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A high-quality GSM model for Streptococcus pneumoniae R6 model strain (iDS372),
comprising 372 genes and 529 reactions, was developed. The construction of this
model involved performing a genome-wide reannotation to identify the metabolic
capacity of the bacterium. A reaction representing the abstraction of the biomass
composition was reconciled from several studies reported in the literature and previous
models, and included in the model. The final model comprises two compartments
and manifold automatically generated gene rules. The validation was performed with
experimental data from recent studies, regarding the usability of carbon sources, the
effect of the presence of oxygen, and the requirement of amino acids for growth. This
model can be used to better understand the metabolism of this major pathogen, provide
clues regarding new drug targets, and eventually design strategies for fighting infections
by these bacteria.

Keywords: genome-scale metabolic model, Streptococcus pneumoniae R6, metabolic reconstruction, iDS372,
avirulent, phenotypical reconciliation

INTRODUCTION

The number of studies in the field of genomics has significantly increased with the rise of new
next-generation sequencing techniques. A sequenced genome allows the reconstruction of genome-
scale metabolic (GSM) models (Dias et al., 2015), providing insights into the metabolism of an
organism of interest.

Genome-scale metabolic models have been increasingly used as bioinformatics tools for the
analysis of metabolism, either for the identification of potential target sites (Igoillo-Esteve et al.,
2007) or over-production of compounds of interest (Zhang et al., 2006; Lee et al., 2009). In a general
sense, GSM models provide insights into metabolic conversions based on genomic information and
allow the analysis of metabolic pathways.

The development of GSM models has been described in detail elsewhere (Thiele and Palsson,
2010; Dias and Rocha, 2015) and several tools were developed to automate this process, such as
merlin (Dias et al., 2015) and others (Hamilton and Reed, 2014). The reconstruction process usually
involves four steps, namely the genome annotation, the assembly of the reactions network, the
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conversion of the network to a model, and the validation of
the model with biological data from previously published or
specifically designed experiments.

However, the scarcity of literature and biological data remains
an obstacle in reconstructing GSM models for organisms
whose metabolic capacity is poorly characterized. Organisms
such as Escherichia coli, for which large amounts of biological
and experimental data that greatly facilitate the reconstruction
process are accessible, have already several models available
(Edwards and Palsson, 2000; Reed et al., 2003; Feist et al., 2007;
Orth et al., 2011).

Streptococcus pneumoniae (pneumococcus) is a Gram-
positive, lactic acid bacterium, which not only asymptomatically
colonizes the nasopharynx of humans, particularly of young
children, but is also a major human pathogen, responsible for
diseases such as otitis media, pneumonia, or meningitis. The
S. pneumoniae R6 strain is one of the best studied strains in
this species. It is a non-capsulated, highly competent derivative
of a serotype 2 strain isolated from a child in the early
20th century. There is still a limited amount of biological
information and literature available for this microorganism,
although relatively recent studies have focused in reducing
this gap (Carvalho, 2012; Härtel et al., 2012; Hathaway et al.,
2012; A. Nieto et al., 2013). Moreover, there is significant
resistance to the antimicrobials of choice for treating these
infections (Jothi et al., 2008; Ding et al., 2009; McAllister
et al., 2012). A better understanding of its metabolism is
essential in providing clues to new drug targets (Sham et al.,
2012) as well as for understanding the transition between
colonization and disease and the adaptations to survive
in the various sites pneumococci can occupy and invade
in its human host.

Based on genomic information, strain R6 lacks genes encoding
for the enzymes of the Entner–Doudoroff pathway, Krebs cycle,
and any proton chain reaction for either aerobic or anaerobic
respiration (Härtel et al., 2012). Therefore, these bacteria present
a fermentative metabolism, independently of the presence of
oxygen (Hoskins et al., 2001). However, the fermentative profile
in an aerobic environment, in this organism, switches from
lactate to acetate as a major by-product, boosting growth in 37%
when compared to anaerobic conditions (Carvalho et al., 2013).
The metabolic changes that contribute to this behavior include
inactivation of the pfl gene, the activation of pyruvate oxidase
(SpxB) which contributes to the formation of H2O2 and acetate
from pyruvate and also the expression of flavin-type NADH
oxidases that reduce O2 to less toxic forms (e.g., NOX gene)
(Carvalho, 2012). Nevertheless, strain R6 is a catalase-negative
organism and uncapable of leading with the toxicity of this
oxidative metabolism for a long period of time.

The purpose of this work was constructing a high-quality GSM
model for S. pneumoniae strain R6, to perform comprehensive
comparative studies between experimentally determined
and computationally predicted phenotypes, under different
environmental conditions and with various genetic alterations.
This model will allow gaining insights into S. pneumoniae
physiology and metabolism, beyond what the experimental data
has been providing.

MATERIALS AND METHODS

Online Databases
Several databases were used throughout this work to aid
in all stages of the study. A brief description of the
information retrieved from each database is available in
Supplementary Table S1.

Genome Sequence
The genome sequence with the NCBI assembly accession number
ASM704v1 was retrieved from the GenBank repository.

Merlin
The development of the GSM was supported by merlin (Dias
et al., 2015, 2016, 2018). This platform allows performing several
steps of the reconstruction process semi-automatically, while
providing user-friendly graphical user interfaces for reviewing
information and performing manual curation. Below a detailed
description of the main procedures is provided.

Metabolic Model Reconstruction
The workflow for the reconstruction process is shown in
Figure 1, encompassing the main steps described in the
section “Introduction”.

Genome Annotation
Phylogenetic tree
The identification of homologous genes is most likely to occur
in closely related organisms (Edwards et al., 2002). Although
markers are available to distinguish S. pneumoniae species
(Scholz et al., 2012), phylogenetic tree also provides a form
of establishing proximity between species. For that purpose,
the 16S rRNA gene of several species (Lane et al., 1985)
was used in this assessment. The sequences of closely related
organisms (Supplementary Figure S1) were retrieved from
NCBI’s database and aligned using EMBL-EBI Clustal OMEGA
multiple sequence alignment tool (Sievers et al., 2011) to produce
the phylogenetic tree1.

Semi-automated genome annotation
Merlin (Dias et al., 2015) software allows performing the genome
functional annotation, assigning scores based on taxonomy and
frequency of similar sequences, to assign enzyme commission
numbers (EC number) and enzymatic functions. These EC
numbers are then used to select which Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2004) reactions
are going to be included in the model. Two tools, Basic Local
Alignment Search Tool (BLAST) (Altschul et al., 1990) and
HMMER (Finn et al., 2011), were used within merlin to perform
similarity searches.

Re-annotation workflow
New gene functions assignments and corrections may have a
significant impact in model performance. Therefore, genome-
wide re-annotations should be carried out periodically, to retrieve

1https://www.ebi.ac.uk/Tools/msa/clustalo/
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FIGURE 1 | Workflow for metabolic network reconstruction of S. pneumoniae R6 (EC, Enzyme Commission Number; TC, Transporter Classification). A draft of the
network is reconstructed semi-automatically by merlin. The genome re-annotation, compartmentalization, and manual curation are performed using this
user-friendly’s graphical user interfaces. Next, the biomass equation is formulated, resorting to available experimental data for S. pneumoniae R6 or closely related
organisms (as determined via 16s rRNA analysis). Additionally, literature is also analyzed to improve the biomass equation. Environmental conditions, to mimic
experimental data, are defined next. Using the software Optflux, simulations are performed using the model under the previously established environmental
conditions. The simulated growth is compared to experimental data. If the results are distinct then the model is further reviewed and curated and the process is
repeated until no significant differences exist between the experimental results and those obtained in silico.

the most up-to-date genomic information. For this purpose,
a re-annotation workflow was developed and implemented, as
shown in Supplementary Figure S2, and annotation labels
were assigned to each gene’s annotation proposed by merlin.
The assignment of labels (from A to E) makes the annotation
traceable, as each leaf of the workflow indicates a different
decision regarding each gene’s annotation. Moreover, the labels
can also be seen as an indicator of the confidence in a
particular annotation.

The analysis relied on the assignment of EC numbers to each
enzyme or putative enzyme encoded in the genome. For the cases
in which a complete EC number had been identified by merlin,
candidate metabolic genes were analyzed by verifying if an EC
number was also identified in UniProt for that specific protein
either in S. pneumoniae R6 or other S. pneumoniae strains. If
true, an additional analysis was performed to verify if merlin’s
classification matched the one in the UniProt database. Label A
was assigned to genes encoding proteins with matching functions
in UniProtKB/Swiss-Prot and label B to genes encoding proteins
with matching functions in UniProtKB/TrEMBL.

When there were conflicting EC numbers, priority was given
to proteins in UniProt/Swiss-Prot when assigning gene functions
(Label C). If no EC number was present in UniProt, then the
existence of multiple complete EC numbers, identified by merlin
during genome annotation, was evaluated. If only one complete
EC number with a classification score >0.2 (threshold empirically
determined after analysis of the results) was available, then the
annotation was accepted. In cases where more than one complete

EC number was present, priority was given to those that matched
the homologous gene of another reference strain (Label D).
S. pneumoniae strain D39 was selected as the first reference
strain, while Lactococcus lactis strain NZ9000 was the alternative
reference if no homologous genes existed in D39. For cases
in which no matching gene function was ascertained from the
reference organism, additional tasks, such as BLAST searching
against proteins in UniProt/Swiss-Prot, were carried out in a
final effort to identify a gene function. These annotations are
identified with Label G.

If an incomplete EC number was identified, an alternative
complete one was sought in merlin. If available, the re-annotation
was carried out in the same manner as in the cases in which no
EC number was present on UniProt and therefore the gene was
labeled G, F, or discarded, according to the workflow shown in
Supplementary Figure S2.

In case of an absent complete EC number, a search across
multiple databases such as BRENDA (Scheer et al., 2011),
UniProt, Conserved Domain Database (CDD) (Marchler-Bauer
et al., 2013), BioCyc (Karp et al., 2005), and KEGG as well as in
literature was carried out. If enough information to support the
assignment of a gene function was found, then it was added to the
model with Label E.

All cases that did not meet the minimum requirements stated
in the re-annotation workflow were discarded from the model.

Note that the presence of an EC number after annotation
does not necessarily mean that the gene will be included in the
metabolic model. Such are the cases of genes involved in DNA
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and RNA processes such as methylation or rRNA modification,
as well as pseudo-genes among others.

Assembling the Metabolic Network
The assembly of the metabolic network involves collecting a
set of reactions. In merlin these reactions are retrieved from
KEGG. Such reactions should be spontaneous or promoted by
enzymes encoded in the organism’s genome. Hence, the genome
annotation determines which reactions will be included in the
model. The algorithm used by merlin for the assembly of the
metabolic network from the annotated genome is described in
detail elsewhere (Dias et al., 2015).

The stoichiometry of reactions in the network should be
verified to guarantee that all reactions are balanced. Likewise, the
reversibility of the reactions should also be confirmed to avoid
gaps and mispredictions of the model. The reversibility may be
determined from the estimation of the standard Gibbs free energy
of formation (1f G′0) and of reaction (1r G′0), by analyzing
manually curated GSM models of closely related organisms or by
biochemical studies of the enzymes.

Merlin includes tools to determine the balance of the reactions,
as well as information on reversibility retrieved from a study
by Stelzer et al. (2011) that analyzed reactions available on
the KEGG database. Finally, reactions labeled as unbalanced by
merlin as well as the direction of reactions set as irreversible were
manually verified.

Compartmentalization
The compartmentalization of the model is based on results
obtained from PSORTb 3.0 (Nakai and Horton, 1999;
Yu et al., 2010).

Transport reactions
The compartmentation of the model leads to the need for
defining carriers between compartments. The Transporter
Classification Database (TCDB) is a repository of transport
protein encoding genes, reported in the literature. Merlin uses
TRIAGE (Dias et al., 2017) for retrieving information from TCDB
to create an internal curated database. TRIAGE was used to
identify carriers in the studied genome by determining which
genes have transmembrane domains, similarities to TCDB and
are known to be in the membrane. Finally, TRIAGE generated
specific transport reactions associated with those genes, and
added them to the model.

Genes, proteins, and reactions
The genes–proteins–reactions (GPR) associations are usually
determined by searching biological databases and literature.
However, determining if the genes encode subunits of a
single protein, isoenzymes, or different proteins belonging
to a protein complex may not be straightforward. Hence,
merlin uses information retrieved from KEGG BRITE to
implement these rules.

Merlin searches for the structure of the protein complex
modules, including their subunits, and the stoichiometry of every
EC number available in the model. Subsequently, this tool parses
the data, identifying the orthologs required by each GPR rule and
searches for these sequences in the studied organism’s genome,

thus identifying the rule and the subunits of the protein in the
model (Dias et al., 2015, 2018).

Converting the Metabolic Network to a
Stoichiometric Model
Biomass equation
The biomass equation aims to account for all compounds that
compose the cellular biomass. In the absence of experimental data
to support the definition of the biomass reaction, one must rely
on information obtained through its genome composition and
from closely related organisms. This step is essential, considering
that the lack of biomass precursors might affect validation
procedures. If a potentially essential precursor is not included in
the biomass equation, then reactions that lead to its production
and, consequently, the corresponding protein encoding gene(s)
are rendered non-essential.

The L. lactis (iAO358) model (Oliveira et al., 2005) was
used as a template for the overall macromolecular biomass
composition. Since S. pneumoniae strain R6 does not have a
capsule, the polysaccharide macromolecule present in iAO358
was excluded and new coefficients were calculated, maintaining
the relative abundance.

While the composition of the lipid macromolecule, in
terms of which molecules are required to assemble the lipid,
was also inferred from iAO358, the subcomponents of other
macromolecules and several of their precursors were retrieved
from the literature, namely the composition of the average fatty
acid (Behr et al., 1992), peptidoglycan (Mosser and Tomasz,
1970; Delcour et al., 1999), teichoic acid (Mosser and Tomasz,
1970; Fischer, 1997; Delcour et al., 1999), and lipoteichoic acid
(Behr et al., 1992; Delcour et al., 1999; Draing et al., 2006).
Essential cofactors were determined according to the work of
Xavier et al. (2017) and conditional cofactors from previous
studies (Shah et al., 2011; Potter et al., 2012). The remaining
components were determined from genome information, namely
the amino acid, nucleotide, and deoxynucleotide contents. For
this, a bioinformatics tool (e-BiomassX) developed in-house
and available in merlin (Santos, 2013) was employed. This tool
implements a strategy similar to the one reported previously
(Thiele and Palsson, 2010). The protocol of Thiele and Palsson
(2010) does not take into account that cells contain different
types of RNA and uses only mRNA to determine RNA contents.
In this approach, three types of RNA were used: mRNA, tRNA,
and rRNA in the proportion of 5, 20, and 75%, respectively
(Neidhardt, 1996).

Growth and maintenance ATP requirements
The growth and maintenance ATP requirements were calculated
with data retrieved from previous work (Carvalho et al., 2013).
In anaerobic conditions, the ATP yield reported in the above-
mentioned study is 2 mol mol−1

Glc. Hence, by multiplying this
yield by the specific rate of substrate uptake (qS), the growth
ATP requirements are obtained. Although these requirements
should be adjusted to different growth conditions, it was assumed,
due to lack of additional data, that growth ATP requirements
were the same for all genetic and environmental conditions,
which is a common practice in GSM models. Therefore, this
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value was used for all simulations presented in this work.
Likewise, 1 mmol.gbio

−1 h−1 was used as the initial flux value
(FVA) for maintenance ATP. However, this flux was adjusted to
experimental data, both for anaerobic and aerobic conditions, as
described in the section “Results”.

Validation of the Metabolic Model
The evaluation of the simulation performance under
physiologically meaningful environmental conditions is essential
for the validation of GSM models. Whenever experimental
data are available, a comparison between simulations and
experiments is easily performed, whereas when such information
is not available model accuracy can be impaired. For this work,
physiological data detailed in available references were used.

Aerobic and anaerobic metabolism
Carvalho (2012) compared strain R6 and D39 in different defined
media and environmental conditions. According to this study,
in strain R6, 1% (w/v) of glucose concentration in the medium
promotes a faster growth, while higher concentrations have an
inhibitory effect on the specific growth rate (from 0.69 h−1 at 1%
to 0.47 h−1 at 3% of glucose), originating also a prolonged lag-
phase and lower biomass production. Furthermore, growth and
fermentation profiles were measured in semi-aerobic, anaerobic,
and aerobic conditions, under pH controlled at 6.5. In semi-
aerobic conditions, R6 grows until glucose is depleted from
the medium (1% w/v) producing mainly lactate and minor
amounts of acetate, formate, and ethanol. Under anaerobic
conditions, strain R6 specific growth rate slightly increases
(0.69 h−1 to 0.78 h−1) and by-products formation exhibits
the same profile observed in semi-aerobic environment. The
lower growth rate observed for semi-aerobic conditions can be
explained by the higher pyruvate oxidase activity this strain
exhibits, when compared with strain D39, whose enzymatic
reaction has H2O2 as by-product, which is notably known
to arrest growth in S. pneumoniae. Fully aerobic conditions
drastically change growth and by-products accumulation in R6.
For instance, specific growth rate increases to 1.07 h−1 for a
short period of time (2 h), which entails a 16-fold decrease in
biomass yield regarding semi-aerobic conditions. Metabolism
shifts from lactate to acetate and H2O2 production, denoting
also a high activity of pyruvate oxidase. Also, formate is no
longer produced, revealing a total inhibition of pyruvate formate
lyase (PFL). Upon growth arrest, lactate is consumed to produce
acetate and H2O2, with generation of ATP. However, due to the
impossibility of determining oxygen consumption rate in semi-
aerobic conditions, simulations will only be performed for studies
in anaerobic and aerobic conditions, henceforth referred to as
study 1 and study 2, respectively.

Metabolism with different carbon sources
Due to lack of information regarding carbon sources other
than glucose for strain R6, the results published for parental
strain D39 were also considered in this work. Paixão et al.
(2015b) characterized growth profile, growth rate, and end-
products formation in a semi-aerobic environment in chemically
defined media (CDM) with glucose, N-acetyl-D-glucosamine,
mannose, and galactose. These sugars were chosen for their

natural presence in the human nasopharynx. As stated above for
strain R6, strain D39 produces mainly lactate in the presence of
glucose as sole carbon source and in minor quantities acetate and
ethanol. Formate is also formed but in values below the limit of
quantification. The same profile of full homolactic fermentation
is observed for growth in N-acetyl-D-glucosamine, although for
this carbon source, formate and ethanol are produced in higher
quantities. Curiously, the specific growth rate in N-acetyl-D-
glucosamine decreases to 0.55 h−1 in comparison with 0.9 h−1

obtained in glucose and reaches a 1.3-fold lower optical density
(OD 2.29 vs. OD 1.76). Consumption of mannose also denotes
homolactic fermentation, although the products of mixed-acid
fermentation increase 2.9-fold for acetate, 5.5-fold for ethanol,
and 3-fold for formate in comparison with its production in
N-acetyl-D-glucosamine. Growth rate and biomass production in
this carbon source are similar with fermentation in N-acetyl-D-
glucosamine. Lastly, strain D39 shows a mixed-acid fermentation
profile on galactose, producing formate (in higher quantities),
ethanol, and acetate in a proportion of 2:1:1. Lactate is detected
as a minor product of fermentation. The specific growth rate for
this carbon source is 0.48 h−1 and maximal OD is 2.16. This study
henceforth referred to as study 3 will encompass the assessment
of the model with all four carbon sources.

Influence of the availability of exogenous amino acids
on growth
Härtel et al. (2012) performed isotopolog experiments to identify
amino acid biosynthesis pathways in S. pneumoniae strain D39 in
chemically defined medium supplemented with glucose. Briefly,
one of the experiments performed in Härtel’s study aimed at
determining which amino acids were essential for growth. Härtel
et al. (2012) performed experiments in which they attempted to
grow S. pneumoniae D39 in CDM in which each amino acid
was separately omitted. Analysis showed that pneumococci are
auxotrophic for L-arginine, L-cysteine, L-glutamine, glycine, L-
histidine, L-leucine, L-isoleucine, and L-valine. Härtel et al. (2012)
were able to identify an unconventional pathway for the de novo
biosynthesis of serine and have demonstrated the dual utilization
of carbohydrates and amino acids by pneumococci. This work
henceforth referred to as study 4 will be used to assess the impact
of amino acids on organism growth.

Gene essentiality
The Online Gene Essentiality database (OGEE) (Chen et al.,
2012) was accessed to retrieve experimental data regarding
gene essentiality studies for S. pneumoniae R6. Additionally,
determining the function of genes identified as critical involved
assessing information retrieved from several databases
(Supplementary Table S1) and literature. The assessment
of these data to model prediction henceforth referred to as study
5 will be used to assess the accuracy of the model regarding
essential genes.

Carbon repression
For strain D39, it has been described previously (Carvalho et al.,
2011) that when glucose is used as carbon source, the Catabolite
Control Protein A (CcpA) represses genes involved in mixed-
acid fermentation, namely pfl (spr0415), pflF (spr0232), ackA
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(spr1854), adh (spr1866), pta (spr1007), lctO (spr0627), and
activates ldh (spr1100). When galactose is used as the carbon
source, the enzymes downstream of pyruvate exhibit alleviation
of repression of the genes involved mixed-acid fermentation.

Simulations
Software
Optflux (Rocha et al., 2010), an open source software developed
for manipulating metabolic models, was used as the framework
for all simulations. Among other functions, this software provides
tools for phenotype simulation such as Flux Balance Analysis
(FBA) (Varma and Palsson, 1994; Orth et al., 2010).

Mutants
The repression of transcription of the pfl genes was simulated
by limiting the maximum flux through the reactions associated
with these genes, to a fraction of the flux in the reference flux
distribution (RFD). The RFD can be obtained by performing
unconstrained simulations, for different environmental and
genetic conditions. To assess anaerobic growth with study 1,
two RFDs were determined: the first maximizing biomass with
the defined conditions (RFD A.1) and the second by setting the
specific growth rate to 0.78 h−1 (RFD A.2). The metabolism
in different carbon sources involved determining one RFD for
each. In this case, all RFDs were determined by maximizing
biomass with the same medium, except for the carbon source.
RFDs B.1, B.2, B.3, and B.4 refer to glucose, galactose, N-acetyl-
D-glucosamine, and mannose, respectively.

Hence, for study 1, as pfl genes (spr0415 and spr0232) control
the flux between pyruvate and acetyl-CoA, simulations using
glucose as carbon source were performed by varying the levels
of pfl between 0 and 100% (deactivated to fully active) of the
respective RFDs, with 10% intervals. These simulations allowed
assessing the behavior of the model, regarding the level of
repression of the mixed-acid genes. Moreover, due to inhibition
by CcpA (Schumacher et al., 2004; Carvalho et al., 2011; Fleming
et al., 2015; Paixão et al., 2015b) genes ackA (spr1854), adh
(spr1866), and pta (spr1007) were severely restricted under
anaerobic conditions, as shown in study 1, and were therefore set
to 10% of the RDFs while lctO (spr0627) was reduced to 0%.

Likewise, for study 2, the flux of pfl genes (spr0415 and
spr0232), adh (spr1866), pta (spr1007), and lctO (spr0627) were
restricted to zero, to simulate growth with glucose under aerobic
conditions, as described in Carvalho (2012).

Regarding study 3, simulations for glucose, mannose, and
N-acetyl-D-glucosamine were performed by implementing the
same limitations as for anaerobic conditions, as these genes are
controlled by the regulator CcpA, which is active in the presence
of these carbon sources (Schumacher et al., 2004; Carvalho et al.,
2011; Fleming et al., 2015; Paixão et al., 2015b). For galactose, only
flux through reactions associated with the pfl genes was varied.
The behavior of the bacterium in the different carbon sources was
assessed by calculating the by-product formation profiles, which
are determined by calculating the proportion of the flux of each
by-product, relative to the highest by-product production rate.
These profiles allow assessing which mutants, namely the level of
repression of the pfl genes, better fit the experimental data.

The different mutants used for each study are summarized
in Table 1.

Flux variability analysis
The quantitative evaluation of the new model was performed
using flux variability analysis (FVA) (Mahadevan and Schilling,
2003) comparing the results of the simulations to data retrieved
from previous publications (Carvalho et al., 2013; Paixão et al.,
2015b). This analysis included setting the specific growth rate to,
at least, 99.9% of the specific growth rate obtained with FBA in
the respective RFD.

Environmental conditions
The CDM composition utilized by Carvalho et al. (2013) was
used to establish the first set of constraints when performing
simulations. The rates of consumption and production of
metabolites were calculated according previously described
methods (Sauer et al., 1999) with data retrieved from Carvalho
et al. (2013) study and used to formulate an abstraction of
the in silico environmental conditions and by-product secretion.
The consumption rates of all components of the environmental
conditions for all studies were assumed to be the same as the ones
calculated with anaerobic growth experimental data, except for
the carbon sources and oxygen.

Although GSM models simulate steady-state conditions,
the experiments considered in this work were performed
in batch conditions. Thus, only the exponential growth
phase was considered.

In batch cultures, the specific growth rates (µ) can be
determined as the coefficient of the log-linear regression of the
biomass concentration versus time, whereas the specific rate
of substrate consumption (qS) and the specific rate of product
formation (qp) are the coefficient of the linear regression of
substrate [S] or product [P] versus biomass over specific growth
rate X/µ. This relationship is linear when µ and qS are constant
(Sauer et al., 1999). For instance, the qS for a substrate, e.g.,
glucose or L-alanine, was calculated as the coefficient of the linear
regression of the change in S (1S) against biomass X divided by
the specific growth rate µ, which is approximately qS ≈

1S
1X/µ .

In study 3, the carbon source consumption rates (qCS) were
calculated using the linear regression approach, using data from
the study performed by Paixão et al. (2015b). However, the
glucose consumption rates (qGlc) for studies 1 and 2, summarized
in Table 2, were more directly obtained from the data provided by
Carvalho et al. (2013). Specifically, the glucose consumption rates
were calculated taking into account the biomass yield and growth
rates reported by Carvalho et al. (2013). In these cases, the qGlc
was obtained by dividing the growth rate by the biomass yield
and converting it to mmol, according to the following expression:
qGlc ≈

µ
Yieldbiomass

× 1000.
The final concentrations of the products (namely lactate,

acetate, ethanol, and formate) were used to calculate the
respective rates.

Anaerobic growth (study 1) was simulated restricting O2 flux
to zero, whereas for aerobic growth (study 2), oxygen was left
unbounded. Finally, the carbon sources assessment (study 3) was
performed in anaerobic conditions.
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Influence of the availability of exogenous amino acids on
growth
The CDM composition previously described (Härtel et al., 2012)
was used for the analysis of the influence of the availability of
exogenous amino acids on growth. Here, each amino acid was
removed one at a time from the medium and simulations.

Gene essentiality
The experiments reported in study 5 use complex media, thus
preventing the determination of the complete list of nutrients.
Nevertheless, the CDM by Carvalho (2012) and Carvalho et al.
(2013) was used for the in silico gene essentiality assessment, as
genes considered essential in rich media should also be essential
in CDM (Härtel et al., 2012). OptFlux provides a tool that
allows determining critical genes automatically, by performing
individual gene knockouts and simulating growth.

Assessment of model predictions
The simulation results were compared with the data kindly
provided by Carvalho et al. (2013) for studies 1 and 2, and by
Paixão et al. (2015a) for study 3.

As per study 1, in the absence of oxygen (anaerobic growth)
two assessments were performed. In the first, the specific growth
rate was maximized and in the second, it was fixed at 0.78 h−1,
as reported in Carvalho et al. (2013). Both assessments involved
determining the maximal and minimal FVAs of lactate, formate,
and ethanol for the incremental underexpression of the pfl genes,
from 0 to 100% (Tables 1, 2, study 1).

Regarding study 2, for aerobic growth (Tables 1, 2, study 2),
oxygen was left unconstrained and the FVA of acetate, lactate, and
H2O2 was simulated. Specific growth rate was fixed at 1.07 h−1,
as reported in Carvalho et al. (2013).

Finally, for study 3, the biomass-specific growth rate and
end-products’ fluxes retrieved from model simulations were

compared to the experimental data for the different carbon
sources. Study 3 (Tables 1, 2) was performed in the absence
of oxygen and subject to the genetic restrictions described in
Table 1. Such analyses allow determining which level of under-
expression of the pfl genes allows attaining a fermentation profile
similar to the one observed in vivo. The Euclidean distance,
calculated by determining the squared root of the sum of the
squared difference of each element, between the experimental
and the simulation’s profiles was determined, according to the
following equation:

scoreprofile =

√√√√ 4∑
e=1

(
psim

e − peexp
)2

,

Where e is one of the four products (lactate, formate, acetate,
and ethanol) and pe is the relative production rate, regarding
the product with the largest flux, in either the simulation
or experimental data. The best pfl under-expression level was
determined by the lowest distance to the experimental data.

As, no experimental data for S. pneumoniae R6 exists
regarding essential amino acids for growth, study 4, in Härtel et al.
(2012), was used as the basis to verify flux distributions across the
central carbon metabolism, as well as predicting amino acids for
which S. pneumoniae R6 is auxotrophic.

The comparison of data from study 5 with results obtained
from OptFlux simulations was processed as explained below.

For all genes considered essential using OptFlux with a match
in OGEE, the reason(s) for essentiality was(were) sought in
literature and biological data, and the gene was annotated as
essential under those experimental conditions. For cases in which
a gene identified as essential by OptFlux was considered non-
essential by the OGEE, a first analysis that relied on verifying
if the products of the associated reaction were required for

TABLE 1 | Genetic conditions used in this study.

Study 1 Study 2 Study 3

Anaerobic Aerobic Glucose Mannose N-acetyl-D-
glucosamine

Galactose

adh 10% 0% 10% 10% 10% 100%

pta 10% 0% 10% 10% 10% 100%

lctO 0% 0% 0% 0% 0% 100%

ackA 10% 100% 10% 10% 10% 100%

pfl (spr0415 and
spr0232)

Varied from 0 to
100%

0% Varied from 0 to
100%

Varied from 0 to
100%

Varied from 0 to
100%

Varied from 0 to
100%

References Carvalho et al., 2013 Paixão et al., 2015a

Anaerobic and aerobic simulations were obtained with CDM plus glucose (studies 1 and 2) and carbon sources were simulated in anaerobiosis with CDM (study 3).

TABLE 2 | Environmental conditions studied in this work.

Study 1 Study 2 Study 3

Carbon source (mmol g−1 h−1) Glucose Glucose Glucose Mannose N-acetyl-D-glucosamine Galactose

qGlc 31.71 21.02 (31.71) 34.09 22.65 35.86 32.52

O2 0 Unconstrained 0 0 0 0
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biomass production and how many reactions were able to
synthesize these products was performed. If the products were
required for biomass production and all reactions that led to their
production were dependent on that single gene then the gene was
considered essential.

For cases in which genes were classified as essential by OGEE
but not OptFlux, a first analysis relied on verifying if the reaction
products were required for growth. Next, a search for multiple
genes assigned the same function was performed. Whenever
more than one gene was annotated with the same metabolic
capability, a search across several databases and literature was
carried out to determine if the annotation was correct. If all
genes were correctly annotated, then GPR rules were analyzed.
This step relied on analyzing biological data, as well as verifying
orthologous genes from KEGG BRITE (Tanabe and Kanehisa,
2012). If GPR rules were correct, then a last analysis was
performed. This analysis consisted in verifying if the in silico
experimental conditions provided the compounds required for
biomass production, rendering the reactions that led to their
production non-essential. In this case, the simulation constraints
were changed (usually by removing the compound from the
medium) to ascertain the need for the protein encoding gene(s). If
under these new conditions, growth was inhibited, then the gene
was classified as probably essential under specific conditions,
otherwise it was labeled as probably non-essential.

Model Curation
Whenever in silico results did not match experimental data,
model curation was performed. Merlin’s user-friendly graphical
user interfaces allow performing re-annotations, correction of
reactions’ directionality, and inclusion/exclusion of reactions
from the model, as well as exporting the final model in Systems
Biology Markup Language (SBML) (Hucka et al., 2003) format.

Gap filling
The gap filling process relied on the analysis of the gaps
highlighted by a feature available in merlin. This tool analyses
the connectivity of all metabolites available in the model and
determines which ones are either only products or reactants.
Then, merlin identifies reactions in which these metabolites
participate and highlights them. These reactions were analyzed
against MetaCyc and KEGG pathways. This process involved
identifying reactions in the vicinity of blocked reactions
containing dead-end metabolites. Then, enzymes promoting the
neighboring reactions were sought in merlin’s annotation to
identify missing or misannotations. Also, literature on the main
pathways in which blocked reactions participate was studied to
assess any particularities of the organism, such as auxotrophies.

RESULTS AND DISCUSSION

Genome Annotation
As stated in the section “Materials and Methods”, a phylogenetic
tree (Supplementary Figure S1) was developed to assist
during the re-annotation procedure. Analysis of the results
demonstrated that all Streptococcus species were closer to

S. pneumoniae R6 than L. lactis and Bacillus subtilis. However,
when no information for streptococci was found, specifically
regarding reference strain S. pneumoniae D39, searches were
first performed using homologous genes from L. lactis and
secondly from B. subtilis. In addition to their close relatedness to
S. pneumoniae R6, the metabolism of these species has been well
described and both have manually curated GSM models available.

Re-annotation of the genome identified 1242 metabolic genes
out of the 2046 candidates, representing 61% of the whole
genome. Several reasons, such as the removal of pseudo and
truncated genes, blocked reactions and corresponding encoding
genes, removal of genes whose function could not be fully
determined (i.e., incomplete EC number), manual curation of
both annotation and model (which included actions such as
the removal of reactions related to DNA and RNA processes),
decreased this number down to the final 372 (18.2%) genes
that exist in the model. Examples of outcomes during the re-
annotation phase, using the re-annotation workflow, are shown
in Supplementary Table S2. The complete list of genes reviewed
using this workflow is available in Supplementary Table S3.

Several annotation scenarios were faced, as seen in
Supplementary Table S2 of the Supplementary Material.
For instance, Spr0009 was classified as encoding a hypothetical
protein by both KEGG and the Universal Protein Resource
Knowledgebase (UniProtKB) (UniProt Consortium, 2010), but
merlin was able to classify it as a beta-lactamase encoding gene.
The analysis of the protein sequence using CDD suggested
that it belongs to the beta-lactamase superfamily, which led to
the acceptance of the initial annotation and assignment of the
respective EC number.

Gene annotations in which merlin’s assignment matched the
information retrieved from reviewed genes in UniProt can be
regarded with higher confidence. In these cases, information was
often replicated throughout the remaining databases, such as the
case of gene Spr0021.

The annotation of genes with incomplete EC number, such
as the cases of Spr0022 and Spr0064, required an in-depth
analysis. Databases such as KEGG, UniProtKB, and CDD
were consulted. In the case of Spr0064, the CDD classified
the protein as a sugar isomerase. A search of the protein
name assigned by BRENDA returned the EC number 5.3.1.26
which also belonged to the sugar isomerase superfamily.
Due to the absence of literature support and information
on other databases, the gene was annotated with this EC
number and assigned the Label E. Regarding gene Spr0022,
KEGG assigned it EC number 3.5.4.33 [tRNA(adenine34)
deaminase], UniProtKB annotated the product as a hypothetical
protein while BioCyc assigned the EC number 3.5.4.5 (cytidine
deaminase) to the gene product. Analysis of the protein sequence
on CDD revealed that the gene encoded a protein of the
cytidine/deoxycytidilate deaminase superfamily and BLAST on
UniProtKB revealed similarity to a gene that encodes a cytidine
deaminase protein and search of this protein on BRENDA
returned the EC number 3.5.4.5. Thus, this gene was assigned
the Label E. Labels A, B, and C account for over 86% of
the annotation, with approximately 33, 34, and 20% of the
classifications, respectively.
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There were cases in which genes assigned with incomplete EC
numbers (e.g., spr0068) were ultimately annotated with complete
ones. Despite the classification as hypothetical protein by KEGG
and UniProtKB, the analysis of the conserved domains as well
as the availability of complete EC numbers that matched protein
function by merlin increased reliability of the assigned function
(uridine phosphorylase in this example).

Finally, a list of genes annotated as transporters by merlin’s
TRIAGE is available in Supplementary Table S4.

Biomass Composition
The biomass macromolecular composition, mostly adapted
from iAO358, is presented in Table 3. The detailed biomass
composition, in terms of compounds, is available in
Supplementary Table S5. The proportion of protein in the
cell (0.59) and the conversion factor from OD measured at
620 nm (OD620) to grams (which is 1 OD620 to 0.39 gDW) was
provided in a personal communication by Mafalda Cavaleiro
from Rute Neves lab. The cell wall contents were calculated
from previous publications (Bui et al., 2012), according to which
1 L of culture contains ∼40–60 mg of cell wall. The cells used
in such assays were harvested at an OD620 of 0.5, which can
then be converted to 0.195 gDW/L. Hence, the average cell wall
contents (50 mg CW/L) represent about 0.26 g of cell wall per
gram of biomass.

The remaining macromolecular relative contents were
obtained from iAO358. As strain R6 lacks capsule, the
capsular polysaccharide contents in iAO358 were distributed
by the other macromolecules, maintaining the proportions
for each component.

As mentioned previously, proteins, DNA, and RNA
composition were determined using the e-BiomassX tool,
available in merlin (Supplementary Table S5).

Cell wall composition was determined according to a previous
study (Bui et al., 2012), which suggests that the teichoic acid
represents 40–50% of the cell wall dry weight, and Fischer (1997)

TABLE 3 | Biomass macromolecular composition of the model iDS372 from
Streptococcus pneumoniae R6 and comparison with biomass from iAO358
Lactococcus lactis ssp. Lactis IL1403.

Biomass component Lactococcus lactis
ssp. Lactis IL1403

Streptococcus
pneumoniae R6

g gDW−1 g gDW−1

Protein 0.46 0.59

DNA 0.023 0.0087

RNA 0.107 0.0403

Lipoteichoic acid 0.08 0.0302

Lipids 0.034 0.0128

Peptidoglycan 0.118 –

Polysaccharide 0.12 –

Cell wall – 0.2600

Cofactors and others – 0.0580

Total 0.942 1

Total (wo/polysaccharide) 0.822 –

provided a detailed description of the teichoic acid composition.
The peptidoglycan composition was reconciled between the
KEGG reactions assigned through similarity by merlin to its
biosynthesis pathway and the study by Mosser and Tomasz
(1970), which reports this molecule elemental composition
(Supplementary Table S6).

The lipoteichoic acid (Supplementary Table S7) composition
was determined from the literature, namely the study by Behr
et al. (1992). This study also allowed determining the average
fatty acyl molecule (Supplementary Table S8), which is a
precursor to all lipids.

The average lipid composition (Supplementary Table S9)
was inferred from the L. lactis’ model. However, the
lysophosphatidylglycerol molecule was removed from the lipid
composition since this molecule was not present in the model
and its contents were distributed among the other molecules.

Although not available in the L. lactis model, a placeholder
for the cofactors and other molecules was added to this model.
Usually, glutathione is included in the cofactors pool. However, a
study (Potter et al., 2012) showed that S. pneumoniae lacks genes
for biosynthesizing glutathione, thus extracellular glutathione is
imported by an ABC transporter substrate-binding protein GshT
and is used as a cysteine source when defending against oxidative
stress and metal ion toxicity. As the defined medium used by
Carvalho et al. (2013) does not include glutathione, this was not
included in the biomass cofactors.

The growth associated energy requirements, calculated from
the work of Carvalho et al. (2013), indicate that generating 1 g of
biomass requires 63 mmolATP h−1.

Metabolic Model
The complete list of reactions in the iDS372 model can be found
in Supplementary Table S10. The metabolic model developed
in this work is composed of 462 reactions + 67 drain reactions
and 372 genes. Regarding the reactions, 75 are associated with
transport phenomena and 20 were added manually to the model
to fill gaps in the network, though in most cases the justification
was found in literature and other databases, according to the
“notes” column in Supplementary Table S10.

As illustrated in Table 4, although the ratio of the number of
genes in the model over the total number of genes in the organism
(18 %) is similar to that of published models for closely related
organisms such as L. lactis (Oliveira et al., 2005), B. subtilis (Oh
et al., 2007), and Streptococcus thermophilus (Pastink et al., 2009),
this model requires less reactions.

This model has 409 GPR associations, listed in Supplementary
Table S10 of the Supplementary Material.

The GSM model (iDS372) in the SBML version 3 format is
included in the Supplementary Material (iDS372.xml).

Model Validation
Environmental Conditions
The validation of this model involved using an abstraction of the
CDM, developed with the aim of providing a high pneumococcal
growth yield, by Carvalho et al. (2013).

The results of the calculations performed according to
Sauer et al. (1999), to convert the consumption rates under
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TABLE 4 | Comparison of iDS372 model from S. pneumoniae strain R6 with several other published models.

Organism Genes Genes in model Gene ratio Metabolites Reactions Compartments References

Streptococcus pneumoniae R6 2043 372 0.182 355(67) 462 2 (c, e) This work

Streptococcus thermophilus LMG18311 1889 429 0.227 550 522 2 (c, e) Pastink et al., 2009

Lactococcus lactis ssp. Lactis IL1403 2310 358 0.155 422 621 2 (c, e) Oliveira et al., 2005

Bacillus subtilis 168 4114 844 0.205 988 1020 2 (c, e) Oh et al., 2007

c, cytosol; e, extracellular space.

CDM into in silico environmental conditions, are shown in
Supplementary Table S11.

For instance, after the exponential growth phase
(µ = 0.78 h−1), 1X = 1.27 gBiomass L−1 and
1l−alanine = −0.24 g L−1. Thus, according to the
calculations for determining the substrates specific
consumption rates performed using linear regressions, the
ql−alanine = 1.66 mmoll−alanine gBiomass

−1 h−1. The linear
regression approach was used to determine the qS for every
metabolite in that table, except glucose and oxygen. Whereas
the latter was left unbounded in aerobic conditions (and
bounded to zero in anaerobic conditions), the former was
retrieved from Carvalho et al. (2013) using the expression
presented in the section “Environmental conditions”:
qGlucose = µ × YX/S

−1
× 1000 ≈ 31.71 molglucose g−1

Biomass h−1

(µ = 0.78 h−1, YX/S = 24.6 gBiomass mol−1
glucose and assuming the

maintenance negligible).
Likewise, an abstraction of the medium used by Härtel

et al. (2012) was used for the evaluation of amino acid
requirement (Supplementary Table S12). As this medium was
used in our experiments for essentiality analysis only (qualitative
assessment), the value of the consumption rate of each metabolite
was not so relevant. Thus, in this case the substrates’ specific
consumption rates were the same as in Carvalho et al. (2013)
for the common metabolites, whereas all the others were set to
−10 mmolglucose g−1

Biomass h− 1.
The growth dependency of S. pneumoniae on exogenous

choline is well known, as this compound is used to assemble
this organism’s unusual teichoic acids (Tomasz, 1967). Previous
experiments have shown that doubling the choline concentration
increased the biomass yield by 30% (Carvalho et al., 2013).
Therefore, to avoid artifacts in simulations caused by the
limitation of choline (data not shown), the choline uptake rate
was left unconstrained in the environmental conditions.

Maintenance ATP
Although using a flux of 1 mmolATP g−1

Bio h−1 as the initial
estimate, a range of FVA, between 1 and 10, was assessed to
evaluate the best fit to the model growth rate. This evaluation
was performed both in anaerobic and aerobic conditions, with
the pfl gene completely deactivated, as in Carvalho et al. (2013)
no formate was formed in both conditions by S. pneumoniae R6.
As shown in Supplementary Table S13, the selected value for
the anaerobic maintenance ATP flux was 6.5 mmolATP g−1

Bio h−1,
as this flux provides an in silico growth rate similar to the
experimental data (0.78 h−1). Likewise, the aerobic maintenance
ATP flux was set to 4.5 mmolATP g−1

Bio h−1. The remaining

simulations, shown in the present work, were performed
considering these estimates.

Simulations’ Assessment
The first validation performed to the iDS372 model involved
comparing simulation results to the work of Carvalho et al.
(2013). Regarding this validation, the model was used to simulate
the behavior of the microorganisms under anaerobic and aerobic
conditions. A map of the main variants of the central metabolism
of S. pneumoniae R6 is depicted in Figure 2.

Anaerobic growth
It is well known that PFL is an intrinsic part of the mixed-
acid fermentation process. After being synthesized, it has
to be activated via a PFL-activating enzyme (Melchiorsen
et al., 2000; Buis and Broderick, 2005). Also, PFL is highly
sensitive to the presence of molecular oxygen and performs
better in hypoxic conditions (Yamada et al., 1985; Melchiorsen
et al., 2000; Takahashi-Abbe et al., 2003; Buis and Broderick,
2005). Moreover, in D39, PFL is activated post-translationally
and glucose oxidation intermediates, such as glyceraldehyde-
3-phosphate and dihydroxyacetone phosphate, inhibit the flux
through the PFL (Yesilkaya et al., 2009). In this strain, glucose
favors homolactic fermentation, since genes associated with
mixed-acid fermentation, namely PFL spr0415 (pfl) and spr0232
(pflF), acetokinase spr1854 (ackA), alcohol dehydrogenase
spr1866 (adh), and phosphate acetyltransferase spr1007 (pta) are
repressed, and lactate dehydrogenase spr1100 (ldh) is activated,
which confirms the prominent role of PFL in the by-product
flux distribution. As discussed before, in anaerobic conditions
using glucose as carbon source, S. pneumoniae strain R6
produces mainly lactic acid (93%) together with mixed-acid
fermentation products, namely formate, acetate, and ethanol,
which account for only 7% for the total of fermentation products
as shown in Carvalho et al. (2013).

Regarding the simulation using the S. pneumoniae R6 model
in anaerobic conditions (study 1), FVA was performed for each
of the by-products, while simultaneously varying the level of
expression of pfl between 0 and 100%. This assessment involved
restricting the flux of the reactions promoted by PFL to different
ratios of the flux obtained in RFDs A.1 and A.2 for such
reactions, while simulating the maximization and minimization
of the production of each metabolite, and the results of these
simulations are shown in Figures 2, 3.

As shown in the left panel of Figure 3, FVA simulations
performed with RFD A.1 reveal that the growth rate is
positively correlated with the level of activity of the genes
involved in PFL synthesis. When genes encoding PFL are
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FIGURE 2 | Streptococcus pneumoniae R6 pyruvate metabolism under different environmental conditions. Pyruvate is fully converted into lactate by lactate
dehydrogenase (Ldh) when glucose is present, and oxygen is absent. In the presence of oxygen, S. pneumoniae R6 switches to a heterofermentative profile by
activating the spxB (pyruvate oxidase) gene to produce acetate and H2O2 together with lactate (in minor quantities). In the presence of n-acetylglucosamine or
mannose (without O2), the ldh gene is fully activate leading to the production of lactate as major fermentation product and pfl (pyruvate formate-lyase) genes are only
partially activated, as shown by the minor quantities of acetate, ethanol, and formate. In the presence of galactose, formate is the major product of fermentation
revealing a complete activation of the pfl genes. Ethanol and acetate are also produced, ethanol by the action of alcohol dehydrogenase (Adh) and acetate from
acetyl-CoA production by phosphate acetyltransferase (Pta) and acetate kinase (AckA).

completely silenced, the simulated growth rate is similar
to the experimentally determined (0.78 h−1), which was
expected as this rate was used to determine the maintenance
ATP requirements. However, in these conditions, the
model cannot provide the observed by-products profile,
as though silencing the pfl genes in the simulation allows
generating enough lactate, formate, and acetate cannot
be produced in sufficient amounts. When the flux of the
reactions promoted by PFL was restricted to 10% of RFD
A.1, the growth rate increases to ∼0.83 h−1, and the
minimum amount of formate produced by this bacterium
was 2.86 mmolformate g−1

Biomass h−1, more than the one attained
experimentally (1.9 mmolformate g−1

Bio h−1), not allowing a
recapitulation of the by-products profile. However, in this
case, the maximum production of lactate in the simulation is
identical (58.27 mmollactate g−1

Bio h−1) to the one experimentally
determined (58.98 mmollactate g−1

Biomass h− 1 ).
The next set of simulations (right panel of Figure 3) involved

performing FVA simulations with RFD A.2, in which the specific
growth rate was limited to 0.78 h−1. The assessment of the
influence of the genes encoding PFL demonstrates that, like
before, when these genes are silenced the organism cannot
produce enough formate. Instead, it redirects the metabolism
to homolactic fermentation. Increasing PFL activity induces a
shift from lactate to mixed acid fermentation products, namely
formate that was found in minor amounts in the experimental
conditions, which indicates that the pfl was not completely
silenced. Restricting growth allows mimicking the experimental
results for all levels of expression of genes encoding the pfl, except
for the knockout (0%) as this restriction impairs the production
of formate and acetate when compared to the experimental
data. The experimental by-products profile can be reached in all
simulations (except the case described before), when performing

FVA analyses. Nevertheless, such profile is more robust when the
expression of genes encoding PFL is closer to 0, as the lower
the expression results in a lower the production of formate, as
depicted in Figure 3. Therefore, the model is in good agreement
with experimental data.

Aerobic growth
In the presence of oxygen and having glucose as carbon source,
S. pneumoniae changes from producing lactate to producing
acetate and H2O2 due to a highly active pyruvate oxidase
activity. Even more, lack of formate and ethanol denotes the
complete inactivity of PFL under these conditions (Carvalho
et al., 2013). Genome comparison of strains D39 and R6 shows
71 single base-pair changes, 6 deletions, 4 insertions, and loss
of the pDP1 plasmid (Lanie et al., 2007). In agreement with
these relatively minor genetic differences, the metabolic and
physiological behavior of these two strains is considerably similar.
The main difference between these two strains is the presence
of a capsule in the parental D39 strain. Besides, in comparison
to D39, S. pneumoniae strain R6 has a more active pyruvate
oxidase activity (Belanger et al., 2004; Ramos-Montañez et al.,
2008), which increases the production of acetate and H2O2 in
the presence of oxygen (Carvalho et al., 2013). It is well known
that Streptococcus species are highly sensitive to the production
of H2O2, as the minimal inhibitory concentration is only 1 mM
of H2O2 (Pericone et al., 2003). This phenomenon is explained
by the fact that these strains are catalase negative (Hoskins
et al., 2001; Lanie et al., 2007). Therefore, in the presence of
oxygen, the “faster” metabolism in strain R6 provides a transitory
advantage regarding strain D39, as a faster H2O2 accumulation
will compromise its survival (Carvalho et al., 2013).

Simulations performed under aerobic environmental
conditions (study 2) were rather different from the ones
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FIGURE 3 | Model assessment in anaerobic conditions, for several levels of expression of the pfl genes, in silico, against experimental data. Left panel corresponds
to a maximization of growth rate as objective function. Right panel corresponds to simulations with fixed maximum growth rate (µ = 0.78 h−1). Blue lines represent
experimental data, the orange line represents the maximization of the specific growth rate, and the shadowed areas represent the products’ flux variability analysis.
All simulations were performed with environmental conditions inferred from Carvalho et al. (2013).
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FIGURE 4 | Assessment of the model simulations performed under aerobic conditions for different glucose uptake rates (qGlucose) and comparison with
experimental results. (A) Production of H2O2, acetate, and lactate using a qGlucose of 21.02 mmol g−1 h−1. (B) Production of H2O2, acetate, and lactate using a
qGlucose of 31.71 mmol g−1 h−1. Growth rate was limited to 1.07 h−1.

performed under the absence of oxygen, as shown in
Figures 2, 4. In this case, experimental data from Carvalho
et al. (2013) reports a growth rate of 1.07 h−1 and a biomass
yield of 50.9 gBiomass mol−1

Glucose, which corresponds to a glucose
consumption rate of 21.02 mmolglucose h−1 g−1. For comparison
purposes, the same qGlc (31.71 mmolglucose h−1 g−1) used for
anaerobic simulations was also tested for aerobic growth.

Hence, simulations were performed with the specific growth
rate limited to 1.07 h−1, while deactivating genes encoding the
PFL enzyme and maximizing/minimizing acetate, H2O2, and
lactate production, as described in the section “Materials and
Methods”. Results show that, in these conditions, production of
acetate and H2O2 is mandatory, whereas lactate’s FVA shows
that only trace amounts of this metabolite can be produced
(Figure 4A). In fact, the minimum production of both acetate
and H2O2 are excessive when compared with data calculated
from the information provided by Neves and coworkers. A higher
glucose consumption rate was used for comparison purposes. In
this case, Figure 4B shows that the model is able to encompass
the experimental data results profile. Moreover, according to the
simulation, in aerobic conditions increasing the carbon source
uptake rate will allow to decrease the production of acetate. The
acetate kinase provides two molecules of ATP to the metabolism.
However, increasing the carbon source uptake rate allows the
pneumococcus to obtain ATP through the pyruvate kinase.
Therefore, while fixing the maximum growth rate, increasing

the carbon source uptake rate allows obtaining more ATP
through glycolysis and consequently to decrease the minimum
requirements of acetate production.

The experimental data assessment, calculated as described
above, is impaired by the short period of time in which the
exponential growth phase took place that limited to two the
number of experimental time points used to determine the
product formation rates. In fact, quantification issues were
detected in the experimental data, as one molecule of H2O2
should be produced per each molecule of acetate. This is observed
in the model simulation results but not experimentally, in which
the flux of H2O2 is much lower than the one of acetate, due to the
spontaneous decay of H2O2 into water and molecular oxygen.

Nevertheless, the model is able to perform viable simulations
under aerobic conditions producing acetate, H2O2, and lactate as
shown experimentally.

Carbon sources
The iDS372 model is able to simulate growth in all tested
substrates (study 3) under anaerobic conditions. As seen before, it
is possible to simulate different types of fermentation by varying
pfl expression from 0 to 100%, which involves restricting the flux
through the reactions catalyzed by these genes in the respective
RFDs (see Supplementary Table S14A for full simulations).
The Euclidean distance, calculated as described before, allowed
inferring which percentage of pfl under-expression should be set

TABLE 5 | Growth and by product analysis with the iDS372 model, using different (optimized) levels of pfl expression for the four different carbon sources tested
(glucose, galactose, N-acetyl-D-glucosamine, and mannose).

Carbon source Uptake
(mmol g−1 h−1)

pfl (%) µ (h−1) Lactate
(mmol g−1 h−1)

Formate
(mmol g−1 h−1)

Acetate
(mmol g−1 h−1)

Ethanol
(mmol g−1 h−1)

sim exp sim exp sim exp sim exp sim exp

Glucose 34.09 0 0.85 0.82 66.70 57.52 0 0 0 0.9 0 0.11

Galactose 22.65 90 0.82 0.47 4.10 3.78 41.81 28.67 20.61 14.53 19.15 13.93

N-acetyl-D-glucosamine 35.86 0 0.89 0.53 70.00 61.37 0 2.03 35.86 1.15 0 0.6

Mannose 32.52 10 0.85 0.41 58.77 49.02 6.80 5.71 3.04 3.0 1.63 2.98

sim, simulation; exp, experimental.
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in the model, for each carbon source, to mimic the experimental
data of Paixão et al. (2015b) for the parent strain D39. As
shown in Table 5, glucose and N-acetyl-D-glucosamine products
have a fermentation profile closer to an expression of 0% pfl
of the RFDs B.1 and B.3, respectively. Whereas the mannose
fermentation profile is better simulated when restricting the flux
of the reactions promoted by PFL to 10% of the flux obtained in
RFD B.4 for such reactions, when compared to the experimental
data profile. Regarding galactose, the pfl under expression should
be set to 90%, in the model, of RFD B.2, which is consistent with a
higher mixed acid fermentation activity, while guaranteeing that
lactate is also produced. Supplementary Table S14 shows the
results of the calculation of all distances.

As expected, the results for galactose show the prevalence
of mixed acid fermentation, while mainly the homolactic
fermentation profile is exhibited for glucose and an increase in
the fermentation behavior is seen in mannose, all as described
in Paixão et al. (2015b). N-acetyl-D-glucosamine simulation
results are the farthest from the experimental results from all
tested carbon sources, with a seemingly anomalous production
of acetate. This result is explained by the fact that acetate is a by-
product of N-acetyl-D-glucosamine degradation. In the model,

TABLE 6 | Confusion matrix and respective performance measure calculations of
the iDS372 model in predicting essential genes.

Exp. positive Exp. negative

Predicted positive 23 66

Predicted negative 27 256

Measure Value Derivations

Sensitivity 0.4600 TPR = TP/(TP + FN)

Specificity 0.7950 SPC = TN/(FP + TN)

Precision 0.2584 PPV = TP/(TP + FP)

Negative predictive value 0.9046 NPV = TN/(TN + FN)

False positive rate 0.2050 FPR = FP/(FP + TN)

False discovery rate 0.7416 FDR = FP/(FP + TP)

False negative rate 0.5400 FNR = FN/(FN + TP)

Accuracy 0.7500 ACC = (TP + TN)/(P + N)

Genes considered essential in OGEE are defined as “True”, while genes identified
as essential by OptFlux’s prediction tool are considered the “Predicted”.

genes spr0668 and spr1528 encoding phosphoenolpyruvate-
dependent phosphotransferase sugar-specific systems transport
this compound into the cell converting it to N-acetyl-D-
glucosamine-6-phosphate and releasing pyruvate. Then, gene
spr1867 encoding an N-acetyl-D-glucosamine-6-phosphate
amidohydrolase converts the phosphorylated compound into
acetate and D-glucosamine-6-phosphate, which explains the
behavior shared between this carbon source and glucose.
Therefore, study 3 assessment allowed determining the level of
activation of pfl genes in different carbon sources, which until
date has not been described.

Influence of the availability of exogenous amino acids on
organism growth
The results obtained by simulating the environmental
conditions used in Härtel et al. (2012) (study 4) with the
iDS372 model are shown in Supplementary Table S11 of the
Supplementary Material.

Overall, mimicking their experiment in silico using this model
yields results showing a high degree of similarity (80%) to the
results obtained by Härtel et al. (2012). Our model confirmed
that S. pneumoniae R6 although auxotrophic for L-arginine, L-
cysteine, glycine, L-histidine, and L-valine contains all reactions
required for de novo biosynthesis of this amino acids. Likewise,
the unconventional pathway for the de novo biosynthesis of serine
suggested by their study was also confirmed. The mismatching
results were in respect to the amino acids isoleucine, leucine,
valine, and glutamine. Härtel suggested that S. pneumoniae D39
was auxotrophic for these amino acids, as this strain did not grow
in their absence, but in silico results performed in this study could
not confirm this. The annotation of genes involved in the de
novo synthesis of these amino acids and the lack of additional
data to fine tune the pathways or determine how and when
these genes are expressed prevent any attempt to further curate
these pathways. Hence, these pathways either have regulatory
mechanisms preventing the biosynthesis of these amino acids or
some of the enzymes involved cannot sustain the flux required
for biomass growth. The study from Härtel et al. (2012) also
showed that S. pneumoniae D39, in the absence of glutamate,
proline, and methionine, presented a decreased growth rate. The
independent omission of these amino acids from the medium,
in silico, did not have any impact on the growth rate which was

TABLE 7 | Examples of the analysis of essential genes presented in metabolic model.

Locus tag Result Enzyme function GPR rules Notes Specific conditions

spr0245 Essential Glutamine-fructose-6-
phosphate
transaminase
(isomerizing)

spr0245 Catalyzes a step reaction that leads to
N-acetyl-D-glucosamine which is essential for
peptidoglycan production.

–

spr0266 Non-essential Dihydropteroate
synthase

spr0266 The enzyme encoded catalyzes a key reaction
that leads to folate synthesis. Folate derivatives
are essential cofactors in purine, pyrimidine,
and amino acid biosynthesis.

Removal of folate from
the medium renders
this gene essential,

spr1312 Non-essential Thioredoxin-disulfide
reductase

spr1602 or spr1312 Classified as a defense mechanism against
oxidative stress and redox regulation of protein
function.

Conditions in which
each gene is expressed
are unknown.

spr0180 Essential cardiolipin synthetase spr0180 Produces the necessary cardiolipin for biomass –
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expected as this validation was qualitative and not quantitative.
The fact that Härtel et al. (2012) used the parent strain of
S. pneumoniae R6 could also explain the differences observed in
these results.

Gene essentiality
As previously stated in the section “Materials and Methods”,
study 5 involved performing the gene essentiality analysis with
OptFlux’s gene essentiality tool using the anaerobic experimental
conditions of Carvalho et al. (2013). A total of 89 genes
were identified as essential in our model. The data collected
from OGEE database comprised a total of 133 essential genes
identified for S. pneumoniae strain R6. Out of the 89 essential
genes, 67 were not listed as essential by OGEE. Only 50
genes identified as essential by OGEE were present in our
model and from these only 23 matched the results obtained
by OptFlux’s gene essentiality tool. From this comparison,
another nine genes could be considered essential if certain
experimental conditions were met such as the removal of
some amino acids (i.e., tryptophan or methionine), vitamins
(i.e., folate) from the medium composition or certain GPR
rules were adjusted. The remaining 27 genes would never
be classified as essential in this model due to the nature of
stoichiometric models that do not take in account different
catalytic activity of isoenzymes.

OptFlux’s results were labeled as the “predicted” and the list
of genes obtained from OGEE that exist in iDS372 as the “real”
results shown in Table 6, to determine the performance of this
model, in terms of predicting gene essentiality.

Overall, the results obtained clearly demonstrate that
the model performs well in the discrimination of essential
from non-essential genes with a high level of accuracy
(75%). The model performs very well in predicting non-
essential genes, shown by the high specificity (∼79%)
and negative predictive value (∼90%). The prediction of
essential genes is, in comparison to the non-essential, lower.
This is shown by the relatively low sensitivity (46%) and
precision (26%). A possible explanation for this relies on
the fact that the genes identified as essential by OptFlux
are directly linked to metabolism and influenced by the
medium composition (e.g., presence/absence of folate). On
the other hand, the essential gene list obtained from OGEE,
although generated using a complex medium, includes non-
metabolic genes. Hence, differences in the number of essential
genes from each approach were expected. For an improved
validation of the results, in vitro or in vivo gene knockout
studies should be performed using the defined medium
described in Carvalho et al. (2013).

In Table 7, some examples of the results obtained from the
gene essentiality study are shown. A complete list of all essential
genes predicted by the model, as well as those obtained from
OGEE database is available in Supplementary Table S15.

CONCLUSION

The main objective of this study was to reconstruct a GSM
model for the S. pneumoniae R6 strain, capable of predicting

essential genes and simulating phenotypic behavior. This is the
first manually curated GSM model to be reconstructed for any
strain of S. pneumoniae and establishes the groundwork for a
better understanding of the metabolism of this major pathogen.

A high level of manual curation, based on literature,
experimental data, and biological databases, was performed
when constructing the network, which should increase
the reliability of the model. The prominent role of the
PFL regulation in S. pneumoniae proposed by Carvalho
and colleagues was confirmed in this study. Also, this
model was able to replicate S. pneumoniae’s behavior under
different environmental conditions, including different
carbon sources and oxygen availability. Considering the
overall results obtained, iDS372 can be employed to provide
reliable qualitative or quantitative simulations under different
experimental conditions.

The medium used by Carvalho (2012) is very rich, as it
contains several amino acids; thus, various compounds can be
sources of carbon, nitrogen, and sulfur. These circumstances,
together with the lack of chemostat data do not allow a
full validation of the model. The availability of data with
minimal media and chemostat conditions will allow further
validation studies.

iDS372’s predictions confirmed almost all essential amino
acids under the conditions established by Härtel et al. (2012).
The fact that S. pneumoniae R6 possesses all the genes required
to synthesize the amino acids whose results did not match
suggests that other factors may regulate their expression in
S. pneumoniae R6. Further studies on this topic can provide
additional information on the differences between R6 and D39.

iDS372 performed well on all five studies used to
validate its phenotypical predictions to different genetic
and environmental conditions.

Finally, the model provided in the SBML level 3 version 2 was
able to score over 97% on all consistency tests on the Memote
(Lieven et al., 2018) test suite, except for the charge balance, which
was not accounted for in this work, and the unbounded flux
in default medium.

The lack of experimental data of quantitative nature limits
the spectrum of application of this model. The elaboration
of new studies using CDM and less rich media clearly
defined environmental conditions, and quantification of
both substrate consumption as well as by-product formation
would yield more information, which could be used to
further curate the network and enhance and extend its
predicting capabilities.

Considering the natural genetic diversity within the
S. pneumoniae species, and the fact that iDS372 is the first curated
GSM model for this species, it will be a pivotal model to study
the impact of that genetic diversity in the metabolic capabilities
of specific strains with potentially relevant clinical correlations.
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