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Protein secretion from the cell cytoplasm to the outside is essential for life. Bacteria do 
so for a range of membrane associated and extracellular activities, including envelope 
biogenesis, surface adherence, pathogenicity, and degradation of noxious chemicals such 
as antibiotics. The major route for this process is via the ubiquitous Sec system, residing 
in the plasma membrane. Translocation across (secretion) or into (insertion) the membrane 
is driven through the translocon by the action of associated energy-transducing factors 
or translating ribosomes. This review seeks to summarize the recent advances in the 
dynamic mechanisms of protein transport and the critical role played by lipids in this 
process. The article will include an exploration of how lipids are actively involved in protein 
translocation and the consequences of these interactions for energy transduction from 
ATP hydrolysis and the trans-membrane proton-motive-force (PMF).
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PROTEIN SECRETION THROUGH THE BACTERIAL  
SEC MACHINERY

Protein secretion, from the cell cytoplasm to the outside, is essential for life. Bacteria secrete 
proteins for enveloping biogenesis, surface adherence, and pathogenicity and degrading noxious 
chemicals (including antibiotics), among a range of many other membrane and extracellular 
activities. The major route for protein secretion is via the ubiquitous Sec translocon: a conserved 
hetero-trimeric core-complex of the inner membrane. This machinery is also responsible for 
membrane protein insertion, whereby proteins containing Trans-Membrane α-Helices (TMH) 
are threaded laterally into the bilayer rather than across it. Therefore, the interaction of the 
machinery with lipids is critical in that they interface with the protein complex through which 
proteins cross and enter the membrane. Moreover, it turns out that phospholipids play direct 
and critical roles in the active energy transducing process driving protein transport.

Secretory and membrane proteins are targeted to the Sec machinery with the aid of an 
N-terminal signal sequence (Chang et  al., 1978; Walter et  al., 1981b). These proteins then 
translocate through the apparatus in an unfolded conformation (Arkowitz et  al., 1993), either 
during their synthesis (co-translationally), or afterwards (post-translationally). The former is a 
ubiquitous process in which the signal sequence at the N-terminus of the nascent polypeptide 
emerging from the ribosome exit tunnel is recognized by the signal recognition particle (SRP) 
and targeted to the membrane-associated SRP-receptor (Walter et al., 1981a,b,c; Poritz et al., 1990). 
The ribosome nascent chain complex (RNC) is then shuttled to the Sec complex for translocation 
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(Jomaa et  al., 2016), where the growing polypeptide is forced 
through the membrane. In the bacterial model Escherichia coli 
(Figure  1), the co-translational pathway is generally utilized 
for membrane protein insertion (Ulbrandt et  al., 1997; Müller 
et  al., 2001), while transport across the membrane (secretion) 
tends to be  post-translational. In the latter process, cytosolic 
chaperones, such as SecB, deliver the pre-protein in a translocation 
competent (unfolded) state to the SecA motor protein and 
channel complex SecYEG for secretion (Hartl et  al., 1990; 
Cranford-Smith and Huber, 2018).

STRUCTURE OF THE  
CORE-TRANSLOCON

The pathway for translocation of the mature region of the 
pre-protein – the protein-conducting channel – is formed 
through the center of SecY, between two pseudo-symmetrical 
halves, each with five TMHs (Van den Berg et al., 2004; Cannon 
et  al., 2005). When at rest, the channel is kept sealed by a 
short α-helix (the plug) and a sphincter of six hydrophobic 
residues, usually isoleucine (Van den Berg et al., 2004). Separation 
of the two halves opens a channel across the membrane (for 
secretion) as well as a lateral gate (LG) for entry of TMHs 
into the bilayer (insertion). Multiple rounds of ATP hydrolysis 

and the trans-membrane proton-motive-force (PMF) then drive 
protein transport across the membrane (Brundage et  al., 1990; 
Schiebel et  al., 1991; Economou and Wickner, 1994).

MECHANISM OF SECA-DRIVEN  
PROTEIN TRANSLOCATION

Today, we  understand a great deal about the structure and 
activity of Sec machinery, particularly the bacterial counterpart 
(almost exclusively through the study of the E. coli system). 
During SecA-driven secretion, the association of SecA with 
the pre-protein causes the signal sequence to bind at the LG 
of SecY, at the interface with the lipid bilayer (Hizlan et  al., 
2012; Li et  al., 2016). Many studies have shown that this 
interaction causes a conformational change in both SecA and 
the protein channel (Hizlan et  al., 2012; Corey et  al., 2016; 
Li et  al., 2016), and a priming of SecA for increased ATPase 
activity (Gouridis et  al., 2009; Robson et  al., 2009; Gold et  al., 
2013). In this “unlocked” state, the channel opens slightly and 
the plug, which helps keep the Sec-complex closed, retracts 
from its central position (Zimmer et  al., 2008; Hizlan et  al., 
2012; Corey et  al., 2016; Li et  al., 2016).

Our understanding of this reaction has been aided by 
recent single-molecule fluorescence studies (Allen et al., 2016; 

FIGURE 1 | Pathways for protein transport across and into the Gram-negative inner membrane and further across the periplasm for outer-membrane insertion and 
folding. The figure also highlights the action of lipids on the SecYEG-SecA complex (see Figure 3), the holo-translocon (HTL), and the BAM complex.
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Fessl et  al., 2018). These applications enable the dissection 
and analysis of different stages of the reaction, which would 
otherwise be  blurred in the reaction ensemble. The analysis 
demonstrates that the initiation process requires the signal 
sequence and mature regions of the pre-protein, as well as 
ATP (Fessl et al., 2018). The initiation involves an ATP-driven 
transport step, independent of pre-protein length, likely to 
be  the intercalation of the signal sequence and early mature 
regions of the polypeptide (presumably as a loop with the 
N-terminus pointing towards the cytosol; Figures 1, 2) into 
the “unlocked” translocon, as was previously proposed (Hizlan 
et al., 2012). At this point, the ATPase becomes fully activated 
and translocation across the membrane can begin through 
SecYEG; the kinetics of which depend on the length of the 
substrate (see Fessl et  al., 2018 and Figure  6 therein; 
Tomkiewicz et  al., 2006).

MODEL FOR PROTEIN TRANSLOCATION

For the transport process per se, a stochastic Brownian ratchet 
model for the ATP-driven reaction has been proposed wherein 
the free energy available from ATP binding and hydrolysis 
helps bias the random diffusional flow of polypeptide to favor 
an outward direction (see Figure  8 and associated movie in 
Allen et  al., 2016).

A follow-up study proposed how this stochastic process 
could be  further enhanced. ATP-dependent control of protein 
folding has been well documented in the protein chaperone 
field (Clarke, 1996). We  have introduced this concept into the 
protein transport field whereby the translocon utilizes the 
hydrolytic cycle of ATP to exert an asymmetric control of 

pre-protein folding (Corey et al., 2019). Preventing partial folding 
at the cytosolic interface of the ATPase SecA with SecY, while 
enabling it at the outward facing exit site, would prevent back 
sliding of the translocating polypeptide (Figure 2), thus favoring 
outward flow of the pre-protein. This concept is consistent 
with independent findings that the folding propensity (or lack 
of it) of the mature regions of the pre-protein has profound 
effects on the secretion efficiency (Gonsberg et  al., 2017;  
Jung and Tatzelt, 2018; Tsirigotaki et  al., 2018).

An alternative “push-and-slide” model invokes both diffusional 
and ATP-driven power-stroke components, involving the 2-helix 
finger (2HF) motif of SecA moving up and down to physically 
push polypeptides across the membrane (Erlandson et al., 2008; 
Zimmer et  al., 2008; Bauer et  al., 2014). A recent follow-up 
study, based on single-molecule fluorescence, confirms that 
the 2HF is indeed conformationally mobile throughout the 
ATP-driven transport cycle (Catipovic et al., 2019). The differences 
in fluorescence were equated to a very large apparent change 
in energy transfer efficiency (~0.1 to ~0.9). The main contention 
here is if the observations are really due to Förster Resonance 
Energy Transfer (FRET), or to Protein-Induced Fluorescent 
Enhancement (PIFE; Stennett et  al., 2015). In the former case, 
this would require an extraordinarily large movement of >20 Å. 
Otherwise, the affect may be  due to changes of the dye 
environment, for example, the formation of steric constraints 
at alternative conformations. This phenomenon is a known 
feature of some fluorescent reporters, particularly Cy3 (Stennett 
et  al., 2015), used in this new study (Catipovic et  al., 2019). 
Consequently, more subtle movements could also be responsible 
for these large fluorescent fluctuations, which would be  more 
concordant with the limited space available for the 2HF to 
move (Zimmer et  al., 2008; Li et  al., 2016).

FIGURE 2 | Sec control of protein folding as a driver for transport. Model structure of SecYEG-SecAATP based on Li et al. (2016) with key features labeled 
accordingly; SS, signal sequence; 2HF, 2 helix finger (left). Schematic of same (right), showing only the simulated structure of the pre-protein, with a partial folding in 
the exterior cavity (helix) and unfolded regions in the cytoplasmic cavity and hence favoring transport to the exterior, as required. Adapted from figures shown 
previously, used with permission (Corey et al., 2019).
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Either way, whether a diffusional ratchet (Allen et  al., 
2016) or power stroke/diffusional hybrid (Bauer et  al., 2014; 
Catipovic et al., 2019) is at play, the core ATP-driven process 
is further stimulated by the PMF (Brundage et  al., 1990) 
in order to achieve the high rates of secretion required for 
rapid growth. Presently, it is not known if or how the 
electrical (Δψ) or chemical (ΔpH) components of the PMF 
achieve this enhancement. The PMF may indeed also operate 
to favor the outward flow of polypeptide in a Brownian 
ratchet-type mechanism.

During the final stages of transport, the signal sequence of 
the pre-protein is proteolytically cleaved to release the mature 
protein on the other side of the membrane (Josefsson and 
Randall, 1981). The terminal closure of the translocon is 
apparently independent of ATP (Fessl et  al., 2018).

THE HOLO-TRANSLOCON (HTL)

To complicate matters further, the SecYEG core complex also 
associates with a number of accessory proteins: the membrane 
protein “insertase” YidC and the sub-complex SecDF (Duong 
and Wickner, 1997; Schulze et  al., 2014). In a large number 
of cases, including E. coli, this complex also contains the YajC 
protein of obscure function (Duong and Wickner, 1997; Schulze 
et  al., 2014). YidC facilitates the lateral insertion of TMHs 
from SecY into the bilayer (Houben et  al., 2000; Samuelson 
et  al., 2000; Scotti et  al., 2000; Kumazaki et  al., 2014), while 
SecDF makes an additional use of the PMF to help drive the 
transport of secretory proteins (Arkowitz and Wickner, 1994; 
Duong and Wickner, 1997; Tsukazaki et  al., 2011; Botte et  al., 
2016; Furukawa et al., 2017). Thus, the resultant super-complex – 
the Holo-TransLocon (HTL) – associates with co-translating 
ribosomes for efficient membrane protein insertion and SecA 
for ATP/PMF-driven secretion (Figure 1; Schulze et  al., 2014; 
Komar et  al., 2016).

TRANSPORT THROUGH THE  
CELL ENVELOPE

For many proteins, transport across the inner membrane is 
only the first step. Following passage through the Sec-translocon 
proteins are either retained in the cell envelope or find their 
way to the external medium. Gram-negative bacteria have the 
added complexity of an outer membrane with an inter-membrane 
periplasm containing the peptidoglycan layer. Therefore, proteins 
must either be folded and retained in the periplasm or be further 
trafficked into or across the outer membrane. This is no 
mean feat.

There are a number of periplasmic shock proteins that are 
transported to the periplasm and folded in enormous quantities, 
e.g., Spy and HdeI (Tapley et  al., 2009; Quan et  al., 2011). 
Moreover, the demand for the insertion and folding of β-barrel 
Outer Membrane Proteins (OMPs) in rapidly dividing cells  
is vast. The process is facilitated by the periplasmic chaperones 

SurA and Skp (Sklar et  al., 2007; McMorran et  al., 2013), 
which presumably collect proteins as they emerge from the 
translocon for folding or for delivery to the outer membrane. 
How the chaperoned OMPs negotiate the peptidoglycan layer 
is unclear. We know that when they get there, they are welcomed 
by the β-Barrel Assembly Machinery (BAM) – a complex of 
five proteins BamABCDE, responsible for the insertion and 
folding of OMPs (Figure 1; Voulhoux et  al., 2003; Wu et  al., 
2005). But how this is achieved for very large fluxes of proteins, 
without aggregation, and in the absence of an energy source 
is not easily reconciled. Many structures of the BAM complex 
have been determined (Bakelar et  al., 2016; Gu et  al., 2016; 
Iadanza et  al., 2016); despite this, the mechanism for energy-
independent OMP insertion and folding has yet to emerge.

THE ROLE OF SPECIFIC PHOSPHOLIPIDS 
IN PROTEIN TRANSPORT

While the dynamic mechanism for protein secretion through 
the protein machinery of the bacterial energy conserving, inner 
membrane has been the focus of our attention, it is becoming 
increasingly clear that the resident lipids also play a critical 
role in the transport proteins across, as well as into the 
membrane (Figure 1).

This post-translational reaction has been known for many 
years to require acidic phospholipids. Mutants defective in 
acidic phospholipid – cardiolipin (CL) and phosphatidyl-glycerol 
(PG) – synthesis have protein export deficiencies (Tommassen 
et  al., 1989). Moreover, these lipids are required for functional 
association of SecA to the inner membrane (Hendrick and 
Wickner, 1991). Later work showed that the CL and, to a 
lesser extent, PG are important for stability of the SecYEG 
complex and to stimulate SecA ATPase activity (Bessonneau 
et  al., 2002; Gold et  al., 2010) – but the mechanism of action 
was unclear. Recent progress on this subject is beginning to 
unravel the mysterious action of this unique lipid.

Course-Grain Molecular Dynamics (CGMD) simulations 
have identified SecYEG sites, which transiently interacted with 
CL, which were validated empirically (Figure 3; Corey et  al., 
2018): native mass spectrometry demonstrated that variants 
in which the positive surface charges of the putative binding 
sites were diminished, bound CL less effectively. Remarkably, 
it turns out that these specific CL interactions confer the 
stimulation of SecA ATPase activity and PMF enhancement 
of secretion (Figures 1, 3; Corey et  al., 2018); the latter may 
be  achieved by proton carriage by the lipid itself. If true, this 
would be  the first description of a direct involvement of a 
phospholipid in the process of energy coupling.

Furthermore, the interaction of the translocon with CL 
has profound consequences for the structure of the protein 
complex. Interestingly, specific sites on SecYEG, used to monitor 
the opening and closure of the protein channel (Fessl et  al., 
2018), are strongly dependent on CL for SecA promoted 
channel opening (Figure  5 and Supplementary Figure 2 in 
Corey et  al., 2019).
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A LIPID POOL IN THE HTL

Co-translational transport of proteins into the membrane  
occurs through the HTL (see above; Figure 1). Lipids, again 
CL in particular, are required to stabilize the holo-complex 
(Schulze et  al., 2014), and critically, lipids also form an 
encapsulated pool at its center (Figure 1; Botte et  al., 2016; 
Martin et  al., 2019). This remarkable feature could provide an 
enclosed lipidic environment to promote efficient membrane 
protein insertion and assembly, protecting the translocating 
membrane protein from aggregation and proteolysis. This is 
a familiar concept for promoting folding of globular proteins 
within a chamber of the chaperonin GroEL (Ranson et al., 1997; 
Xu et  al., 1997).

OTHER PROTEIN TRANSLOCATION 
SYSTEMS

It is very interesting that other protein translocation systems 
have also been implicated in the association with CL, including 
the BAM complex of the outer membrane (Figure 1; Chorev 
et  al., 2018), and the mitochondrial Tim23 import machinery 
(Malhotra et  al., 2017), but apparently not the TAT machinery 
responsible for the export of fully folded proteins in bacteria 
(Rathmann et  al., 2017). Given the well-known dependence 
of CL for many proton translocating energy transducing systems, 
such as the ATP synthase (Duncan et  al., 2016), and the 
electron transfer chain complexes I, III, and IV (Fry and Green, 
1981; Pfeiffer et  al., 2003; Fiedorczuk et  al., 2016; Malkamäki 

and Sharma, 2019), one could surmise a critical role for proton-
driven protein transport too.

CONCLUSION

Finally, our understanding of the dynamic mechanism underlying 
ATP-driven secretion through the Sec machinery is approaching 
clarity, while its augmentation by the PMF is a mystery shortly 
to be resolved, after nearly 30 years since its discovery (Brundage 
et  al., 1990; Schiebel et  al., 1991). In this context, CL seems 
to play essential and multifarious roles, for the structure and 
for both ATP and PMF-driven protein translocation activity. 
This warrants further investigation and exploitation. The essential 
lipid-protein interface could be  a prime target for infiltration 
by small molecules for prospective antibiotic development.
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