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Microbes play essential roles in arsenic transformation in the environment. Microbial
arsenite oxidation is catalyzed by either of two distantly related arsenite oxidases,
referred to as AIO and ARX. The arx genes encoding ARX and its regulatory proteins
were originally defined in the genomes of gammaproteobacteria isolated from an alkaline
soda lake. The arx gene cluster has been identified in a limited number of bacteria,
predominantly in gammaproteobacteria isolated from lakes characterized by high pH
and high salinity. In the present study, a novel arsenite-oxidizing betaproteobacterium,
strain M52, was isolated from a hot spring microbial mat. The strain oxidized
arsenite under both microaerophilic and nitrate-reducing conditions at nearly neutral
pH. Genome analysis revealed that the strain possesses the arx gene cluster in
its genome and lacks genes encoding AlO. Inspection of the bacterial genomes
available in the GenBank database revealed that the presence of this gene cluster is
restricted to genomes of Proteobacteria, mainly in the classes Gammaproteobacteria
and Betaproteobacteria. In these genomes, the structure of the gene cluster was
generally well-conserved, but genes for regulatory proteins were lacking in genomes
of strains belonging to a specific lineage. Phylogenetic analysis suggested that ARX
encoded in the genomes can be divided into three groups, and strain M52 belongs to a
group specific for organisms living in low-salt environments. The ArxA protein encoded in
the genome of strain M52 was characterized by the presence of a long insertion, which
was specifically observed in the same group of ARX. In clone library analyses with a
newly designed primer pair, a diverse ArxA sequence with a long insertion was detected
in samples of lake water and hot spring microbial mat, characterized by low salinity and
a nearly neutral pH. Among the isolated bacterial strains whose arsenite oxidation has
been demonstrated, strain M52 is the first betaproteobacterium that possesses the arx
genes, the first strain encoding ARX of the group specific for low-salt environments, and
the first organism possessing the gene encoding ArxA with a long insertion.
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INTRODUCTION

Despite their toxic nature, compounds of arsenic are utilized
by some prokaryotes. Microbial transformation of arsenic
includes respiratory As(V) reduction and As(III) oxidation for
autotrophic growth, which are referred to as “arsenotrophy”
(Oremland et al., 2009). The interconversion of arsenate and
arsenite in arsenotrophy is catalyzed by one of the three enzymes
of the dimethyl sulfoxide (DMSO) reductase family, arsenate
reductase (ARR) and two distantly related arsenite oxidases, AIO
and ARX (Zargar et al., 2012).

ARX is encoded by the arxAB genes, which were initially
defined in Alkalilimnicola ehrlichii MLHE-1. This bacterium
was isolated from anoxic bottom water of an alkaline-saline
lake and can grow chemolithoautotrophically by anaerobic
arsenite oxidation coupled with nitrate reduction (Oremland
et al., 2002). The arx genes have also been identified in the
genomes of phototrophic bacterial strains isolated from alkaline-
saline environments, such as Ectothiorhodospira sp. PHS-1
and Ectothiorhodospira sp. BSL-9. These strains are capable
of arsenite oxidation coupled to anoxygenic photosynthesis,
which is referred to as photoarsenotrophy. The essential role
of the arxA gene in chemoautotrophic and phototrophic
arsenite oxidation was demonstrated by mutagenesis experiments
with A. ehrlichii MLHE-1 and Ectothiorhodospira sp. BSL-
9, respectively (Zargar et al., 2010; Hoeft McCann et al,
2017). In the genome of A. ehrlichii MLHE-1, the arx genes
form a gene cluster consisting of structural and regulatory
components. The structural component is comprised of five
genes, arxB2ZABCD. The other group of genes transcribed in the
opposite direction, arxXRS, are thought to encode a regulatory
system (Zargar et al, 2010). The same arrangement of the
arx genes was also found in Ectothiorhodospira sp. PHS-1
(Zargar et al., 2012) and BSL-9 (Hernandez-Maldonado et al,,
2016, 2017). To date, only a few arsenite-oxidizing bacteria
have been reported to possess the arx genes or arxA. They
are predominantly gammaproteobacteria isolated from lakes
characterized by high pH and high salinity, including Halomonas
sp. ANA-440 (Hamamura et al., 2014), Halorhodospira halophila
SL1 (Challacombe et al., 2013; Hernandez-Maldonado et al.,
2017), Ectothiorhodospira sp. MLW-1 (Hoeft McCann et al,,
2017), and the three strains mentioned above. As an exceptional
case, Desulfotomaculum sp. TC-1 (in the phylum Firmicutes) was
isolated from a sulfidic hot spring at pH 5.5 (Wu et al., 2017).

As mentioned above, most current knowledge regarding
ARX came from studies on gammaproteobacterial strains from
environments with high pH and high salinity. On the other
hand, however, the arx genes have also been identified in the
genome of other bacteria whose ability for arsenite oxidation
has not been demonstrated. One such strain, Sulfuricella
denitrificans skB26, is a sulfur-oxidizing betaproteobacterium
isolated from an artificial freshwater lake. In its genome,
the arx genes form a gene cluster corresponding to that
of A. ehrlichii MLHE-1. The protein encoded by the arxA
gene of S. denitrificans skB26 is phylogenetically distinct from
those of the halophilic and alkaliphilic gammaproteobacteria.
In addition, it has a unique inserted amino acid sequence

(Watanabe et al., 2014). In some previous studies, partial
sequences of the arxA gene were obtained with culture-
independent approaches. In one such study, arxA gene
sequences closely related to that of S. denitrificans skB26
were frequently detected in samples characterized by low
salinity and a nearly neutral pH (Ospino et al.,, 2018). These
results suggest the presence of a lineage of ARX specific for
freshwater environments, but arsenite oxidation by the ARX of
S. denitrificans skB26 or other members of this lineage has not
been demonstrated.

In this study, an arsenite-oxidizing betaproteobacterium
possessing the arx genes was isolated. This isolate has the arxA
gene belonging to the lineage frequently detected in freshwater
environments. In addition, the diversity of the arx gene
cluster was investigated by using genome sequences available in
public databases.

MATERIALS AND METHODS

Isolation of an Arsenite-Oxidizing
Bacterium, Strain M52

To obtain a novel arsenite-oxidizing bacterium, a dark green
microbial mat developed on an inclined concrete wall was
obtained from the Jozankei hot spring located in Hokkaido,
Japan. The mat is identical to that used in previous studies
(Kojima et al., 2017; Ospino et al., 2018). A piece of mat was
inoculated in a synthetic basal medium (pH 7.0 and 341.0 mg/L
of NaCl), which was prepared as described previously (Connon
et al., 2008). Prior to sterilization, the medium was purged
with N, or CO; gas to enrich anaerobic organisms. Just before
inoculation, stock solutions of sodium arsenite and sodium
chlorate were added to the medium to final concentrations
of 0.5 and 3 mM, respectively. The headspace of the bottle
was filled with N, gas, and incubation was performed in
the dark at 32°C. The enrichment was subject to successive
transfers to fresh media with an increased concentration of
arsenite, 1 mM. During the enrichment culture procedure, the
presence of organisms with the arxA gene was monitored by
the PCR-based method previously described (Ospino et al,
2018). After the fifth transfer, a pure culture was obtained by
repeated agar shake dilution (Widdel and Bak, 1992). For the
isolation, another medium was used with Na;S,03 and NaNO3
as an electron donor and acceptor, as described previously
(Kojima et al., 2017).

Genome Sequencing and Phylogenetic
Analysis of Strain M52

Genomic DNA was extracted from strain M52 using a
Wizard® Genomic DNA purification kit (Promega, Madison,
WI, United States). Genome sequencing and assembly were
performed as described previously (Umezawa et al., 2016). The
obtained genome was annotated with Rapid Annotation using
Subsystem Technology (RAST) (Overbeek et al., 2014). The
annotation overview of the genome was made in the SEED
Viewer version 2.0 (online). The assembled genome was subject
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to inspection for genes involved in arsenic metabolism. The
genome of strain M52 is available in GenBank under the
Accession No. NZ_AP019373.

The closest cultured relatives of the novel strain were identified
by comparison to the rRNA database in BLASTn, and a
phylogenetic tree was constructed. The sequences were aligned
with MAFFT version 7. Gaps and poorly aligned regions were
excluded using Gblocks v0.91b. The tree topology was inferred
by neighbor-joining using MEGA 6.

Culturing Experiments With Arsenic

Arsenite oxidation ability of strain M52 and effects of arsenic on
its growth were examined with culturing experiments at 45°C, as
described below.

To verify whether strain M52 was capable of oxidizing
arsenite anaerobically, culturing experiments were performed
under anoxic conditions by using the basal medium used for
the enrichment culture. The medium was supplemented with
0.2% (w/v) NaCl, 1-2 mg/L yeast extract, 0.5 mM sodium
molybdate, 1 mM sodium arsenite and 10 mM sodium nitrate.
For measurements of arsenite and arsenate concentrations,
approximately 500 pL of medium was aseptically collected
from each bottle at 0, 6, and 18 days of incubation. The
collected samples were immediately filtered through 0.22 pm
pore size filters and stored at —30°C until the measurements.
The concentrations of arsenite and arsenate were determined by
high-performance liquid chromatography (HPLC), as described
previously (Watanabe et al., 2017).

Arsenite oxidation was also examined in the basically same
medium which contained no nitrate, under anoxic, microoxic,
and oxic conditions. For test of anoxic conditions, the medium
was prepared as above, and headspace was filled with N, gas.
The medium for microoxic conditions were prepared as same as
the above, but filter-sterilized air was added to the culture bottles
after autoclaving, to obtain final oxygen concentrations of 1 or
2% (v/v) in the headspace. For oxic conditions, the medium was
prepared without purging with N, gas and head space was filled
with air. Arsenite and arsenate were measured with HPLC just
after inoculation and after 6 days incubation without shaking.

Effects of arsenic on growth were investigated under
nitrate-reducing conditions, by monitoring turbidity along with
concentrations of arsenate and nitrate. The experiments were
performed with the medium same as that used for the first
experiment, but concentration of yeast extract was 5 mg/L.
Turbidity was measured as optical density at 660 nm, with a
spectrophotometer. Arsenate and nitrate were quantified with
ion chromatography equipped with conductivity detector (ICS-
1500, Dionex), equipped with a column for anion analyses
(IonPac AS12A, Dionex). The experiments were performed in
the presence and absence of acetate, to assess heterotrophic and
autotrophic growth. The experiment with acetate was started with
medium containing 5 mM sodium acetate and 1 mM sodium
arsenite. For comparison, bottles without arsenite were also
prepared. In case of the experiments without acetate, the medium
was initially supplemented with 0.65 mM sodium bicarbonate
and 0.5 mM arsenite. These compounds were successively added
to the medium during the incubation, by injection of dense

solutions. At the latest stage of the experiments, 5 mM sodium
acetate was added to the culture.

Tolerance to arsenite was tested in the basal medium,
supplemented with sodium acetate (5 mM), sodium nitrate
(5 mM), and 5 mg/L yeast extract. The strain M52 was cultured
in presence of sodium arsenite with different concentrations (1,
2,5,and 10 mM).

Detection of the arx Gene Cluster in

Prokaryotic Genomes

To explore the arx genes in prokaryotic genomes, amino acid
sequences encoded by the arxXRSB2ABCD genes of A. ehrlichii
MLHE-1 were used as queries to identify homologous proteins
in the non-redundant protein database of the National Center
for Biotechnology Information (NCBI)'. The identifications were
made using Diamond v 0.9.14 (Buchfink et al., 2014), and
two proteins were considered to be homologous based on
the following thresholds: an amino acid identity of > 30%, a
spanning alignment of > 60% of the length of the query, and
an e-value < le. In addition to sequences in the protein
database, good-quality genome sequences without functional
annotation were collected for the analysis from the “Microbial
Genomes resource” in NCBI>. They were selected based on
the following criteria: consist of contigs < 300, have an
N50 > 20 kb and contain < 10 kb of ambiguous base pairs. In the
collected genomes, protein coding regions were deduced using
Prodigal v2.6.3 in normal mode (with default parameters) (Hyatt
et al., 2010), and the predicted proteins were used to build a
custom database for identification of homologous proteins with
the method described above. The data collection from NCBI
databases occurred in January 2018. Furthermore, three genome
sequences obtained in our laboratory were also included in the
analysis. They are genomes of three strains isolated from the same
microbial mat: strain M52 obtained in this study, Sulfuritortus
calidifontis J1A (Kojima et al, 2017) and Sterolibacteriaceae
bacterium strain J5B (Watanabe et al., 2019). They were analyzed
with the same methods used for the unannotated genome
sequences as described above.

Phylogenetic Analyses

The identified proteins, homologous to ArxA of A. ehrlichii
MLHE-1, were subjected to phylogenetic analysis, including
the putative subunits of other enzymes from the DMSO
reductase family. The amino acid sequences were aligned
with MUSCLE (Edgar, 2004). Gaps were allowed within an
appropriate block by Gblocks v0.91b (Talavera and Castresana,
2007). The tree was inferred with the distance criterion by the
BioNJ algorithm using FastME 2.0 (Lefort et al., 2015). The
inference included 1000 bootstraps replicates (Gascuel, 1997).
Phylogenetic trees of proteins encoded by the arxA, arxB,
and arxD genes were constructed as below. The amino acid
sequences were separately aligned and curated as described
above. The trees were reconstructed by the maximum-likelihood
algorithm with the LG 4 G + I substitution model using PhyML

Yftp://ftp.ncbi.nlm.nih.gov/blast/db/
2ftp://ftp.ncbi.nih.gov/genomes/genbank/bacteria/
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(v3.0) (Guindon et al,, 2010). The gamma shape parameter was
estimated directly from the data. The aLRT test (SH-Like) was
used to calculate the support values (Anisimova and Gascuel,
2006). To construct the ArxAB consensus tree, the alignments
of ArxA and ArxB were concatenated using MEGA version 6
(Tamura et al., 2013) and then subjected to the remaining steps as
explained above. All of the phylogenetic analyses were performed
on the Phylogeny.fr platform (Dereeper et al., 2008).

Phylogenetic analysis of organisms possessing the arx genes
was conducted on the basis of ribosomal proteins (RPs). The
following 10 RPs were used for the analysis: L2, L3, L4, L13,
123, S2, S4, S9, S10, and S11 (see Supplementary Table S1
for detailed information). One of the identified genomes lacked
some of these proteins, and thus it was excluded from the
analysis. Each ribosomal protein was independently aligned using
MAFFT (Katoh et al., 2017) with default parameters. The poorly
aligned regions were removed using the Gblocks v0.91b program,
allowing gaps located in less than 50% of the sequences. The
resulting 10 alignments were concatenated using MEGA version
6. The tree was inferred by neighbor-joining under the p-distance
model in MEGA 6. Support values were calculated using 1000
bootstrap replicates. The final trees were visualized using the R
package ggtree (Yu et al., 2017).

Identification of Conserved Motifs and
Prediction of Secondary Structure

In the proteins encoded by arxAB genes, conserved motif
regions were identified by Pfam online (Finn et al., 2014) and
visualized in the multiple sequences alignment on MEGA 6. The
presence and location of twin-arginine signal peptide cleavage
sites were identified using the TatP 1.0 server online (Bendtsen
et al., 2005). Secondary structure prediction was performed for
the ArxA proteins with insertion, using the Jpred 4 server
(Drozdetskiy et al., 2015).

Clone Library Construction and Analysis

of a Long Insertion in the arxA Gene

To explore the diversity of the ArxA proteins which have
insertions, a set of degenerate primers was newly designed.
The primers were designed based on the ArxA amino
acid sequences characterized by the presence of a long
insertion, encoded in the genomes of S. denitrificans
skB26, Sulfuritortus calidifontis J1A, Gammaproteobacteria
RIFOXYD12 FULL_61_37, Gammaproteobacteria RIFOXYA12
FULL_61_12, and Betaproteobacteria CG2_30_59_46. The
primers were designed at positions flanking the insertion
to obtain the full length of the insertion (Figure 8A). The
primers are arxA_G2_F (AARCGTACCAAYCCSAAVAAGG)
and arxA_G2_R (GTTCTTGGCGTAGTCRTCCAT). PCR was
performed in a 25 pL volume reaction mixture containing
0.5 pmol/L of each primer, 1x Ex Taq Buffer (Takara, Shiga,
Japan), 0.2 mmol/L dNTPs (Takara), 0.625 U of Ex Taq (Takara),
3% DMSO and template DNA solution. The PCR conditions
were as follows: 94°C for 3 min; 34 cycles of denaturing at
94°C for 45 s, annealing at 55°C for 45 s, extension at 72°C
for 1.5 min; and then a final extension step at 72°C for 7 min.

Two DNA samples obtained in previous studies were used as
templates for PCR amplification with newly designed primers:
one water sample was obtained at a depth of 40 m in Lake
Mizugaki (Watanabe et al., 2017), and a dark green microbial
mat sample was retrieved from Jozankei hot spring (Ospino
et al.,, 2018). The resulting PCR products were analyzed with
agarose gel electrophoresis, and bands corresponding to expected
sizes (ca. 1200 bp and ca. 900 bp, with and without insertion)
were excised from the gel. From the pieces of gel, DNA was
extracted with QIAquick Gel Extraction Spin Kit (Qiagen).
The purified amplicons were cloned into pCR2.1-TOPO vector
and transformed into TOPI10 cells (Invitrogen), according to
the manufacturer’s instructions. The resulting clone libraries
were analyzed as described previously (Ospino et al.,, 2018),
and operational taxonomic units (OTUs) were assigned at a
cutoff value of 0.02 in Mothur (Schloss et al., 2009). The most
abundant sequence of each OTU was selected as representative
for phylogenetic analysis. The representative sequences were
aligned with ArxA reference sequences using MUSCLE. The
alignment was trimmed manually, excluding gaps. Phylogenetic
relationships were inferred based on distance criteria using the
BioN]J algorithm to construct a Neighbor-joining tree with 1000
bootstrap replicates in FastME 2.0. The ArrA of Alkaliphilus
oremlandii OhILAs and Halarsenatibacter silvermanii were
used as the outgroup. The nucleotide sequences obtained in
this study have been deposited under the accession numbers
LC439110 to LC439195.

Phylogenetic Analysis of Partial
Sequences of the arxA Gene Reported in

Previous Studies

In some previous studies, partial sequences of the arxA gene were
obtained with the primer pair arxA_Deg F B/arxA_Deg R _B
(Zargar et al, 2012; Hamamura et al., 2014; Wu et al,, 2017)
(Table 1). The phylogenetic positions of these sequences were
reexamined with reference ArxA sequences collected in this
study. In the phylogenetic analysis, partial sequences obtained
in this study were also included. The alignment was made
using MUSCLE and was trimmed manually to exclude the
gaps. A neighbor-joining tree was reconstructed using the BioN]
algorithm with 1000 bootstrap replicates in FastME 2.0. The
arsenate reductase ArrA sequences were used as the outgroup.

RESULTS

Isolation and Characterization of
Arsenite-Oxidizing Bacterium Strain M52

From the microbial mat, arsenite-oxidizing enrichment cultures
were established. The presence of an arxA-carrying organism in
culture was confirmed with PCR amplification and sequencing
with a previously reported primer pair. By analyzing the 16
rRNA gene, it was revealed that the cultures were dominated by
a bacterium related to Sterolibacteriaceae bacterium strain J5B
(Watanabe et al., 2019). The dominating organism was isolated
by using the same methods that were used for the isolation of
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strain J5B, and the resulting isolate was designated strain M52.
During the isolation procedures, strain M52 showed anaerobic
and chemolithoautotrophic growth depending on nitrate and
thiosulfate. The strain J5B is facultatively autotrophic bacterium
which can grow on some organic acids (Watanabe et al., 2019).
Among the organic substrates which support growth of strain
J5B, acetate and lactate were tested with strain M52. Both these
substrates supported anaerobic growth of strain M52 under
nitrate reducing conditions.

The complete genome of strain M52 consisted of a single
circular chromosome with a length of 2.74 Mb and a G+C
content of 63.6%. In the genome, 2794 coding sequences were
predicted. There are two copies of the rrn operons which contain
the 16S rRNA genes with slightly different lengths. BLASTn
searches revealed that the most closely related species with
validly published names were Sterolibacterium denitrificans and
Georgfuchsia toluolica, with sequence identities of 94-95%. By
constructing a phylogenetic tree, it was confirmed that strain M52
is a novel member of the family Sterolibacteriaceae (Figure 1).

In the genome of strain M52, the arxA gene was identified, and
its nucleotide sequence perfectly matched the partial sequence
detected in the enrichment cultures. The arxA gene of strain
M52 encoded a protein that has 92 extra amino acids compared
to that of strain MLHE-1, but the protein is similar to its
homolog in S. denitrificans skB26. In addition to arxA, the other
arx genes were also identified nearby arxA. Some differences
in arrangement of these genes were observed, as described
later in more detail.

Regarding other genes related to arsenic metabolism, strain
M52 had genes for energy-dependent arsenic detoxification: arsC
(detoxifying arsenate reductase), arsR (transcriptional repressor)
and acr3 (arsenite-specific efflux pump). On the other hand, the
arxM gene, which is involved in arsenic methylation, was absent
in the genome. The aio genes, which encode another type of
arsenite oxidase, and arrAB, which encodes respiratory arsenate
reductase, were not identified in the genome of strain M52.

Further inspection of the genome revealed that strain M52
has genes required for respiratory nitrate reduction. They include
the genes encoding catalytic subunits of periplasmic nitrate
reductase (napA), nitrite reductase (nirS), nitric-oxide reductase

(norB) and nitrous oxide reductase (n0sZ). The genome also
harbors genes required for respiration with oxygen, the ccoNOQP
genes encoding cytochrome ¢ bb3-oxidase and the cydAB genes
encoding cytochrome bd oxidase. Although the strain was
isolated from enrichment culture with chlorate, genes for chlorate
reduction were not identified in the genome.

Arsenic Metabolism of Strain M52

Under anoxic conditions, strain M52 oxidized arsenite to
arsenate in the medium containing nitrate as sole electron
acceptor (Figure 2A). In the uninoculated control, changes
in concentrations of arsenate or arsenite were not observed.
Arsenite oxidation by strain M52 was also tested in the medium
without nitrate. In the absence of nitrate, arsenite oxidation
was not observed under anoxic conditions (Figure 2B). In the
same medium, strain M52 oxidized arsenite when incubation
was performed under microoxic conditions with 1 or 2%
oxygen in the headspace (Figure 2B). The oxygen-dependent
arsenite oxidation was not observed under atmospheric
oxygen level (20%).

To assess effects of arsenic on anaerobic growth of strain M52,
cell density was monitored along with changes in concentrations
of nitrate and arsenate. As shown in Figure 3A, 1 mM of arsenite
showed negative effect on heterotrophic growth on acetate. In the
presence of acetate, arsenate was generated in the early stage of
growth, but it seemed to be reduced back into arsenite in the
later stage of incubation possibly by the ars system. The effects
on autotrophic growth was tested with gradual supplement of
arsenite to abate toxicity (Figure 3B). With a serial addition
of arsenite, continuous production of arsenate was observed
throughout the incubation. A small increase in turbidity was
observed until day 5, but no obvious growth was observed during
the period from day 5 to day 19. In this period, supplement
of inorganic carbon source did not enhanced growth. After
the measurements at day 19, acetate was added to the culture.
After that, cell density increased within the following 5 days,
suggesting that viability was retained during the experiment
(Figure 3B). In these experiments, nitrate was monitored with
ion chromatography which can detect nitrite as well. In all
samples analyzed, however, nitrite was not detected.

TABLE 1 | Partial arxA gene sequences of uncultured organisms included in phylogenetic analysis in this study (Supplementary Figure S8).

Prefix References Characteristics of sampling site Accession number
pH Temperature (°C) Salinity (g/L) Cl~ (mM) Arsenic (LM)

HC Zargar et al., 2012 8.32 Variable? NA 0.6-0.82 1.6-2.7 JNB24760-JN624765

MLBX Zargar et al., 2012 9.8b NA 9oP 500° 200 JINB24766-IN624770

Paoha_lsland Zargar et al., 2012 9.4 43 23 NA 100 INB24771

_red_mat

HJ Hamamura et al., 9.8 NA 6.2 NA 0.67-133 KC852945-KC852951
2014

JZK1200 This study 7.8° 42.6° NA 40.2° 40° LC439110-LC439121

JZK900 LC439122-.C439154

MZG900 This study 7.0 109 NA 1.4 1.59 LC439155-1.C439195

Marked values were cited from references which are different from those for the sequences, as follows: @Wilkie and Hering, 1998; ®Oremland et al., 1993; ¢Ospino et al.,

2018; 9Watanabe et al., 2017. NA, not available.
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FIGURE 1 | Phylogenetic position of two copies of the 16S rRNA gene in the genome of strain M52. Numbers on nodes represent percentage values (greater than
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FIGURE 2 | Arsenite oxidation to arsenate by strain M52. (A) Changes in
concentrations of arsenite (red) and arsenate (blue) in medium containing
nitrate, incubated under anoxic conditions. Error bars represent standard
deviation from two independent assays. Dashed lines represent uninoculated
control. (B) Effect of oxygen concentration in headspace on arsenite oxidation
in medium without nitrate. Red and blues bars represent concentrations of
arsenite and arsenate, respectively. Error bars represent standard deviation
from triplicates (20%) or duplicates (the others).

Arsenite tolerance of strain M52 was tested in presence of
nitrate and acetate under anoxic conditions. Anaerobic growth
on acetate was observed in the presence of 5 mM or lower
concentration of arsenite, and higher concentrations resulted in
slower growth of the strain. No growth was observed in the
presence of 10 mM arsenite.

Distribution, Composition, and
Arrangement of the arx Gene Cluster
By using the sequences of A. ehrlichii MLHE-1 as queries,
a total of 46 genomes were identified to contain full-length
genes homologous to the arxAB genes (see Supplementary
Table S2 for more detail). Among them, five genomes were
those of archaea, and the others were bacterial genomes. Detailed
descriptions of the genomes are presented in Supplementary
Table S3. All 42 bacterial genomes (41 identified and A. ehrlichii)
were from organisms belonging to the phylum Proteobacteria
(Figure 4). Among them, 25 are members of the class
Gammaproteobacteria, including 15 strains in the family
Ectothiorhodospiraceae (in the order Chromatiale). This group
included four strains whose ability to oxidize arsenite was
demonstrated: A. ehrlichii MLHE-1, Halorhodospira halophila
SL1, Ectothiorhodospira sp. PSH-1, and Ectothiorhodospira sp.
BSL9. The other 11 strains of this family were members of
the genus Thioalkalivibrio. As another major group in the class
Gammaproteobacteria, 7 strains were identified in the order
Oceanospirillales. This group included the genera Halomonas,
Marinospirillum, and Nitrincola (Figure 4). The majority of these
gammaproteobacterial strains were isolated from high saline
and/or high-pH environments, but two gammaproteobacterial
genomes identified were reconstructed from metagenomic data
of a groundwater sample (Supplementary Table S3). In the
class Betaproteobacteria, six cultured strains possessed the genes,
along with seven metagenome-assembled genomes (MAGs).
The remaining bacterial genomes were affiliated with the
classes Alphaproteobacteria, Deltaproteobacteria, and Candidatus
Muproteobacteria (Figure 4). On the other hand, all archaeal
genomes identified were those of Candidatus Methanoperedens
in the order Methanosarcinales. They were MAGs from anaerobic
bioreactors performing methane oxidation coupled to nitrate
reduction (Supplementary Table S3).

In all the genomes identified, the arxABC-like genes were
conserved in the same order and direction. As well, arrangement
of genes around them showed significant similarities among
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the genomes (Figure 4). Among the genomes, 17 genomes
had gene organization identical to that of the arx genes in
A. ehrlichii MLHE-1 (Figure 4). For the proteins encoded
by the gene homologous to arxA, a phylogenetic tree was
constructed to identify their phylogenetic positions within
the DMSO reductase family (Figure 5 and Supplementary
Figure S1). In the tree, the proteins encoded in the identified
genomes formed two distinct clades, corresponding to those
of bacteria and archaea. The former encompasses ArxA of
A. ehrlichii MLHE-1 and Ectothiorhodospira sp. PHS-1, which
were included in the original definition of ARX. On the other
hand, there is no evidence regarding the function of the
proteins forming the latter cluster, and arsenic metabolism by
Candidatus Methanoperedens has not been reported. Based on
these results, the archaeal genomes were excluded from the
following analyses. Hereafter, the bacterial genes homologous
to the arx genes of A. ehrlichii MLHE-1 are simply referred to
as arx genes.

The novel strain isolated in this study, strain M52, has arx
gene cluster similar to that of A. ehrlichii MLHE-1, but the arxB2
gene is located downstream of arxABCD, similar to a MAG of
Candidatus Muproteobacteria (Figure 4). The arxB2 gene was
not identified in four bacterial genomes. The arxD gene was
conserved in all the genomes except for three genomes from
Alphaproteobacteria and Deltaproteobacteria.

Genes encoding regulatory proteins ArxXSR were commonly
found upstream of the arxB2ABCD genes on the opposite
strand. In the genomes of Thioalkalivibrio sp. ALMgll and
Thioalkalivibrio sp. AKL19, the arxXSR genes were identified
downstream of arxB2ABCD on the same strand as exceptional
cases (Figure 4). Halorhodospira halophila SL1 can oxidize
arsenite, but the arxXSR genes were not identified in its genome.
The arxXSR genes were consistently absent in the genomes of
three genera in the order Oceanospirillales (Halomonas and
Marinospirillum and Nintricola lacisaponensis) (Figure 4).

The other genomes lacking arxXSR genes were distributed
in  Candidatus ~ Muproteobacteria,  Alphaproteobacteria,
and Deltaproteobacteria.

Phylogeny of Proteins Encoded by the

Arx Proteins

Phylogenetic relationships among the identified Arx proteins
were further investigated in detail. At first, phylogenetic trees
of ArxA and ArxB were separately constructed. The resulting
trees showed phylogenetic congruence with minor exceptions,
indicating the coevolution of these two subunits (Supplementary
Figure S2). For a more reliable phylogenetic inference, an
ArxAB consensus tree was constructed by concatenating the
alignments of ArxA and ArxB (Figure 6). In the tree, the
majority of ArxAB proteins were grouped into three groups
corresponding to well-supported monophyletic clusters. In this
study, these groups are referred to as group 1, group 2, and
group 3, respectively (Figure 6). Correspondence between the
grouping of ARX and the class-level taxonomy of the bacteria
can be seen in Figures 4, 7. Direct comparisons between the
phylogeny of bacteria (based on RPs) and ARX are shown in
Supplementary Figure S3.

The ARX of A. ehrlichii MLHE-1 was classified into the
group 1. The ARX of this group was identified only in
genomes of gammaproteobacterial haloalkaliphiles (Figures 3,
5). Ectothiorhodospira sp. PHS-1 is closely related to organisms
with the ARX of group 1, but its ARX is phylogenetically
distinct from those of the group 1. It was classified into group
2, together with the ARX of bacteria belonging to the classes
Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria,
and Ca. Muproteobacteria. The ARX of strain M52 belonged to
group 3. This group consists of ARX encoded in bacteria isolated
at a relatively low pH and low salt concentrations and MAGs
from such environments.
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A phylogenetic analysis of ArxD was also constructed
(Supplementary Figure S4). In the tree, ArxD proteins
associated with the ARX of group 1 and group 3 formed
exclusive clusters. Phylogeny discordance with ArxD proteins
was apparent in the ARX of group 2, but it was also observed
in that of group 1. For instance, the positions of Thioalkalivibrio
nitratireducens DSM 14787, Thioalkalivibrio denitrificans AL]D,
and Thioalkalivibrio sp. ALM2T are considerably different in
the phylogenetic trees of ArxD and ArxAB. In contrast, the
phylogeny of ArxD proteins associated with ARX of group 3 was
consistent with that of ArxAB, as indicated by the same branching
pattern in the two trees (Supplementary Figure S4).

Conserved Regions in the ArxAB Amino
Acid Sequences

Comparison among amino acid sequences of the ArxAB
encoded in the identified genomes indicated that they share
some characteristics with those of A. ehrlichii MLHE-1 and
Ectothiorhodospira sp. PHS-1 reported in previous studies
(Zargar et al, 2010, 2012; Van Lis et al., 2013; Badilla et al,
2018), as described below. The ArxA sequences had three
conserved regions commonly identified in subunit A of the
DMSO reductase family enzymes: an iron-sulfur [4Fe-4S] motif;
a catalytic binding pocket sequence similar to that suggested
in the ArxA of A. ehrlichii MLHE-1 and Ectothiorhodospira sp.
PHS-1 (Zargar et al,, 2012); and a twin-arginine signal peptide

on the N-terminus (Supplementary Figure S5). Additionally,
all the sequences had an XGRGWG motif located near the
putative catalytic binding pocket. This motif is argued to be
one of the conserved motifs that distinguish ArxA from the
closely related arsenate reductase ArrA, characterized by a
corresponding motif of (R/K)GRY (Glasser et al., 2018). The
ArxB also share similarities to subunit B of the enzymes from the
DMSO reductase family with at least three conserved iron-sulfur
[4Fe-4S] clusters (Supplementary Figure S6).

Diversity of arxA With Insertion

As reported previously, ArxA of S. denitrificans skB26 has a
long insertion (Watanabe et al., 2014). Similar insertions were
identified in five other genomes, including strain M52 isolated
in this study. To evaluate the diversity of the insertion in ArxA,
a new primer pair was designed (Figure 8A). The primers
were tested with purified genomic DNA from S. denitrificans
skB26, Sulfuritortus calidifontis J1A, A. ehrlichii MLHE-1, and
Nitrincola lacisaponensis 4CA. Among them, strains skB26 and
J1A have the arxA gene with a long insertion. As a bacterium
possessing the arrA gene, Sulfuritalea hydrogenivorans sk43H
was used to confirm the specificity of the primer pair. The
primer pair, named arxA_G2_F/arxA_G2_R, generated PCR
products of approximately 1200 bp in size from strains skB26
and J1A (Figure 8B, lanes 3 and 5). A product of approximately
900 bp was obtained from strain MLHE-1 (Figure 8B, lane
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8) but not from strain 4CA (Figure 8B, lane 4). No PCR
products were obtained from the genomic DNA of strain sk43H
(Figure 8B, lane 9). Although strains M52 and J5B have the
insertions, their arxA gene sequences were not used for the
primer design, because genomes of these strains were not
available when the primers were designed. At a later time,
the primer pair was tested with these strains but generated
no PCR products.

Two environmental samples were analyzed with the new
primer pair. They were water collected at a depth of 40 m in
Lake Mizugaki (MZG) and a microbial mat obtained in Jozankei
hot springs (JZK). A PCR product of the expected size with the
insertion (1200 bp) was obtained only from the sample from JZK

(Figure 8B, lanes 1 and 2). PCR amplicons of approximately
900 bp length were obtained in both JZK and MZG samples
(Figure 8B, JZK: lanes 1 and 2; MZG: lane 7). With these
PCR products, three clone libraries, named JZK1200, JZK900
and MZG900, were constructed (Table 1 and Supplementary
Table S4). The phylogenetic tree in Supplementary Figure S7
shows the relationships between the partial ArxA sequences from
the three libraries and the reference sequences. The neighbor-
joining tree was reconstructed excluding gaps, using a final
dataset of 310 compared amino acid positions. The tree indicated
that five OTUs without insertions are clustered with ARX of
group 2. The other OT'Us were grouped with ARX of group 3. In
the clone library of JZK1200, five OTUs with a long insertion were
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FIGURE 7 | Phylogeny of the organisms possessing the arx genes, based on the concatenated amino acid sequences of 10 ribosomal proteins. Support values
greater than 70% are indicated in bold. Rhodocyclaceae bacterium UBA4043 is not included due to absence of the majority of genes encoding ribosomal proteins.
Name of organisms with ARX of group 1, group 2, and group 3 are shown in blue, green and red respectively.

detected. Four of them are closely related to the ArxA of strains
isolated from the same microbial mat (Sulfuritortus calidifontis
J1A, strain M52 and strain J5B). The other OTU detected in this
library was phylogenetically distinct from them and harbored
the insertion with a clearly different sequence. In some OTUs
detected in the library of 900 bp, insertions of another type were
identified (Supplementary Figure S7). The insertions of this
type, consisting of 12 amino acid residues, were also identified
in ArxA of group 3 encoded in some MAGs.

The analysis of full ArxA sequences indicated that the
insertions are distantly located from the putative functional
conserved regions. No sequence motif was identified within the
long insertion, but some amino acids were abundant and a few
of them were conserved, such as lysine, alanine, glutamate, and
leucine (Supplementary Figure S7). The analysis with Jpred4
predicted that the insertion sequences form alpha helices, with
a high probability to form a coiled-coil structure. Coiled-coil is
a common structural motif in proteins, formed by two or more
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strands of alpha-helices winded around each other in superhelical
fashion (Lupas, 1997; Truebestein and Leonard, 2016). The above
mentioned amino acids enriched in the insertions are known to
be involved in formation of the coiled-coil frequently, because
of their propensity to form alpha-helices (Monera et al., 2002;
Kwok and Hodges, 2004; Surkont and Pereira-Leal, 2015). All
the insertion sequences were cut out and individually subjected
to BLAST analysis, but no homologous sequence was identified
outside the ArxA.

Phylogenetic Reassessment of Partial
arxA Gene Sequences Detected in
Previous Studies

An additional phylogenetic analysis was performed to reassess the
phylogenetic positions of previously reported partial sequences
of the arxA gene. A neighbor-joining tree was reconstructed
using a final dataset of 92 compared amino acid positions.
The tree showed that all of the clones recovered from high-
saline and high-pH samples are closely related to ArxA
encoded in the genomes of haloalkaliphilic gammaproteobacteria
(Supplementary Figure S8). The ArxA of Desulfotomaculum sp.
TC-1 isolated from a hot spring was also related to these bacteria.
In contrast, all the clones recovered from the Hot Creek riverbed
sediment (HC) fell within a strongly supported cluster together

with ARX of group 3 encoded in the genomes of bacteria isolated
from the Jozankei hot spring (Supplementary Figure S8).

DISCUSSION

To the best of our knowledge, strain M52 is the first arsenite-
oxidizing betaproteobacterium which possesses the arx genes. It
was isolated from a microbial mat of a hot spring which contained
approximately 3 mg/L of total arsenic (Kubota et al., 2010; Ospino
et al, 2018). From the same mat, partial arxA gene sequences
were detected with culture-independent methods (Ospino et al.,
2018). The arxA gene of strain M52 was not detected in
that analysis, suggesting that culture-based approaches are still
effective to explore diversity of arsenite-oxidizing bacteria with
arx genes. Although strain M52 lacks aio genes in the genome,
it oxidized arsenite under microaerophilic and nitrate-reducing
conditions. Some genomic features of the strain are consistent
with these observations, as the genome harbors genes for
respiration with oxygen and nitrate. The two types of terminal
oxidases encoded in the genome are both high-affinity terminal
oxidases characterized by low Ky, values for oxygen (Morris
and Schmidt, 2013), suggesting that the strain M52 is adapted
to a low-oxygen environment. The concentration of oxygen in
the air may be too high for this organism, and it might have
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suppressed arsenite oxidaion activity (Figure 2B). As another
organism which oxidizes arsenite under microoxic conditions,
Hydrogenobaculum strain H55 was reported in a previous study
(Donahoe-Christiansen et al., 2004). In constrast to strain M52,
strain H55 has genes for AIO (Clingenpeel et al., 2009).

The arx gene cluster of strain M52 had the same set of genes
as those found in A. ehrlichii MLHE-1 and Ectothiorhodospira
sp. PHS-1, with some small differences in positions of the genes.
The comparative analysis showed that the majority of the genes
in the arx gene cluster are conserved in more than half of the
genomes (Figure 4). Especially, the arxABC genes encoding the
putative functional elements of the enzyme are highly conserved.
For other enzymes involved in arsenic metabolism, AIO arsenite
oxidase and ARR arsenate reductase, the aioBA and arrAB genes
encode the constituent subunits, and they are well-conserved in
the genomes (Van Lis et al., 2013; Andres and Bertin, 2016).
In contrast, the arxC gene homologous in the arr and aio
gene cluster is not well-conserved (Slyemi and Bonnefoy, 2012;
Grimaldi et al., 2013; Andres and Bertin, 2016). The arxB2 gene,
predicted to encode a type of ferredoxin protein, appears to be
specific to the arx gene cluster, since no homologous genes have
been described for AIO or ARR. A previous study demonstrated
the expression of the arxB2 gene in Ectothiorhodospira sp. BSL-
9 (Hernandez-Maldonado et al., 2017). Additionally, transcripts
were detected in the southern basin of Mono Lake (Edwardson
and Hollibaugh, 2017). However, the role of arxB2 in the
arsenite oxidation remain unclear. The arxD gene was also highly
conserved and predicted to encode a TorD-like protein required
to introduce the cofactor into the enzyme (Genest et al., 2009).
The occurrence of homologous genes in the aio or arr gene
cluster (aioD and arrD) is variable as well (Van Lis et al., 2013;
Andres and Bertin, 2016). The arxXSR genes are absent from
the arx gene cluster of the genomes from members of the order
Oceanospirillales (Figure 4). Similar findings were reported in
previous studies on the gene clusters of aio and arr, which
indicated that the presence of aioXSR and arrXSR is variable
among taxonomic groups (Slyemi and Bonnefoy, 2012; Van Lis
et al., 2013; Badilla et al., 2018). The aioXSR genes regulate the
expression of the aioAB genes in some arsenite-oxidizing strains
(Kashyap et al., 2006; Koechler et al., 2010; Sardiwal et al., 2010;
Liu et al,, 2012; Li et al,, 2013). A bacterium which lacks the
aioXSR module, Halomonas sp. HAL1, seems to employ another
two-component system to regulate expression of aioAB (Chen
et al., 2015). Thus far, the involvement of the arxXSR genes in
regulation of the expression of arxAB has not been demonstrated.

The incongruency between the phylogeny of ARX and RPs
suggested that horizontal gene transfer events have affected
the evolution of the ARX and arsenite-oxidizing bacteria
(Supplementary Figure S3). In other arsenic-related enzymes,
the involvement of horizontal gene transfer in their evolutionary
history has been reported as well (Andres and Bertin, 2016).
In the genomes harboring arx genes, some features suggestive
of gene transfer were identified. Some of the arx gene
clusters were located in mobile genetic elements such as
plasmids, as in Sulfuricella denitrificans skB26 (Watanabe et al.,
2014) and Halomonas sp. A3H3 (NCBI Reference Sequence:
NZ_HG423344.1) (Koechler et al., 2013), and in a genomic

island in Azoarcus sp. CIB (Martin-Moldes et al., 2015). In strain
M52, a gene encoding transposase (92% identity to the IS110
family transposase of Thiomonas sp.) was identified upstream of
the arxRSX.

In this study, ARX were grouped into three groups based
on phylogenetic analysis of ArxAB (Figure 6). The three
groups have some specific characteristics, as follows. Strains
with ARX in group 1 are all haloalkaliphiles and belong to
the orders Chromatiale and Oceanospirillales. The phylogenetic
analysis of previously reported data reconfirmed that the partial
arxA sequences clustered with group 1 were all detected in
environments with high pH and salinity. The sole exception was
Desulfotomaculum sp. TC-1 obtained by PCR amplification (Wu
et al,, 2017). This strain exhibits optimum growth at pH 6.8 and
belongs to the phylum Firmicutes, although arx genes identified
in this study were only in the genomes of Proteobacteria. More
detailed analysis of this organism is necessary to obtain the
full sequences of the arx genes. Ectothiorhodospira sp. PHS-1
is haloalkaliphile belonging to the order Chromatiale, but its
ARX was classified into group 2. Group 2 seemed to be the
most heterogeneous group, because the genes encoding this type
of ARX were identified in seven genomes belonging to four
classes in the phylum Proteobacteria. These genomes included
those of phototrophic haloalkaliphiles, heterotrophs growing
in low-salt medium, and MAGs obtained from freshwater
environments. Partial sequences of arxA, related to group 2,
were detected in a freshwater lake and an alkaline salt lake.
The former is Lake Mizugaki, from which some OTUs were
obtained in this study, and the latter is Mono Lake, where
close relatives of Ectothiorhodospira sp. PHS-1 were detected in
previous studies (Figure 8). In contrast to these groups, ARX
of group 3 was not identified in the genome of phototrophic
organisms. The isolated strains with group 3 ARX are all sulfur-
oxidizing chemolithoautotrophs. The MAGs with this type of
ARX were obtained from a CO,-driven geyser (Probst et al,
2017) and groundwater sample (Anantharaman et al.,, 2016),
suggesting that corresponding organisms do not depend on
light. These findings also suggest that the ARX of group 3
is specific for low-salt environments. This idea is supported
by phylogenetic analysis of the partial arxA gene sequences.
Among the previously reported partial sequences, those from
Hot Creek riverbed sediment were clustered with group 3
(Supplementary Figure S8). This sample is characterized by
low salt concentrations in comparison to the other samples
analyzed in the previous studies. The other partial sequences of
group 3 were obtained in this study. Group 3 is characterized
by a phylogenetic relationship that is highly congruent with the
phylogeny of ArxD (Supplementary Figure $4).

The long insertion in ArxA was identified only in ARX of
group 3 and encoded in the genomes of Betaproteobacteria and
Gammaproteobacteria. The clone library analysis in this this
study expanded knowledge about the diversity of ArxA with
insertions (Supplementary Figure S8). It is important to point
out that the primers used for this analysis were designed based
on a limited number of group 3 ArxA sequences related to each
other, and failed to amplify the arxA gene of strain M52 and
J5B (Supplementary Figure S7). Therefore, the results have been
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affected by PCR bias and close relatives of strain M52 might be
missed in the analysis. However, application of these primers
resulted in the unexpected detection of arxA without insertions.
One of the samples used in this analysis was the isolation source
of strain M52, and the other one was used in a previous study
to detect the arrA gene (Watanabe et al.,, 2017). In that study,
arsenate respiration by Sulfuritalea in the deep water of Lake
Mizugaki was suggested (Watanabe et al., 2017). In another
sample of deep water obtained from the same lake in a different
year, partial arxA gene sequences were detected with another
primer pair (Ospino et al., 2018). It is plausible that anaerobic
bacteria detected with forms of arxA and arrA are driving the
arsenate cycle in the anoxic layer of water in this lake. In contrast
to ARX of group 1 and group 2, involvement of the group 3
ARX in arsenite oxidation has not been demonstrated. Strain
M52 is the first organism for which the presence of the genes
for group 3 ARX and arsenite oxidation were both demonstrated
(Figures 2, 3). The absence of the aio gene cluster in the genome
of strain M52 suggests that the arx genes are responsible for
its arsenite oxidation. However, further experimental evidence is
required to confirm arsenite oxidation by group 3 ARX. Strain
M52 also has a long insertion in ArxA and an unusual gene
arrangement in the arx gene cluster characterized by the unique
position of arxB2 (Figure 4). The role of these elements in
arsenite oxidation by strain M52 will be important subject of
further studies.
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