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An important application of time-kill curve (TKC) assays is determination of the nature of
the best PK/PD index (fAUC/MIC or fT% > MIC) and its target value for predicting
clinical efficacy in vivo. VetCAST (the veterinary subcommittee of EUCAST) herein
presents semi-mechanistic TKC modeling for florfenicol, a long acting (96 h) veterinary
antimicrobial drug licensed against calf pneumonia organisms (Pasteurella multocida
and Mannheimia haemolytica) to support justification of its PK/PDbreakpoint and clinical
breakpoint. Individual TKC assays were performed with 6 field strains of each pathogen
(initial inoculum 107 CFU/mL with sampling at times at 0, 1, 2, 4, 8, and 24 h).
Semi-mechanistic modeling (Phoenix NLME) allowed precise estimation of bacteria
growth system (KGROWTH, natural growth rate; KDEATH, death rate; BMAX, maximum
possible culture size) and florfenicol pharmacodynamic parameters (EMAX, efficacy
additive to KDEATH; EC50, potency; Gamma, sensitivity). PK/PD simulations (using
the present TKC model and parameters of a florfenicol population pharmacokinetic
model) predicted the time-course of bacterial counts under different exposures. Of
two licensed dosage regimens, 40 mg/kg administered once was predicted to be
superior to 20 mg/kg administered at 48 h intervals. Furthermore, we performed
in silico dose fractionation with doses 0 – 80 mg/kg administered in 1, 2 or 4
administrations over 96 h and for MICs of 0.5, 1, 2, 4 mg/L with 2 inoculum sizes
105 and 107 CFU/mL. Regression analysis (Imax model) demonstrated that i) fAUC/MIC
outperformed fT% > MIC as PK/PD index and ii) maximum efficacy (IC90%) was
obtained when the average free plasma concentration over 96 h was equal to 1.2 to
1.4 times the MIC of Pasteurella multocida and Mannheimia haemolytica, respectively.

Keywords: PK/PD, modeling and simulation, time-kill assay, antimicrobial susceptibility testing, Pasteurella
multocida, Mannheimia haemolytica, VetCAST, bovine respiratory disease

INTRODUCTION

The aim of time–kill in vitro assays is to investigate the pharmacodynamics (PD) of antimicrobial
drugs (AMD) by determining the rate of bacterial kill relative to drug concentration.
Quantitative analysis of time-kill curve (TKC) data is more informative of the drug-bacteria
relationship than snapshot indices, such as minimum inhibitory concentration (MIC). MIC
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indicates only the net effect of a single AMD concentration
on bacterial growth over a 24 h incubation period, while TKC
establishes the rate of killing over a range of concentrations.
Based on TKC data AMDs can be classified as time- or
concentration-dependent in killing action (Toutain et al., 2017).

An important application of TKC data is determination
of the best PK/PD index (f AUC/MIC or f T > MIC) for
predicting clinical efficacy in vivo, where f AUC is area under
plasma concentration-time curve and f T is the time the drug
concentration exceeds MIC, for free drug concentrations. This
has historically been established by correlating the reduction in
bacterial count at 24 h from an initial inoculum count (Lees et al.,
2015). Plots of log10 colony forming units (CFU)/mL at 24 h
versus each of the two PK/PD indices allowed selection of the
PK/PD index which best fits the sigmoidal EMAX model (Lees
et al., 2015). This approach was based on the net reduction of
bacterial count with each concentration exposure, but did not
utilize the time course (i.e., the shape) of individual kill curves.
For human medicine, several advanced PK/PD models of TKC
have incorporated the shape of the curve with time (Nielsen
et al., 2007; Nielsen and Friberg, 2013, model D, Figure 5).
This more advanced modeling enables estimation of the three
pharmacodynamic (PD) parameters of AMD action, namely
potency, efficacy and sensitivity. This approach therefore allows
characterization the whole concentration-effect relationship.

In the present investigation, using historical TKC data (Sidhu
et al., 2014), PD parameters of florfenicol against the calf
pneumonia organisms, Pasteurella multocida (P. multocida)
and Mannheimia haemolytica (M. haemolytica), have been
established using the semi-mechanistic model proposed by
Nielsen and Friberg (2013). The objective was to then conduct
an in silico dose fractionation trial to determine the PK/PD
index for florfenicol and these pathogens, best correlating
with bacterial kill. Dose fractionation studies are generally
conducted in vivo using rodent infection models, whereas in
this study semi-mechanistic PD florfenicol models were used as
a surrogate of rodent models to predict microbiological effects
in response to a range of florfenicol dosage regimens. The
ultimate goal was to compute a PK/PD breakpoint (PK/PDBP)
for the florfenicol clinical breakpoint (CBP) according to the
procedures advocated by VetCAST (Toutain et al., 2017), where
CBP is the MIC value used by microbiology laboratories to
report the results of antimicrobial sensitivity testing (AST).
PK/PDCO is defined as the highest possible MIC for which
a given percentage of animals in the target population (say
90%) achieve a pre-defined target value of the PK/PD index,
the pharmacodynamic target (PDT) according to European
Medicines Agency (EMA) terminology.

MATERIALS AND METHODS

Test Pathogens and MIC Determination
The test pathogens were P. multocida and M. haemolytica.
MICs were determined in Mueller Hinton Broth (MHB) for six
strains of each species, isolated from cases of calf pneumonia
(Sidhu et al., 2014). Their origin and date of isolation are

summarized in the Supplementary File S1. Average florfenicol
MICs were determined using 5 overlapping 2-fold-dilution
series and were 0.4 and 0.5 mg/L for P. multocida and
M. haemolytica, respectively.

Time-Kill Curves
Six individual TK assays were performed for each pathogen.
Initial inoculum count was in the range 5 × 106 to
7 × 107 CFU/mL. Duration of incubation was 24 h with
sampling at times of 0, 1, 2, 4, 8, and 24 h. Drug concentrations
were expressed in the initial publication (Sidhu et al., 2014) as
multiples of MIC (0 = growth control, 0.25, 0.5, 1, 2, and 4 times
measured MIC). For data fitting, MICs were back calculated to
mg/L. The lowest detectable count was 33 CFU/mL; lower counts
were set as below the quantification limit (BQL). All TKC data
sets analyzed for this study are included in the manuscript and
the supplementary File S2.

Data Analysis
Pharmacodynamic data analyses were conducted using Phoenix R©

WinNonlin R© 8.0 (Pharsight Corporation, St Louis, MO,
United States). For each pathogen, the 6 TKC data sets were
analyzed simultaneously using a non-linear mixed effect model
(NLME). A semi-mechanistic structural model of bacterial
growth, incorporating a compartment for growing drug-sensitive
bacteria (S) (CFU/mL) and a compartment named persisters
(P) (CFU/mL), corresponding to a pool of non-growing and
insensitive-drug bacteria (phenotypic resistance) was adopted
(Figure 1; Nielsen and Friberg, 2013).

Visual Inspection of TKC indicates an initial phase of slow
growth. To capture the delay required to achieve a maximal
steady-state growing rate, a mitigating function for KGROWTH of
the form was introduced (Equation 1):

KGROWTH = KGROWTHMAX ×
(
1− EXP

(
−Alpha× Time

))
(1)

where Alpha (per h) = rate constant to describe a progressive
increase of KGROWTH over time; at time 0, KGROWTH = 0 then,
KGROWTH increases progressively to reach KGROWTHMAX with
a mean time equal to 1/Alpha. The lag phase corresponds
to the physiological adaptation of the bacteria to the
culture condition (induction of specific messenger RNA
and protein synthesis and low cell density accounting
for initial dilution of the exoenzymes that make nutrients
readily available).

Florfenicol action was introduced in the model as a
concentration-dependent killing rate KDRUG(t) (per h) acting in
parallel with KDEATH but for the S pool only. It was modeled
according to the classical Hill equation (Eq. 2).

KDRUG(t) =
EMAX × C (t)Gamma

ECGamma
50 + C (t)Gamma (2)

where C(t) is the florfenicol concentration (mg/L) at time t (the
independent variable). C(t) was the constant tested concentration
when data were fitted to estimate the PD parameters but
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FIGURE 1 | Semi-mechanistic model for Time-Kill curve modeling, described
in Nielsen et al. (2007) and Nielsen and Friberg (2013). KDEATH (per h) is the
natural death rate for both S (susceptible) and P (non-susceptible) pools;
KGROWTH (per h) is the growth rate of S; BMAX (CFU/mL) is the maximum
possible size of the culture (S+P). S+P constitutes the total bacterial count.
For the starting inoculum, all bacteria were assumed to be in the growing,
drug-sensitive stage. As the total bacterial content in the system increases,
bacteria are progressively transferred into the P resting pool. This transfer was
modeled by an irreversible rate constant (KSP ) between S and P. KSP was
parametrized in terms of BMAX , KGROWTH and KDEATH (natural death rate) as
described in Nielsen et al. (2007) and Nielsen and Friberg (2013). EMAX (1/h) is
a maximal killing rate of bacteria for the susceptible pool (additional to natural
death rate), EC50 is the florfenicol in vitro concentration (mg/L) for EMAX /2 and
Gamma (a scalar), the Hill coefficient; EMAX , EC50 and Gamma are the three
PD parameters allowing quantification of florfenicol efficacy, potency and
sensitivity, respectively.

C(t) was obtained by solving the population PK model, when
this equation was used for simulations (vide infra). EMAX
(1/h) is the maximal killing rate for the susceptible pool
(additionally to natural death rate), EC50 is the florfenicol in vitro
concentration (mg/L) for EMAX/2 and Gamma (a scalar), the Hill
coefficient; EMAX , EC50 and Gamma are the three PD parameters
providing quantitative indices of florfenicol efficacy, potency and
sensitivity, respectively.

There were substantial differences in BMAX across the
six field strains of each pathogen. Therefore, a random
component was introduced in the structural model to
account for the inter-strain variability. Six individual BMAX
values were obtained, using an exponential model of the
form (Eq. 3):

θ1i = θ1 × Exp (η1i) (3)

where θ1 is the typical population value of BMAX , θ1i the
value of BMAX for the ith TKC assay, and η1i (eta) the
deviation associated with the ith strain from the corresponding
population value. This exponential model assumes a log-normal
distribution of BMAX . The between-strain variability of BMAX was
reported as coefficient of variation in the original scale, with an
equation converting estimated variance terms to a coefficient of
variation (CV%) (Eq. 4).

CV (%) = 100×
√

exp
(
ω2
)
− 1 (4)

The residual variability was modeled with an exponential error
model of the form (Eq. 5):

Yij = Ŷij × EXP(εij) (5)

where Ŷij is the jth response (CFU/mL) measured in the ith curve
in terms of CFU (no log-transformation of raw data), with εij the
common errors term having a mean of 0 and a variance σ 2

1 .
When there is only one exponential error model, the

predictions and observations are automatically log-transformed
by Phoenix and fitted in that space, so that the error model was
actually a Log-additive error model.

Parameter estimates, with their associated SE and CV
as a measure of precision, were based on minimizing an
objective function value, using Laplace engine for the Maximum
Likelihood Estimation.

For P. multocida, there were no values reported as below
the quantification limit (BQL) due to some re-growth at 24 h.
For M. haemolytica, data reported as BQL (7% of the data
set) were retained in the analysis by using a likelihood-based
approach according to the M3 method (Beal, 2001). Diagnostic
plots determined whether the model was adequate: these included
PRED (population (zero-eta) prediction) and IPRED (individual
prediction) versus the dependent variable, Conditional weighted
residuals (CWRES) and individual fitting. The overall adequacy
of the model was established by plotting the Visual Predictive
Check (VPC) i.e., a graphical comparison between the observed
data and prediction intervals (20–80th percentiles) derived from
the simulated data (data set simulated 500 times).

Secondary parameters computed were MIC and minimal
bactericidal concentration (MBC). MIC and MBC indicate AMD
PD parameters (efficacy, potency, sensitivity) but also test tube
conditions [growth and death rates, duration of observation
(often 18–24 h) and the initial inoculum load (usually 5 × 105

CFU/mL)]. According to Mouton and Vinks (2005), MIC is
related to the aforementioned factors by eqs. 6A,B:

MIC = EC50 ×

(
KGROWTH − 0.29

EMAX − (KGROWTH − 0.29)

) 1
Gamma

(6A)

where KGROWTH , (actually KGROWTH−KDEATH) (for present data
it is KGROWTHMAX), EC50, EMAX, and Gamma as defined above;

Time of measurement was fixed at 18 h and it is assumed that
visible growth indicates an inoculum of 1× 108 CFU/mL; hence,
the constant 0.29 of eq. 6A is obtained from eq. 6B:

1
Time of measurement

(
18h

) × LN
(

N (t)
N (0)

)
= 0.294 (6B)

where N(t) is the inoculum size at 18 h i.e., 108 CFU/mL and N(0)
is the initial inoculum i.e., 5× 105 CFU/mL. When the initial load
is not 5 × 105 CFU/mL as for the Sidhu et al. (2014), data eq. 6B
should be edited to replace 0.29 by the ad hoc value; for example,
using an initial count of 107 CFU/mL, the constant is no longer
0.29 but−0.127.
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Similarly, MBC is computed by replacing, in the previous
equation, 108 by 5 × 102 CFU/mL; MBC corresponds to at least
99.9% kill from the initial inoculum (5× 105 CFU/mL) (Mouton
and Vinks, 2005); MBC is given by eq. 7:

MBC = EC50 ×

(
KGROWTH + 0.383

EMAX − KGROWTH + 0.383

) 1
Gamma

(7)

The Phoenix model code is available on request and will be
made available by the authors, without undue reservation, to any
qualified researcher.

The estimated fixed parameters (EMAX , EC50, Gamma,
KGROWTHMAX , KDEATH , BMAX) and Alpha were reported as
typical values with coefficient of variation.

Simulation of Two Possible Dosing
Regimens and in silico Dose
Fractionation to Select a PK/PD Index for
Florfenicol
Selection of the best PK/PD index for florfenicol and its
magnitude were calculated using the in silico PK/PD model,
simulating several dosage regimens using eq. 2 with C(t)
being the predicted plasma florfenicol concentration obtainable
in vivo. C(t) was determined by solving the population PK
model developed for florfenicol in calves by Toutain et al.
(2017), which is a meta-analysis of PK studies in which
calves were administered 40 mg/kg of florfenicol subcutaneously
(300 mg/mL Solution for Injection). The design of the
population pharmacokinetic study and the resulting estimated
PK parameters used for these simulations are presented in
Supplementary File S3. Using the PK/PD in silico model, the
microbiological effect of two possible licensed dosing regimens

were simulated: single dose (40 mg/kg) versus 20 mg/kg twice
at 48 h dosing interval. Using the same PK/PD model, dose
fractionation was conducted for doses of 0, 2.5, 5, 10, 20,
30, 40 (licensed dose), 50, 60, and 80 mg/kg given, as a
single administration, two administrations at 48 h interval or
4 administrations at 24 h intervals, yielding a total of 28
possible exposure patterns. Simulations were performed for
two initial loads (105 and 107 CFU/mL) and for four MIC
levels (0.5, 1, 2, and 4 mg/L). We assumed that differences
in MIC were due solely to altered potency and not efficacy.
For simulation at MICs of 0.5, 1, 2, and 4 mg/L, the EC50
fitted from TKCs was multiplied by a scaling factor converting
measured MIC (0.4 mg/L for P. multocida and 0.5 mg/L for
M. haemolytica) to the simulated MIC. For the bacteriological
response, the cumulative Area Under the Curve of the total
bacterial count over 96 h (AUCbact96 h) was used. Data were
then log10 transformed for regression. When the bacterial
count had decreased to 30 CFU/mL, it was considered that re-
growth would not occur and curves were truncated for this
cut-off value. PK/PD indices are conventionally determined
using plasma protein unbound (free) concentration. The latest
study at the time of writing reported that florfenicol protein
binding was only 5% at the high concentration and was
negligible at the low concentrations, representing a fu of
essentially 1.0 (Foster et al., 2016). We therefore hypothesized
that the binding of florfenicol to plasma protein could be
ignored and that we simulated free plasma concentrations in
the dose fractionation (vide infra). The area under the plasma
concentration-time curve (f AUCPK(0−96 h)) and percentage time
plasma concentration exceeded MIC within 96 h (f T > MIC%)
were computed using the statistical tool of Phoenix. The 28
pairs of f T > MIC% (independent variable) versus AUCbact96 h
(dependent variable) and f AUCPK(0−96 h)/MIC (independent

TABLE 1 | Primary and secondary parameter estimates and precision (CV%).

Pasteurella multocida Mannheimia haemolytica

Primary parametersa Unit Estimate CV% Estimate CV%

Bacteria growth system parameters

KGROWTHMAX 1/h 0.97 5.1 1.58 10.7

KDEATH 1/h 0.12 11.9 0.78 11.1

BMAX CFU/mL 5.2 × 109 38.1 9.6 × 108 34.6

alpha 1/h 0.22 8.9 0.93 12.8

Florfenicol pharmacodynamic parameters

EC50 mg/L 0.46 7.5 0.70 7.2

gamma scalar 2.74 8.9 2.63 11.9

EMAX (maximal killing rate) 1/h 2.00 2.4 2.70 8.4

stdev0 (Ln domain) scalar 1.11 (156 CV%) 9.9 1.05 (141 CV%) 5.5

Secondary parametersb

MIC (105 CFU/mL inoculum) mg/L 0.35 5.9 0.43 8.1

MIC (107 CFU/mL inoculum) mg/L 0.40 6.4 0.49 7.1

stationary concentration mg/L 0.41 6.5 0.50 7.0

MBC mg/L 0.51 7.5 0.60 6.3

aKGROWTHMAX, maximal growth rate; KDEATH, natural death rate; Alpha, delay required to achieve maximal steady-state growth rate; BMAX, maximum possible bacterial
density; EMAX, maximal increase in killing rate in addition to KDEATH, EC50 concentration required to achieve half of EMAX; gamma, Hill coefficient. bMinimum Inhibitory
(MIC) and Bactericidal (MBC) concentrations and stationary concentrations computed according to Mouton and Vinks (6).
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variable) versus AUCbact96 h (dependent variable) obtained for
each MIC were fitted with an Inhibitory Effect Sigmoid Imax PD
model (Model 108), Eq. 8:

Effect = E0 −

(
Imax × INDEXSlope

INDEXSlope + INDEXSlope
50

)
(8)

where E0 is the maximum effect (obtained for the control curve
for C(t) = 0), the maximum possible observed effect is (E0-Imax),
Imax being the amplitude of maximal effect. INDEX50 is the
magnitude of the index (f AUCPK (0−96 h)/MIC or f T > MIC%)
that achieves 50% of the Imax, and Slope is the sigmoidicity factor,
reflecting the steepness of the relationship. Curve fitting was
performed with WinNonlin R© using the non-linear least-squares
algorithm. The coefficients of determination (R2), the Akaike
Information Criterion (AIC), and visual inspection of graphs
were used to select the PK/PD index that best predicted
the antibacterial effect. The INDEX90% was computed as the
breakpoint value of the predicting PK/PD index.

RESULTS

Time-Kill Curve Modeling
Parameter estimates from the TKC model (bacteria growth
system and drug sub-models) are summarized in Table 1. The
precision of the estimation of the parameter value was good in all
cases (estimated CV% less than 38%).

Maximal growth rate (KGROWTHMAX, per hour) was 0.97
for P. multocida (yielding a 0.71 h generation half-life) and
1.58 for M. haemolytica (yielding a 0.44 h generation half-life).
The natural death rate (KDEATH, per hour) was 0.12 for
P. multocida (yielding a 5.9 h count-halving half-life) and 0.78
for M. haemolytica (yielding a 0.9 h count-halving half-life). The
delay in achieving a maximal steady-state growing rate (Alpha)
was 0.22 h−1 for P. multocida and 0.93 h−1 for M. haemolytica,
corresponding to half-lives to establish full growth capacity of
3 and 0.75 h, respectively. The maximum possible bacterial
density of the cultures (BMAX) was 5.2 × 109 CFU/mL for
P. multocida and 9.6 × 108 CFU/mL for M. haemolytica. The
CV% for inter-strain (assay) variability was 89% for P. multocida
and 430% for M. haemolytica. Low values of eta-shrinkage
(12% P. multocida and 4% for M. haemolytica) confirm the
identifiability of the random effect on Bmax.

The maximal drug-induced increase in bacterial killing rate
(Emax, per hour) was 2.0 h−1 for P. multocida (yielding a
16.7-fold increase in overall death rate) and 2.7 h−1 for
M. haemolytica (yielding a 3.5-fold increase in overall death
rate). The in vitro concentration for achieving half the maximal
effect (EC50) was 0.46 mg/L for P. multocida and 0.70 mg/L for
M. haemolytica, ranking favorably for average experimental MICs
of 0.4 mg/L for P. multocida and 0.5 mg/L for M. haemolytica. The
slope of the concentration-effect curve (gamma, dimensionless
scalar) was for 2.74 for P. multocida and 2.63 for M. haemolytica.

The plot of the observed natural logarithm of bacterial counts
(CFU/mL, the dependent variable DV) versus individual
predicted count values (IPRED) for P. multocida and

M. haemolytica is presented in Figure 2. Visual predictive
check (VPC) for P. multocida and M. haemolytica are
shown in Figure 3.

Comparison of Microbiological
Response for Two Possible Modalities of
Florfenicol Administration
The in silico predicted microbiological efficacy of the two
approved dosage regimens for florfenicol were similar for two
inoculum sizes (low 105 and high 107 CFU/mL) for P. multocida
and M. haemolytica at MICs of 0.5, 1, 2, and 4 mg/L (Figure 4).
For an MIC of 2 mg/L, the single administration of 40 mg/kg
was clearly superior to the two administrations of 20 mg/kg at
48 h interval for both P. multocida and M. haemolytica and
with both inoculum counts. For an MIC of 4 mg/L, none of
the dosage regimens were predicted to be efficacious by the
in silico PK/PD model.

Dose Fractionation in silico
Figure 5 illustrates the fitting comparison for prediction
of log10AUCbact(0−96 h) (Imax sigmoid model) using
f AUC(PK0−96 h)/MIC or f T > MIC% as the predictive variable
for MICs 0.5, 1, 2, and 4 mg/L and for inoculum strengths of 105

and 107 CFU/mL for both P. multocida and M. haemolytica. The
fitting for MIC 4 mg/L was excluded due to the limited efficacy
of even the highest dosage regimen. In all cases, f AUC/MIC
was a better PK/PD index than f T > MIC over 96 h. For
P. multocida, the goodness of fit values, averaged for inoculum
sizes of 105 and 107 CFU/mL and for all MICs, were better
for f AUCPK(0−96 h)/MIC (AIC = 76.9, R2 = 0.939) than for
f T > MIC (AIC = 81.3, R2 = 0.934). For M. haemolytica,
the goodness of fit values, averaged for inoculum sizes of
105 and 107 CFU/mL and for all MICs, were also better for
f AUCPK(0−96 h)/MIC (AIC = 84, R2 = 0.924) than for f T > MIC
(AIC = 86.3, R2 = 0.924).

The critical value for 90% of the maximal in silico possible
anti-bacterial action for f AUCPK(0−96 h)/MIC was solved using
Eq. 8 for the two inoculum strengths actually tested (105 and 107

CFU/mL) and for MICs of 0.5, 1, and 2 mg/L (Table 2).
Data in Table 2 indicate that the critical value of the PK/PD

index (f AUCPK(0−96 h)/MIC) to achieve 90% of maximal effect)
was dependent of the tested MIC but relatively similar for both
bacterial species. For a MIC of 1 mg/L, the critical value for
f AUCPK(0−96 h)/MIC for P. multocida was 115 and 134 h for
inocula of 105 and 107 CFU/ml, respectively. The corresponding
values were 127 and 133 h for M. haemolytica. These values
indicate that, to achieve 90% of maximal efficacy for a pathogen
having a MIC of 1 mg/L, the average free plasma florfenicol
concentration over 96 h should be equal to 1.19- and 1.32-
fold the MIC for P. multocida and 1.40 and 1.39 fold the
MIC for M. haemolytica.

DISCUSSION

This study is the first to quantify, for veterinary pathogens,
the three basic PD parameters of an AMD from TKC analysis,
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FIGURE 2 | Plot of the dependent variable (DV) i.e., observed natural logarithm of bacterial counts (CFU/mL) versus individual predicted count values (IPRED) for
P. multocida and M. haemolytica. Individual strain predictions are obtained by setting random effects to the “post hoc” or empirical Bayesian estimate of the random
effects for the individual from which the DV observation was made. Thus, the plot shows observed versus fitted values of the model function. Ideally, they should fall
close to the line of unity y = x.

Frontiers in Microbiology | www.frontiersin.org 6 June 2019 | Volume 10 | Article 1237

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01237 June 10, 2019 Time: 16:26 # 7

Pelligand et al. Florfenicol Time-Kill Curves Semi-Mechanistic Modeling

FIGURE 3 | Visual Predictive Check (VPC) for P. multocida and M. haemolytica. VPCs were obtained with 100 replicates of each set of 6 strains
(100 × 6 × 6 = 3600 individual curves). For each stratification, the observed quantiles (20, 50, and 80%) are well super-imposed with the corresponding predictive
check quantiles over the observed data. Theoretically, approximately 40% of data should be outside the plotted quantiles. Red lines: observed quantiles; Black lines:
predicted quantiles; Black symbols: observed data.

namely efficacy (EMAX maximum killing rate), potency (EC50)
and sensitivity (slope of the concentration-effect relationship).
These data have been obtained for florfenicol and two major

calf pathogens, P. multocida and M. haemolytica. The classical
index describing quantitatively AMD action is MIC. However,
MIC is not a genuine PD parameter; it is a reproducible hybrid
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FIGURE 4 | Prediction of total bacterial count of P. multocida and M. haemolytica over 96 h, for each MIC (0.5, 1, 2, and 4 mg/L), with two licensed dosage
regimens: single administration of 40 mg/kg (gray line) vs. 2 doses of 20 mg/kg at 48 h interval (black line with dots). Simulations were run for two starting inoculum
counts (low 105 and high 107 CFU/mL, corresponding to metaphylactic and treatment circumstances), but only simulations with 107 CFU/mL are illustrated.
Bacterial counts were limited to 30 CFU/mL (thus assuming cure was achieved).

variable measured under standard conditions. Actually, MIC
is dependent not only on the three PD parameters but also
on in vitro conditions (growth and death rates of the tested
pathogen, duration of observation and the initial inoculum load).
The numerical value of each MIC therefore depends on seven
separate factors, as explicitly indicated in eqs. 6A,B.

The advantage of dissecting MIC into these dependency
components is to identify the test tube conditions that can be
regarded as confounding factors from the actual PD properties
that are of primary interest, not only for AMDs but for
drugs of all classes. The three parameters have been dissected
out and quantified by modeling TKC data. In contrast with
MIC, as a crude index of AMD action, TKCs describe time
course as well as magnitude of antibacterial action over the
18–24 h duration of exposure. This enables capture of the
pattern of bacterial killing with semi-mechanistic models of
the type used in the present paper (Figure 1). This model
has recently been evaluated against similar PK/PD models
proposed by others and using Monte Carlo Simulations.
It was concluded that, under constant drug concentrations,
as in this study, the median PD parameter estimates were
within 10% of the true value and the precision was < 20%
(Jacobs et al., 2016).

The calculations indicate that potency and efficacy of
florfenicol were of the same order of magnitude for the two
pathogens investigated. The strains belonged to the distribution
of the wild population for the two pathogens as EUCAST
epidemiological cut-off values (ECOFFs) values are 1 and 2 mg/L
for P. multocida and M. haemolytica, respectively. In future
studies, it would be valuable to subject to the same modeling
process strains belonging to resistant sub-populations; this
would reveal how resistance is phenotypically expressed

(for example, as either an increase in EC50 and/or a
reduction in EMAX). Such data would enable interpretation
of mechanisms of emergence of resistance, using the same
conceptual framework for drugs of other pharmacological
classes, when analyzing drug-receptor interaction. Such
analysis is a major tool in the quest for developing new drugs
(Kenakin, 1997).

The analysis presented in this paper adds a new dimension
to bactericidal killing curves by converting them into proxies
of an infection model. This required linking in vivo PK data
to a PD TKC model able to predict the temporal dynamics of
bactericidal activity. The PK data are generated by solving a
model readily obtained through either classical or population
investigations. The PD model predicts a microbiological response
for a given drug exposure at two inoculum levels of 105 and
107 CFU/mL (corresponding to metaphylactic and treatment
circumstances, respectively). Currently, rodent models are widely
used but they raise questions of cost and ethical use of animals
in research. As an alternative to animal studies, the hollow
fiber model has been developed as a dynamic infection model
(Michael et al., 2014) but its use in veterinary medicine has
not yet been reported. Hollow fiber technology is costly and
resource demanding; few alternatives like chemostats can be
explored but have their own limitations. The present adaptation
of TKC results offers the advantages of using historical data
and its availability for many veterinary pathogens. Hence, data
meta-analysis, as presented in this article, provides, at low cost
and with benefits for animal ethics, a new approach to selection
of a PK/PD index to predict clinical efficacy of AMDs used in
veterinary medicine.

The selected PD model simulated the time course of
bactericidal activity of florfenicol, with pathogen exposure
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FIGURE 5 | Comparison of fitting for prediction of log10 AUCbact(0-96 h) (Imax sigmoid model) with fAUC_PK(0-96 h)/MIC or fT > MIC% as a predictive variable for
MIC of 0.5 to 4 mg/L (from left to right) for inoculum sizes of 105 and 107 CFU/mL for both P. multocida and M. haemolytica. A sigmoid Imax model predicted log10
AUCbact(0-96 h) from the value of the PK/PD indices: either fAUC_PK(0-96 h)/MIC (top row) or fT > MIC% (bottom row) were used as a predictive variables for MICs
of 0.5 to 4 mg/L (from left to right) for inoculum sizes of 105 and 107 CFU/mL for both P. multocida and M. haemolytica.
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TABLE 2 | Critical value of the PK/PD index (fAUCPK(0−96 h)/MIC, unit h) to achieve 50% or 90% of the maximal possible in silico bacteriological effect.

Efficacy (% Emax) P. multocida M. haemolytica Average free plasma concentration required over 96 h
(expressed in MIC-fold, unitless) to achieve 90% of

the maximal efficacyb
50% 90% 50% 90%

MIC (mg/L) fAUCPK(0−96 h)/MIC (h)a P. multocida M. haemolytica

105 CFU/mL inoculum 0.5 75 81 75 81 0.84 0.84

1 81 115 83 127 1.19 1.32

2 79 133 94 186 1.38 1.93

107 CFU/mL inoculum 0.5 75 84 75 83 0.87 0.86

1 85 134 84 133 1.40 1.39

2 92 137 94 195 1.43 2.03

aFigures for fAUCPK(0−96 h)/MIC (h) were computed from equation 8 for two inoculum strengths (105 and 107 CFU/mL) and for MICs of 0.5, 1, and 2 mg/L. bThe
corresponding average plasma concentration to achieve over 96 h (expressed in multiples of MIC) to ensure 90% efficacy was computed by dividing these critical
values by 96 h. Bold fonts highlight values for MIC of 1 mg/L.

actually obtained in vivo after administration to calves of the
reference florfenicol formulation (Nuflor R©). To achieve this, the
PD component of the model with its estimated parameters was
solved using plasma florfenicol concentrations as predicted by a
florfenicol population model (Supplementary File S3, also see
Toutain et al., 2019).

Thus, several florfenicol exposure scenarios were simulated
to generate corresponding killing curves. This leads to the
conclusion that a single florfenicol dose of 40 mg/kg should be
more efficacious in bactericidal effect than an alternative dosing
regimen of two 20 mg/kg dose at a 48 h interval. According to
a meta-analysis from DeDonder and Apley (2015), both dosage
regimen were equally efficacious (absolute risk reduction of
morbidity) versus negative control.

In order to propose a PK/PD breakpoint for florfenicol
based on the VetCAST approach, the first step is to select an
appropriate PK/PD index predicting efficacy. A PK/PD approach
is superior to using a target CFU at 24 h as it allows the
description of the onset, rate and extent of killing and a
data-based determination as to whether an AMD is time or
concentration-dependent. Florfenicol is used solely in veterinary
medicine, so that historically no dose fractionation rodent studies
are available to determine the most appropriate PK/PD index
predicting efficacy. For determination of the best PK/PD index, in
silico simulation approaches are scientifically attractive, ethically
acceptable and low cost alternatives to in vivo dose fractionation
studies. This in silico approach has been validated for human
medicine for the main AMD classes (Nielsen and Friberg,
2013). To select f AUC/MIC or f T > MIC as the PK/PD index
of choice, it is necessary to establish the influence of both
level (concentration) and shape of exposure to florfenicol on
the efficacy of its bactericidal effect, as predicted by the PD
model. In this study, from simulated killing curves obtained
with 10 florfenicol dose levels ranging from 0 to 80 mg/kg
and divided into one, two or four administrations at differing
dosing intervals, 28 killing curve profiles were generated. These
were then modeled using the classical Emax model, with the
PK/PD index as independent variable and fAUC(0−96 h) under
the killing curves as dependent variable. For MICs of 0.5, 1, and
2 mg/L, f AUC/MIC was systematically superior to f T > MIC

in predicting bacterial killing, although for the lowest MIC
(0.5 mg/L) both indices were acceptable. For an MIC of 2 mg/L,
the relationship degraded for f T > MIC but remained acceptable
for f AUC/MIC. For an MIC of 4 mg/L, both indices failed to
predict adequately the florfenicol response or lack thereof.

The selection of f AUC/MIC as the best PK/PD index for
florfenicol is consistent with a previous report that, regardless
of AMD class, f AUC/MIC is the most appropriate index when
terminal half-life is long (Nielsen and Friberg, 2013).

In this study, results of simulations are presented using free
plasma concentration of florfenicol, as free plasma concentration
is the best proxy for concentration in the biophase. In
non-lactating dairy cattle, plasma protein binding ranged from
19 to 23% (Bretzlaff et al., 1987). However, a recent investigation
reported that the degree of florfenicol binding in 6-month old
steers was either very low (5%) or negligible (Foster et al., 2016).
Such low binding differs from another recent study (Mzyk et al.,
2018). Investigating the influence of age (1 to 168 days) on degree
of florfenicol plasma protein binding, these authors reported
binding ranging from 12 to 42% in one-day old, and from 11 to
32% in 168-day old animals, at a concentration of 1 mg/L. In light
of these inter-study differences, and as the selected PK/PD index
is f AUC/MIC, it would be a simple matter to apply a correction
for unbound fraction during the computation of the PK/PD
cut-off for florfenicol by Monte Carlo simulation. On this basis,
it is concluded that for both P. multocida and M. haemolytica
maximum efficacy (actually 90%) over 96 h is obtained when the
average free plasma concentration is equal to the 1.2 to 1.4 times
the respective MIC.
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