in grass carp were affected
by BBR-supplemented feed. BBR may have directly
affected fish metabolism by controlling and modifying
the structure of the gut microbiota, such as adjusting the
ratio of Firmicutes to Bacteroidetes, increasing diversity,
and recruiting more beneficial microbes. These findings
indicate that BBR lowers blood glucose levels in teleost
fishes via the gut microbiota, and that BBR or BBR-derived
products may be used to maintain the growth and health of
grass carp culture.
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