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The mosquito-borne West Nile virus (WNV) is a highly neurovirulent Flavivirus currently 
representing an emergent zoonotic concern. WNV cycles in nature between mosquito 
vectors and birds that act as amplifier hosts and play an essential role in virus ecology, 
being, thus, WNV a threat to many species. Availability of an efficient avian vaccine would 
benefit certain avian populations, both birds grown for hunting and restocking activities, as 
well as endangered species in captive breeding projects, wildlife reservations, and recreation 
installations, and would be useful to prevent and contain outbreaks. Avian vaccination would 
be also of interest to limit WNV spillover to humans or horses from susceptible bird species 
that live in urbanized landscapes, like magpies. Herein, we have addressed the efficacy of 
a single dose of a WNV recombinant subviral particle (RSP) vaccine in susceptible magpie 
(Pica pica). The protective capacity of the RSP-based vaccine was demonstrated upon 
challenge of magpies with 5 × 103 plaque forming units of a neurovirulent WNV strain. A 
significant improvement in survival rates of immunized birds was recorded when compared 
to vehicle-inoculated animals (71.4 vs. 22.2%, respectively). Viremia, which is directly related 
to the capacity of a host to be competent for virus transmission, was reduced in vaccinated 
animals, as was the presence of infectious virus in feather follicles. Bird-to-bird transmission 
was recorded in three of six unchallenged (contact) magpies housed with non-vaccinated 
WNV-infected birds, but not in contact animals housed with vaccinated WNV-infected 
magpies. These results demonstrate the protective efficacy of the RSP-based vaccine in 
susceptible birds against WNV infection and its value in controlling the spread of the virus.
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INTRODUCTION

Human and animal health has to face changes in the ecology of pathogens resulting from 
globalization and climate warming. Flaviviruses represent one of these emerging challenges 
and are currently spreading worldwide, as exemplified by the recent pandemic of Zika virus 
(Saiz et  al., 2016) and the increasing outbreaks of WNV (Martin-Acebes and Saiz, 2012; 
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Munoz et al., 2018). Therefore, development of efficient vaccines 
to control them is an urgent need.

WNV is a highly neurovirulent pathogen naturally maintained 
in an enzootic cycle between ornithophilic mosquitoes and 
certain birds. It is responsible for sporadic outbreaks in humans 
and horses, in which the infection is mainly asymptomatic 
even though it can also have a fatal outcome and result in 
epidemics and epizootics (Martin-Acebes and Saiz, 2012). 
Hundreds of bird species are susceptible to the infection, and 
several develop competent viremia to efficiently transmit the 
virus to vectors, thus playing an essential role in virus 
maintenance (Komar et  al., 2003). WNV-associated mortality 
has been described in domestic (Swayne et al., 2001; Wunschmann 
and Ziegler, 2006; Eckstrand et al., 2015) and wild birds (Ludwig 
et  al., 2002; Ward et  al., 2006; LaDeau et  al., 2007), including 
some adapted to human environments (Foss et  al., 2015), and 
in endangered species (Yaremych et  al., 2004; Jimenez-Clavero 
et al., 2008). To date, WNV licensed vaccines are only available 
for use in equids. Therefore, assessment of the protective 
capability of vaccine candidates in birds that are natural hosts 
and virus amplifiers can be very useful to control WNV outbreaks.

Herein, we  have assayed the effectiveness of a  WNV- 
recombinant subviral particle (RSP)-based vaccine in the magpie 
(Pica pica), a member of the family Corvidae, whose habitats 
include cultivated land and suburban areas, and that is highly 
susceptible to WNV and possibly a transmission competent 
species (Jimenez de Oya et  al., 2018). The RSPs, also referred 
to as virus-like particles (VLPs), result from the co-expression 
of the prM and E glycoproteins of WNV and mimics immunogenic 
properties of the whole virion. RSPs have already shown their 
potential as vaccine candidates for WNV (Merino-Ramos et  al., 
2014), tick-borne virus encephalitis (Heinz et al., 1995), Japanese 
encephalitis virus (Hunt et al., 2001), and Murray Valley encephalitis 
virus (Kroeger and McMinn, 2002) in the mouse model. Here, 
we show that immunization with a single dose of the WNV-RSP-
based vaccine protects magpies upon challenge with a neurovirulent 
strain of WNV. Moreover, the vaccine significantly reduced 
viremic titres below the threshold to consider a host as a 
competent amplifier and significantly reduced viral burden in 
feathers, remarking its value as a useful tool to control WNV.

MATERIALS AND METHODS

Ethics Statement
Animals were handled according to the guidelines of the 
European Community 2010/63/UE. Magpies were captured 
between April and June 2018  in different hunting locations 
in South-Central Spain (permit 346760, Regional Government 
of the Autonomic Community of Castilla-La Mancha, Spain) 
and housed as previously described (Jimenez de Oya et  al., 
2018). All protocols involving animals were approved by the 
Committee on Ethics of animal experimentation of the host 
Institution (INIA’s permit number 2018-004). Infectious virus 
manipulation was carried out in dedicated BSL-3 facilities in 
strict accordance to biosecurity rules. Magpies were provided 
with food and water ad libitum and were monitored daily 

through the duration of the experiment. Birds that met the 
criteria established for humanitarian endpoint (e.g., severe signs 
of WNV neuropathology, excessive weight loss, acute deviation 
of behavior, etc.), as well as all surviving ones at the end of 
the experiment, were euthanized with sodium pentobarbital 
(Dolethal, Vetoquinol, Madrid, Spain).

Recombinant Subviral Particles (RSPs)
RSPs were purified from the supernatant of a WNV-HeLa3 
cell line that secretes them constitutively (Merino-Ramos et  al., 
2014) by centrifugation through a sucrose gradient as described 
(Martin-Acebes et al., 2014). Immunodot analyses were performed 
to select peak fractions containing WNV-specific E protein 
(Merino-Ramos et al., 2014), the amount of which was estimated 
by Bradford assay using a standard curve of bovine serum albumin.

Bird Vaccination, Challenge, and Sampling
Birds were aged based on plumage and molt patterns, sampled, 
and tested for the presence of WNV neutralizing antibodies 
(NAbs) in their sera by plaque reduction neutralization test (PRNT) 
as described (Vazquez-Calvo et  al., 2017). Real time RT-PCR 
was used to test the presence of WNV genome in serum and 
feather follicles, as described previously (Jimenez de Oya et  al., 
2018). A final group of 27 juvenile (less than 1 year old) magpies 
negative for WNV NAbs and WNV genome was transported to 
our biosafety level 3 (BSL-3) facilities where they were housed 
in 2 appropriately equipped separate cages, 12  in the RSP-box, 
and 15  in the vehicle-box, as described (Figure 1; Jimenez de 
Oya et  al., 2018). After 1 week of adaptation, animals were 
weighed and bled via the jugular vein for pre-inoculation serology.

A group of 10 magpies was immunized once subcutaneously 
in the thigh with 50  μg/magpie of purified RSPs administered 
(1:1) with aluminum hydroxide gel adjuvant (Alhydrogel®, 
InvivoGen, San Diego, USA), while another group (vehicle) 
of 9 were inoculated with adjuvant alone by the same route. 
Twenty-nine days later, magpies (eight RSPs-immunized and 
nine vehicle-inoculated) were subcutaneously challenged in the 
inguinal space (crural patagium) with 5 × 103 plaque forming 
units (pfu)/animal of WNV strain NY-99 (GenBank accession 
no. KC407666, Merino-Ramos et  al., 2014) diluted in 200  μl 
of Eagle Minimum Essential Medium (EMEM, BioWhittaker, 
Lonza, Verviers, Belgium). The inoculum was back-titrated to 
confirm the inoculated dose. Ten uninfected birds (six in the 
vehicle-inoculated group and four in the RSPs-vaccinated group, 
two immunized, and two not) were housed with the infected 
magpies, as control for bird-to-bird virus transmission (Figure 1).

Birds were bled from the jugular vein before vaccination, 
at days 14 and 28 post-vaccination, and at 4, 7, 10, 14, and 
19  days post-infection (d.p.i.), corresponding to days 33, 36, 
39, 43, and 48 post-vaccination. At the indicated times post-
infection, birds were weighed and at least two of any growing 
feathers containing pulp were collected (contour feathers of 
the body or head, or tail or wing coverts, depending on the 
individual). The number of feathers employed for pulp extraction 
was adapted according to their size to work with approximately 
equal amounts of pulp (Figure 1).
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Serological and Virological Assays
Whole blood (0.5  ml/bird) was allowed to coagulate at 4°C 
overnight and the serum was collected after centrifugation at 
1,300× g at 4°C for 10  min, and kept at −80°C until use. 
Serum was diluted 1/10 and filtered through 0.2  μm pore size 
filters (Acrodisc® syringe filters, Pall Corporation, Port 
Washington, New York, US). Serial serum dilutions were titrated 
by plaque assay as described (Martin-Acebes et  al., 2013).

The pulp of feather follicles was extracted from the calamus 
of growing feathers with fine point tweezers, covered with 
0.5  ml of fresh Eagle minimum essential medium (EMEM) 
supplemented with glutamine and penicillin-streptomycin, and 
stored at −80°C until use. Detection of infectious virus in the 
follicles was performed, after one cycle of quick freeze and 
thaw, in serial dilutions as above, starting from a filtered 
1/10 dilution.

Detection of WNV NAbs in sera was performed by plaque 
reduction neutralization test (PRNT) using twofold dilutions 
of previously filtered, heat inactivated (30  min at 56°C) sera 
(Vazquez-Calvo et  al., 2017). Antibody titres were established 
by calculating the inverse of the highest dilution (minimum 
dilution 1:20) capable of inhibiting virus replication by 90% 
(PRNT90).

Statistical Analyses
Data analysis was performed using Graph Pad Prism 6 (Graph 
Pad Software, Inc., San Diego, CA, 2005). Kaplan-Meier survival 
curves were analyzed by a log-rank (Mantel Cox) test. The 
analysis of variance (ANOVA) with Bonferroni’s correction was 

applied for multiple comparisons. For single comparison and 
non-parametric data, U Mann-Whitney tests were performed. 
Significant differences are shown in the figures represented by 
asterisks *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

RESULTS

Vaccine Safety
None of the vaccinated animals showed evidence of adverse 
reaction after vaccine administration, but most of them developed 
a thick walled fibrous cyst filled with whitish material of 
2–8  mm in diameter at the site of inoculation.

Protective Role of the Vaccine
Both vehicle-inoculated (n  =  9) and vaccinated (n  =  8) groups 
were challenged with 5 × 103 pfu/magpie of the neurovirulent 
WNV-NY99 strain 29  days post-immunization (Figure 1). 
Magpies that succumbed to the infection showed disease-related 
signs (less than 12 h prior to death) such as ruffled feathers, 
lethargy, loss of equilibrium, and ataxia, as did sick animals 
before being euthanized according to endpoint criteria. Weight 
loss was observed in both infected groups of birds at days 7 
and 10 p.i., although in vaccinated birds, it was significantly 
less pronounced and delayed in comparison to unvaccinated 
magpies (Figure 2). From there on, surviving animals began 
to gain weight until the end of the experiment. Survival rate 
in vehicle-inoculated birds (22.2%, 2/9) was significantly lower 
than in vaccinated magpies (71.4%, 5/7) (Figure 3).  

FIGURE 1 | Experimental design. Schematic representation of the immunization, sampling schedule, and the distribution of the magpies in the experimental boxes.
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One vaccinated bird was sacrificed at 7 d.p.i. for the purpose 
of histopathologic analysis and, thus, it was excluded from 
the survival analysis. Mortality kinetics in vaccinated magpies 
(dead at day 10 p.i.) was delayed as compared to that of 
non-immunized birds, which died between days 6–10 p.i. 
(median survival time, MST, 6 d.p.i.).

Humoral Response
None of the birds presented anti-WNV NAbs, measured as 
PRNT90, nor WNV genome prior to immunization. The RSP-based 
vaccine elicited detectable WNV NAbs in five vaccinated birds 
at day 14 after immunization (Figure 4). WNV challenge 
induced humoral immunity in both vaccinated and 

non-vaccinated groups, although with different kinetics and 
magnitude, peaking at 7 and 10 d.p.i. in vehicle-inoculated 
and RSPs-vaccinated magpies, respectively, with significantly 
higher antibody titres in vaccinated than in vehicle-inoculated 
magpies at 10 d.p.i.

Control of Viral Infection
Viremia found in vaccinated magpies was significantly lower 
at 4 d.p.i. when compared with non-primed birds, and at day 
7 p.i., only one vehicle-inoculated bird presented measurable 
viremia (Figure 5A). A titre above 105 pfu/ml has been 
established to consider a viremic bird as a competent host to 
transmit the virus to most WNV competent mosquito vectors 
(Komar et  al., 2003). At 4 d.p.i., the number of vaccinated 
magpies with viremia above this competence threshold was 
significantly lower than in the vehicle-inoculated group  
(12.5 vs. 77.8%, respectively) (Figure 5B).

Similarly, viral titres found in feather follicles were significantly 
reduced in vaccinated magpies in comparison to non-vaccinated 
birds at 4 and 7 d.p.i. (Figure 5C). Moreover, the proportion 
of animals with infectious virus in follicles was consistently 
lower in vaccinated than in non-vaccinated magpies at the 
different time points analyzed (Figure 5D).

Virus Horizontal Transmission
Contact animals that were not challenged were housed with 
WNV-challenged birds in both groups (four in the RSPs-
vaccinated and six in the vehicle-inoculated group) throughout 
the experiment to explore bird-to-bird virus transmission. 
In the vaccinated group, two of the contact magpies had 
been vaccinated and two were not (Figure 1). Bird-to-bird 
contact was analyzed based on presence of NAbs and infectious 
virus in sera and feather follicles. Remarkably, viral 
transmission was observed in contact birds housed with 
vehicle-inoculated birds, but not in those allocated with 

FIGURE 3 | WNV-RSP-based vaccine increases survival rates in magpies 
challenged with WNV. Survival rates of non-vaccinated (vehicle) and 
vaccinated (RSP) magpies after WNV challenge. Statistically significant 
differences are represented by an asterisk (*p < 0.05).

FIGURE 4 | Humoral immune response. Neutralizing antibody (NAb) titres in 
the sera of non-vaccinated (vehicle) and vaccinated (RSP) magpies measured 
by plaque reduction neutralization test (PRNT90) at different time points 
previous to and after WNV challenge. Data are presented as mean ± SEM. 
Statistically significant differences are represented by asterisks 
(****p < 0.0001).

FIGURE 2 | Time-course of body weight changes of magpies challenged 
with WNV. Body weight measurements of non-vaccinated (vehicle) and 
vaccinated (RSP) magpies after WNV challenge expressed as the percentage 
of the initial body weight. Data are presented as mean ± SEM. Statistically 
significant differences are represented by asterisks (**p < 0.01).
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immunized cage-mates (Figure 6A), which indicates the 
capability of the vaccine to confer herd immunity. Bird- 
to-bird viral transmission was confirmed by detection of 
viremia in 3/6 (50%) contact magpies housed with vehicle-
inoculated cage-mates at 7 d.p.i. (Figures  6A,B) and by the 
death of one of them. Viremia was detected in these contact 
birds 3 days after the peak of viremia of their challenged 
cage-mates (Figure 6B). Contact-infected magpies presented 
NAbs from day 10 p.i., again with some delay in comparison 
to the experimentally challenged birds (Figure 6C). Infectious 
virus was also found in the feather follicles of contact-infected 
birds from 7 to 19 d.p.i., depending on the animal (Figure 6D), 
but also with a delay in comparison to their challenged 
cage-mates. These results support that the control of the 
virus after WNV-RSPs vaccination averts bird-to-bird infection, 
as none of the contact magpies included in the vaccinated 
group was infected.

DISCUSSION

There is a current (re)-emergence of arthropod-borne viruses, 
such as West Nile, dengue, or Zika virus, due to the arrival 
and establishment of their vectors in new geographical regions, 
global trade, and urbanization. Accordingly, a greater number 
of autochthonous cases are being reported in non-endemic 
areas, as evidenced by the recent pandemic of Zika virus in 
America (Saiz et al., 2016) or dengue cases in European countries.1

WNV has a worldwide distribution and had been associated 
mainly with rare and infrequent epidemics/epizootics. However, 
the virus re-emerged in the 90s, being responsible of more 
frequent and severe outbreaks in humans, horses, and birds, 
as exemplified by the outbreak in 1999  in New  York 
(Martin-Acebes and Saiz, 2012). Since then, several outbreaks 

1 https://ecdc.europa.eu/

A B

C D

FIGURE 5 | The WNV-RSP-based vaccine reduces viremia and infectious virus in feather follicles of magpies infected with WNV. Viremia titres (A), percentages of 
hosts that are competent (i.e., birds with viremic titres above 105 pfu/ml) (B), viral titres in feather follicles (C), and percentages of animals with virus in feather follicles 
(D) in non-vaccinated (vehicle) and vaccinated (RSP) magpies after WNV challenge. Data are presented as mean ± SEM. Statistically significant differences are 
represented by asterisks (*p < 0.05 and **p < 0.01).
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have been described around the world. In fact, the number 
of WNV human cases in Europe has worryingly increased 
during 2018 to up to 1,875 confirmed ones, with 115 deaths,2 
locally concurrent with wild bird mortality, namely, in magpies. 
Therefore, there is a clear need for the implementation of 
more efficient surveillance and control programs to combat WNV.

Nowadays, the only approved vaccines are for use in equids. 
These vaccines have demonstrated to be  highly efficient in 
drastically reducing infectious rates among horses in the US 
(Martin-Acebes and Saiz, 2012; Iyer and Kousoulas, 2013). 
The availability of vaccines for use in birds, the natural hosts 
of the virus, which can break the viral cycle by helping to 
control it, will be  highly useful, mainly during outbreaks. 
Such vaccines could be  used in birds held in captivity in 
zoos, recreational installations, wildlife rehabilitation, and 
endangered species breeding centers, in surveillance programs, 

2 https://ecdc.europa.eu

and even in birds grown for restocking or hunting activities 
that are yearly released by the thousands into the environment 
in many countries. In fact, DNA vaccines, either experimental 
or commercially available for equine use, have been previously 
tested in fish crows (Turell et  al., 2003), American crows 
(Bunning et  al., 2007) scrub jays (Wheeler et  al., 2011), 
red-tailed hawks (Redig et  al., 2011), and falcons (Fischer 
et  al., 2015). Likewise, recombinant vaccines were evaluated 
in geese (Jarvi et  al., 2008), red-legged partridges (Escribano-
Romero et  al., 2013), and falcons (Angenvoort et  al., 2014), 
as were inactivated ones in falcons (Angenvoort et  al., 2014) 
and geese (Malkinson et  al., 2001). This latter one was even 
administered to 1,800 geese in a follow-up study with a 
survival rate over 96% (Samina et  al., 2005). Even more, a 
prospective vaccination of condors in California before the 
virus was introduced there was claimed to act as a potential 
barrier from subsequent WNV infections (Chang et al., 2007). 
In most of these studies, birds were challenged 6–10  weeks 

A B

C D

FIGURE 6 | Bird-to-bird WNV transmission occurs only in non-vaccinated magpies. Percentage of animals infected by bird-to-bird contact (A), viremia titres (B), 
neutralizing antibody (NAb) titres, PRNT90 (C), and viral titres in feather follicles (D) in contact-infected magpies. Solid and empty symbols represent contact birds 
housed with non-vaccinated and vaccinated animals, respectively.
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after immunization, and two or three doses were necessary 
to observe significant antibodies titres, reduction of viremia 
levels and, when analyzed, of viral shedding. However, in 
none of these reports, the induction of herd immunity 
was evaluated.

To date, more than 300 wild and domestic avian species 
have been described as susceptible to WNV infection (Komar 
et  al., 2003), being corvids highly prone to it and important 
virus amplifiers (Komar et  al., 2003; Lim et  al., 2015; Jimenez 
de Oya et al., 2018) thus playing a key role in the epidemiology 
of the virus (Eidson, 2001; Eidson et  al., 2001a,b; Reisen et  al., 
2006; Hinton et  al., 2015). In fact, WNV epidemics in the US 
were associated with high crow mortality and have even led 
to a significant decrease of native crow species (Reisen et  al., 
2006; LaDeau et  al., 2007; Ernest et  al., 2010; Foss et  al., 2015). 
Corvids seem to be  also involved in the WNV endemic cycle 
in human habitats in Europe (Calistri et  al., 2010). Among 
them, the magpie is one of the most abundant corvids in Europe 
(Madge, 2018). Magpies live in urbanized landscapes and constitute 
a feeding preference of Culex pipiens, a main WNV-vector to 
humans (Rizzoli et  al., 2015). In addition, it has been reported 
to be  highly susceptible to viral infection and a possible source 
of WNV transmission (Jimenez de Oya et  al., 2018), making 
of this bird species an interesting player in WNV ecoepidemiology. 
Similar to American Yellow-billed magpies (Pica nutalli) and 
American crows (Corvus brachyrhynchos), Eurasian magpies form 
large communal roosts outside the breeding season that could 
be  important for WNV persistence during winter by bird-to-
bird transmission, as has been suggested for American crows 
(Hinton et  al., 2015).

In the present study, we  have addressed the capability of 
a RSPs vaccine to protect magpies against a lethal dose of 
WNV NY-99 strain, which is highly virulent in American 
crows (Brault et  al., 2004, 2007), and whose virulence and 
pathogenicity in animal models, both mice and magpies (Merino-
Ramos et  al., 2014; Jimenez de Oya et  al., 2018), are similar 
to those of currently circulating lineage 2 WNV strains in 
Europe (Petrovic et  al., 2013).

RSPs are potent inducers of both B cell responses (Zhang 
et  al., 2009; Tan and Jiang, 2014), essential to control 
WNV-infection (Diamond et  al., 2003), and T cell responses 
(Tan and Jiang, 2014; Pitoiset et  al., 2015), important in 
viral clearance (McMurtrey et  al., 2008), being consequently 
an excellent choice for vaccine development. In this sense, 
we  have previously reported that the RSP vaccine candidate 
used here protects mice experimentally infected with WNV 
strains of different lineages (Merino-Ramos et  al., 2014). 
Now we  have confirmed the protective capability of the 
vaccine candidate in a virus natural host, as the survival 
rate (71.4%) of the vaccinated magpies was significantly 
higher than that of non-vaccinated birds (22.2%), in which 
the percentage of survival was similar (30%) to that previously 
reported in experimentally infected naïve magpies (Jimenez 
de Oya et  al., 2018).

By day 14 after immunization, NAbs were detected in 
50% of the animals (5/10, mean PRNT90 = 70.6 ± 92.9) upon 

a single dose of the vaccine. By day seven after viral infection, 
and with the exception of one vehicle-inoculated magpie, 
NAbs titres were detected in all challenged birds, but titres 
were higher in non-vaccinated animals than in vaccinated 
ones (mean PRNT90  =  3,027  ±  1,949 vs. PRNT90 = 
2,555 ± 1,539, respectively), probably due to a more prominent 
and generalized viral replication that enhances the humoral 
immune response (Honke et  al., 2011). Nevertheless, at day 
10 p.i. NAb titres were significantly higher in the vaccinated 
group in comparison to non-vaccinated ones (mean 
PRNT90  =  5,103  ±  2,827 vs. PRNT90 =  1,214  ±  1,387, 
respectively). These results point out that, besides the 
contribution of the NAbs, the cellular immune response is 
likely to play a pivotal role in containing infection, an aspect 
that merits further investigation.

A single dose of vaccine not only partially protected magpies 
from a lethal WNV infection, but also significantly reduced 
viremia. Viremia levels were measured at 4 and 7 d.p.i. Only 
one out of eight (12.5%) vaccinated birds had viremia titres 
above 105 pfu/ml, high enough to consider an infected bird 
as a competent host to transmit the virus to the vector (Komar 
et al., 2003; Turell et al., 2003), while seven out of nine (77.7%) 
vehicle-inoculated birds reached that threshold. One vehicle-
inoculated magpie was still viremic at 7 d.p.i. Similarly, detection 
of virus in follicles of growing feathers, which could also 
be  considered a source of virus transmission (Banet-Noach 
et  al., 2003; Docherty et  al., 2004; Jimenez de Oya et  al., 
2018), showed that few of the vaccinated magpies were positive, 
with significantly lower titres, when compared to non-vaccinated 
ones. In fact, none of the four contact birds housed with 
vaccinated animals got infected, while three of the six housed 
with non-vaccinated magpies were viremic, presented infectious 
virus in feathers, developed neutralizing antibodies, and one 
of them succumbed to the infection. Therefore, vaccination 
of the magpies seems to induce herd immunity, diminishing 
the risk of both host-to-vector and bird-to-bird virus 
transmission. This could be  of importance for the control of 
WNV persistence if herd immunity is induced in communal 
roosting species such as magpies and crows, in which bird-
to-bird transmission may represent an important mode of 
viral persistence outside the seasons with vector activity (Hinton 
et  al., 2015; Montecino-Latorre and Barker, 2018), Therefore, 
bird vaccination would really impact on virus maintenance 
especially if effective ways of administration, as oral delivery, 
are developed.

In brief, we  herein report the efficacy of a single dose of 
an anti-WNV RSP-based candidate vaccine in conferring 
protection to the magpie, a natural virus amplifier host with 
a key role in WNV ecology. The vaccine has demonstrated 
to be  safe for birds and its production does not require 
BSL-3 facilities, as RSPs are not infectious, which reduces 
the cost of production and facilitates its manipulation. It is 
also worth noting that this type of vaccine could be  used 
without interfering with ongoing WNV surveillance programs 
since it could enable the differentiation between naturally 
infected and vaccinated animals (DIVA vaccine). In conclusion, 
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a single dose of the RSPs vaccine protects magpies from 
WNV, eliciting a neutralizing immune response and interfering 
with the virus cycle by reducing viremia levels and the risk 
of horizontal contact.
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