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Whole genome analysis of the Bradyrhizobium genus using average nucleotide identity
(ANI) and phylogenomics showed the genus to be essentially monophyletic with seven
robust groups within this taxon that includes nitrogen-fixing nodule forming bacteria
as well as free living strains. Despite the wide genetic diversity of these bacteria no
indication was found to suggest that the Bradyrhizobium genus have to split in different
taxa. Bradyrhizobia have larger genomes than other genera of the Bradyrhizobiaceae
family, probably reflecting their metabolic diversity and different lifestyles. Few plasmids
in the sequenced strains were revealed from rep gene analysis and a relatively low
proportion of the genome is devoted to mobile genetic elements. Sequence diversity of
recA and glnII gene metadata was used to theoretically estimate the number of existing
species and to predict how many would exist. There may be many more species than
those presently described with predictions of around 800 species in nature. Different
arguments are presented suggesting that nodulation might have arose in the ancestral
genus Bradyrhizobium.
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INTRODUCTION

Bradyrhizobium is one of the several genera of nitrogen fixing bacteria capable of forming
symbiotic nodules in legumes. Bradyrhizobium strains were previously designated the slow growing
Rhizobium and recognized as an independent genus in 1982 (Jordan, 1982). The number of species
in Bradyrhizobium has increased largely in recent years1. Notably, there are photosynthetic bacteria
among bradyrhizobia (Ladha and So, 1994) which need no Nod factors to induce nodules (Giraud
et al., 2007) and this opened a new research area on plant nodulation. Non-symbiotic bradyrhizobia
are dominant in forest soils (VanInsberghe et al., 2015).

Different Bradyrhizobium species are the main nodule symbionts of important crop legumes
such as soybean (Xu et al., 1995; Delamuta et al., 2013), Lima bean (Durán et al., 2014) or peanuts
(Steenkamp et al., 2008) and have been isolated from nodules of many tropical (Ramírez-Bahena
et al., 2009; López-López et al., 2013; Delamuta et al., 2015) and temperate legumes (Vinuesa
et al., 2005a; Stepkowski et al., 2007). The ancestral symbionts in Phaseolus could have been
bradyrhizobia (Servín-Garcidueñas et al., 2014) with a later symbiont shift to Rhizobium in nodules
of some temperate Phaseolus species.

1http://edzna.ccg.unam.mx/rhizobial-taxonomy/
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A large diversity of bradyrhizobia has been revealed with
the sequence of few genes used as molecular markers. Within
bradyrhizobia, 16S rRNA genes are known not to provide
adequate sequence diversity to clearly recognize distinct species
(Willems et al., 2001). For this, markers such as recA, glnII,
atpD, dnaK, gyrB, and rpoB, have been frequently used to
characterize bradyrhizobial species and strains (Vinuesa et al.,
2005b; Rivas et al., 2009; Delamuta et al., 2012). Novel markers
such as ftsA gene provide congruent phylogenies to those derived
from recA and glnII gene sequences (Kalita and Malek, 2019).
Bradyrhizobium diversity knowledge has expanded recently with
studies from native legumes in Africa (Gronemeyer et al., 2017;
Jaiswal and Dakora, 2019; Puozaa et al., 2019), from Brazilian and
Indian Chamaecrista (Santos et al., 2017; Rathi et al., 2018), from
threatened native species in Brazil (Fonseca et al., 2012), from
Genisteae plants in Poland (Kalita and Malek, 2017), indigenous
trees in China (Yao et al., 2015) as examples. In addition, new
bradyrhizobial species have been reported as well (Yao et al., 2015;
Araujo et al., 2017; Gronemeyer et al., 2017; Helene et al., 2017;
Ahnia et al., 2018; Bunger et al., 2018).

Additionally, some bradyrhizobial strains are capable of
fixing nitrogen as endophytes of some plants (Piromyou et al.,
2015). Growth-independent approaches have shown a broad
distribution of bradyrhizobia associated with roots of many
non-legume plants such as rice, maize and pines (Chaintreuil
et al., 2000; Tan et al., 2001) and bradyrhizobia have been
found in plant tumors (Rivas et al., 2004; Islam et al., 2008)
and also in earthworm (Thakuria et al., 2010) and insect guts
(Degli Esposti and Martinez Romero, 2017).

Nowadays there are publicly available genomes of 187
bradyrhizobial strains. Bradyrhizobia have characteristic large

genomes with few plasmids and no symbiosis plasmids with
one exception (Okazaki et al., 2015). In Bradyrhizobium
chromosomes there are symbiosis islands which carry nod and nif
genes that are responsible for nodulation and nitrogen fixation,
respectively. Symbiosis markers that are commonly used toward
symbiosis phylogenetic reconstructions are nifH and nod genes.
In regard to nodulation genes, there is a large diversity of nodA
or nodC genes (Stepkowski et al., 2007; Martínez-Romero et al.,
2010) and the phylogenies from these genes support a vertical
and also a horizontal transfer of these genes among bradyrhizobia
(Moulin et al., 2004; Menna and Hungria, 2011). Symbiovars
in relation to host specificity have been identified for some
bradyrhizobial species (Rogel et al., 2011) and novel symbiovars
have been described (Bejarano et al., 2014; Cobo-Diaz et al., 2014;
Ramirez-Bahena et al., 2016; Delamuta et al., 2017; Salmi et al.,
2018; Martins da Costa et al., 2019).

Novel metrics to recognize species are based on genome
analysis and average nucleotide identity, ANI (Richter and
Rossello-Mora, 2009) and phylogenomics (Wu and Scott, 2012)
are proving to be very useful toward this goal. A phylogenomic
study of Bradyrhizobium strains showed that the presence and
type of flagellum are phylogenetically determined (Garrido-
Sanz et al., 2019). Other phylogenomic-based studies have been
reported for the beta-rhizobia (Beukes et al., 2017; Estrada-
de Los Santos et al., 2018) highlighting the existence of novel
genera. It is the aim of this work to use a similar genomic-based
approach and present an up-dated global genomic-based analysis
of the Bradyrhizobium genus to further support its taxonomic
status. Previously, such a study was performed for Rhizobium,
Sinorhizobium and Agrobacterium, shedding light on these genera
taxonomical designations (Ormeño-Orrillo et al., 2015).

FIGURE 1 | Non-metric multidimensional scaling (nMDS) of pair-wise ANI values of 187 genomes named as Bradyrhizobium in GenBank as of December 2018. The
ellipse includes genomes of bona fide bradyrhizobia. Names of non-bradyrhizobial outlier strains are indicated.
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MATERIALS AND METHODS

Phylogenomic Analysis
All Bradyrhizobium genome sequences available in GenBank
as of December 2018 were retrieved. An all-versus-all average
nucleotide identity (ANI) matrix was constructed using
OrthoANI (Lee et al., 2016). Non-metric multidimensional
analysis on the ANI matrix was performed with PAST to
identify outlier genome sequences. Species-level clusters were
defined at a 95% ANI cutoff value and representative genomes
from each cluster were selected for further analysis. For the
phylogenomic reconstruction, Prodigal was used for de novo
prediction of protein-coding genes for each selected genome.
Amino acid sequences of 31 conserved phylogenetic markers
were retrieved from each genome using AMPHORA2 (Wu
and Scott, 2012) and aligned with muscle (Edgar, 2004). Each
alignment was processed with trimAl to identify and remove
poorly aligned regions (Capella-Gutierrez et al., 2009). All
alignments were concatenated and a maximum likelihood
phylogeny was constructed with PhyML (Guindon et al., 2010).
Tree node support was evaluated with bootstrap analysis of
1000 replicates.

Mobilome Analysis
The presence of plasmid replication systems in the sequenced
genomes was evaluated by looking for homologs to the
replication protein B (RepB) using BLASTP searches against
a database of all the Bradyrhizobium proteins obtained in the
previous section. The number and size of genomic islands in
complete and almost complete genomes were determined with
the IslandViewer 4 server (Bertelli et al., 2017).

Species Richness Analysis
Bradyrhizobium nucleotide sequences from the recombinase A
protein (recA) and glutamine synthetase type II (glnII) genes
were retrieved from the GenBank database and aligned using
MAFFT (Katoh and Standley, 2013). The multiple sequence
alignments were trimmed with Bioedit (Hall, 1999) recovering
336 or 454 bp fragments common to most recA or glnII
sequences, respectively, shorter sequences were discarded. An
all-versus-all identity distance matrix was constructed from the
alignments with the dist.seqs command of mothur (Schloss
et al., 2009). Sequences were classified into species-level OTUs
with the cluster command of mothur. OTU abundances were
used to calculate species richness estimators with SpadesR2

and EstimateS3, and to construct rarefaction curves with PAST
(Hammer et al., 2001).

RESULTS AND DISCUSSION

Bradyrhizobium Genomes in GenBank
One hundred and eighty-seven genomes of strains named as
Bradyrhizobium were available in GenBank at the time of writing

2https://chao.shinyapps.io/SpadeR/
3http://viceroy.eeb.uconn.edu/estimates/

TABLE 1 | Classification of 180 Bradyrhizobium genome-sequenced strains into
superclades, OTUs and species.

Strains Supercladea OTUb Speciesc

USDA 6T∗, CCBAU 15354, CCBAU
15517, CCBAU 15618, CCBAU
25435, CCBAU 83623, USDA 38,
USDA 123, SEMIA 5079, Is-34,
E109, FN1, J5, G22

I 1 B. japonicum

WSM4349, UBMA050, UBMA051,
UBMA060, UBMA052, UBMA061,
UBMA195, UBMAN05, UBMA122,
UBMA182, UBMA192, UBMA183,
UBMA510, UBMA181, UBMA171

I 2 B. canariense

USDA 110T∗, CCBAU 41267,
USDA 122∗, SEMIA 5080, Is-1,
NK6, Y21

I 3 B. diazoefficiens

OO99T, CCBAU 15544, CCBAU
15615, CCBAU 15635, USDA 4, L2

I 4 B. ottawaense

CCBAU 10071T, CCBAU 05623,
CCBAU 25021, CCBAU 35157,
BR3267, SUTN9-2

I 5 B. yuanmingense

WSM2254, JGI 0001019-J21,
cf659

I 6

CCBAU 05525, CCBAU 83689,
USDA 135

I 7

LMG 26795T, USDA 3384, CB756 I 8 B. arachidis

is5, in8p8, Leaf396 I 9

WSM1417, URHA0013 I 10

WSM2793, Rc3b I 11

CCGE-LA001, DOA1 I 12

ERR11T, AC87j1 I 13 B. shewense

WSM471, BF49_genome1 I 14

BR 10247T, Cp5.3 I 15 B. neotropicale

LTSP849, LTSP857 I 16

OK095 I 17

Y36 I 18

S23321 I 19

TSA1T I 20 B. nitroreducens

39S1MB I 21

UBMA197 I 22

Ec3.3 I 23

JGI 0001019-M21 I 24

Ghvi I 25

INPA54BT I 26 B. forestalis

85S1MB I 27

DOA9 I 28

CCH5-F6 I 29

BR 10245T I 30 B. centrolobii

22 I 31

CCNWSX0360 I 32

WSM3983 I 33

CCBAU 43298 I 34

NAS80.1 I 35

Rc2d I 36

YR681 I 37

WSM1253 I 38

BR10280T I 39 B. sacchari

JGI 0001002-A22 I 40

(Continued)
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TABLE 1 | Continued

Strains Supercladea OTUb Speciesc

BR 446T I 41 B. stylosanthis

Gha I 42

USDA 124 I 43

MOS002 I 44

AS23.2 I 45

BR3351T I 46 B. manausense

WSM1743 I 47

AT1 I 48

MOS003 I 49

USDA 76T, 587, CCBAU 05737,
CCBAU 43297, USDA 94, BLY6-1,
BLY3-8, TnphoA 33

II 50 B. elkanii

PAC 48T, USDA 3254, USDA 3259,
BR3262, UFLA 03-321, R5

II 51 B. pachyrhizi

OHSU_III, UASWS1015,
UASWS1016, UBA2491, SK17

II 52

DFCI-1, 17-4 str. JCM 18382,
PARBB1, MOS004

II 53

SEMIA 690T, UFLA03-84 II 54 B. viridifuturi

LTSPM299, LTSP885 II 55

MT12 II 56

SEMIA 6208T II 57 B. embrapense

SEMIA 6148T II 58 B. tropiciagri

BR 10303T II 59 B. macuxiense

C9 II 60

NAS96.2 II 61

SEMIA 6399T II 62 B. mercantei

th.b2 II 63

ORS 285∗ III 64

ORS 375 III 65

STM 3809 III 66

BTAi1 III 67

STM 3843 III 68

S58T III 69 B. oligotrophicum

ORS 278 III 70

GAS524, GAS522, MT34 IV 71

RST89T, RST91 IV 72 B. algeriense

LmjM3T, LmjM6 IV 73 B. valentinum

URHA0002 IV 74

LMTR 21T IV 75 B. paxllaeri

PAC68T IV 76 B. jicamae

URHD0069 IV 77

CCBAU 23086T IV 78 B. lablabi

GAS138 IV 79

GAS165 IV 80

GAS478 IV 81

GAS242 IV 82

GAS499 IV 83

LMTR 3 IV 84

WSM1741 IV 85

GAS369 IV 86

LMTR 13T IV 87 B. icense

Ro19T IV 88 B. retamae

ARR65 V 89

(Continued)

TABLE 1 | Continued

Strains Supercladea OTUb Speciesc

Tv2a-2 V 90

Ai1a-2 VI 91

WSM2783 VI 92

GAS401 VII 93

aBased on a phylogenic analysis performed with AMPHORA2. bBased on a 95%
cutoff ANI value. cBased on a genome-sequenced type or reference strain. ∗Two
genomes are available for this strain.

this manuscript in December 2018 (Supplementary Table 1).
A non-metric multidimensional scaling graph of ANI values
shared by these genomes allowed the identification of a core
set of 180 related genomes plus 7 outliers (Figure 1). Upon
examination of selected phylogenetic markers (rrs, recA, and/or
glnII), only the 180 related genomes corresponded to bona fide
bradyrhizobia. The outliers were misnamed strains belonging to
other genera (see Supplementary Table 1 for details).

Based on a 95% cutoff ANI value, the 180 bona fide
bradyrhizobial genomes in GenBank were grouped into 93
species-level clusters (referred here as OTUs), the majority of
which (72%) were represented by only one sequenced strain
(Table 1). Twenty nine type strains were present among the
180 sequenced bradyrhizobia. The most represented species were
Bradyrhizobium japonicum and Bradyrhizobium canariense, each
with 15 strains; followed by B. diazoefficiens and B elkanii
with 9 and 8 strains, respectively. The abundance of sequences
from species able to nodulate soybean indicates the bias toward
genomic studies directed at symbionts from this agronomical
important legume.

Phylogenomic Relationships in the
Bradyrhizobiaceae
Besides Bradyrhizobium, other genera of the Bradyrhizobiaceae
family with sequenced genomes are Bosea, Afipia,
Rhodopseudomonas, Nitrobacter, Tardiphaga, Oligotropha,
and Variibacter with 30, 24, 18, 6, 4, 3, and 1 sequences,
respectively. A phylogenomic analysis of the family showed that
most genera segregated as expected with the sole exception of
Oligotropha and Afipia which intermingle (see Figure 2 for a
condensed tree and Supplementary Figure 1 for a full tree).
Bosea was the most distantly related genus in the family and its
clustering with the other genera was not significantly supported
by bootstrap analysis.

Intrageneric Structure of the Genus
Bradyrhizobium
Two Bradyrhizobium superclades are recognized based on
analysis of the 16S rDNA gene (Willems et al., 2001; Ormeño-
Orrillo et al., 2006). Superclade I includes B. japonicum and
related species while superclade II contains B. elkanii and allied
species. The new phylogenomic analysis supports the existence
of those clades but revealed a more complex structure within
Bradyrhizobium with additional groups (see Figure 3 for a
condensed tree and Supplementary Figure 2 for a full tree).
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FIGURE 2 | Phylogenomic tree of Bradyrhizobiaceae rooted with genomes of Xanthobacter. The tree was constructed with maximum likelihood using a
concatenated alignment of 31 conserved proteins identified with AMPHORA2. Bootstrap node support values lower than 70% are not shown.

Superclade III encompassed several photosynthetic strains
isolated from Aeschynomene indica, as well as Bradyrhizobium
oligotrophicum which also forms nodules in that legume (Okubo
et al., 2013). Bradyrhizobium denitrificans, which comprise
photosynthetic bacteria able to nodulate A. indica (Van Berkum
et al., 2006), also belong to superclade III as shown by MLSA
analysis (Ramírez-Bahena et al., 2013). Members of superclade
III were the first to be recognized as having the capacity to
induce nodulation in the absence of the canonical nod genes
(Giraud et al., 2007).

Superclade IV includes strains isolated from several cultivated
and wild legumes such as Phaseolus lunatus and Lupinus
maria-josephi. Bacteria from this superclade closely group with
B. elkanii in 16S rRNA phylogenies but its distinctiveness was
first recognized by dnaK sequence analysis (Ormeño-Orrillo
et al., 2006) and MLSA (Sanchez-Cañizares et al., 2011) and is
now confirmed by phylogenomics. These bradyrhizobia have the
characteristics of extra slow growth forming punctate colonies on
YEM medium and usually strong alkali production.

Superclade V was formed by only two genomes one of them
from strain Tv2a.2 from Tachigali versicolor, that was previously
shown to occupy instable positions in the Bradyrhizobium
phylogeny depending on the marker used (Parker, 2000).
Superclade VI also grouped only two genomes including that of
strain Ai1a.2 a representative of neotropical bradyrhizobia which
possess a characteristic insertion in their 23S ribosomal gene
sequence (Qian et al., 2003). Finally, superclade VII included a
single strain, GAS401, which was isolated from a forest soil in the
United States.

Several Genera Inside Bradyrhizobium?
The wide genotypic and phenotypic diversity within
Bradyrhizobium may suggest that it includes several genera.
As early as 1990, strains now classified in superclade IV, were
proposed to constitute the separate genus Photorhizobium
because of their photosynthetic abilities and induction of stem
nodulation (Eaglesham et al., 1990; Ladha and So, 1994). The
most up to date, although not officially recognized, identity
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FIGURE 3 | Phylogenomic tree of Bradyrhizobium. Superclades are indicated with Roman numerals. The tree was constructed with maximum likelihood using a
concatenated alignment of 31 conserved proteins identified with AMPHORA2 (7672 aa alignment length). Bootstrap node support values lower than 70% are
not shown.

threshold for genus circumscription based on the 16S rRNA gene
is 96.4% (Yarza et al., 2014). When applied to bradyrhizobia,
superclade II strains are different enough to be considered
a separate genus, however, the same threshold indicates
that Bradyrhizobium, Rhodopseudomonas, Nitrobacter, and
Afipia may constitute a single genus (Willems et al., 2001).
Superclade II strains possess recombinant segments in their 16S
ribosomal gene that explains their sequence divergence from
other bradyrhizobia (Van Berkum et al., 2003) but this case of
localized recombination with other bacteria do not justify their
separation from the genus.

Recently, Qin et al. (2014) used the percentage of conserved
proteins (POCP) as a genome metric for genus circumscription.
According to their proposal, two bacteria may belong to the
same genus if they share 50% or more of their proteins. In the
case of Bradyrhizobium, all compared strains share >50% of
their protein complements supporting a single genus. Different
genera of the Bradyrhizobiaceae family had POCPs values
between 40 and 50% except for most comparisons between
bradyrhizobia and Rhodopseudomonas that can share more than
half of their proteins. Thus, in general the POCP metric supports
Bradyrhizobium as a single genus but indicate a close relationship
with Rhodopseudomonas. Conservation of gene content may
indicate not only phylogenetic relationship but also phenotypic

similarity (Martín et al., 2003). Both Bradyrhizobium and
Rhodopseudomonas include nitrogen fixing and photosynthetic
strains, and, recently, a study suggest that Rhodopseudomonas can
be mutualistic symbionts of some fungi (Le Roux et al., 2016).
It will be worth to further explore the common features of both
genera based on their genomic sequences.

Genome Size in Bradyrhizobium
Bradyrhizobia are considered bacteria with large genomes
(Kundig et al., 1993), however the range of genome sizes in the
genus is still unknown. A graphic showing the size distribution
of the 180 genome assemblies of Bradyrhizobium strains is
shown in Figure 4. Since only 15 of the genome sequences
correspond to strains with closed replicon(s), we determined if
the remaining sequences represent partial or whole genomes.
A completeness analysis with BUSCO revealed that the four
smaller assemblies, all <2 Mbp, represented partially sequenced
genomes. Information available from those genomes revealed
that they are derived from single cells or metagenomes likely
explaining their incompleteness.

The smallest sequence representing a complete genome, was
6.1 Mbp in size and corresponded to strain GAS165 isolated
from a forest soil. This size is similar to that found in Rhizobium
and Sinorhizobium genomes. The largest complete assembly
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FIGURE 4 | Size distribution of 180 genome assemblies of Bradyrhizobium strains.

(11.7 Mbp) was also from an isolate obtained from soil (strain
GAS478). Interestingly, both GAS 165 and GAS478 strains which
belong to superclade IV, lacked symbiosis genes which may
indicate that genome size in Bradyrhizobium is not related to its
ability to engage in symbiosis with legumes. It is worth noting
that the largest bradyrhizobial genome is close in size to that
of Sorangium cellulosum (13 Mbp) the bacteria with the largest
known genome (Schneiker et al., 2007).

Most Bradyrhizobium strains had genome sizes between
7 and 10 Mbp with a mean size of 8.6 Mbp (Figure 4).
When compared to other genera in its family, bradyrhizobia
have the largest genomes (Figure 5) followed by Tardiphaga
and Bosea, while the smallest genomes were those from
Nitrobacter. The three genera with the biggest genomes can
interact with plants (De Meyer et al., 2012; De Meyer and
Willems, 2012). On the other hand the smallest genomes
are found in metabolically limited bacteria like Nitrobacter,
Oligotropha or Variibacter or in intracellular pathogens like
Afipia. Thus, genome size in the Bradyrhizobiaceae seems to be
related to lifestyle.

The Bradyrhizobium Mobilome
Given the large genome size in bradyrhizobia we wondered
which the proportion of plasmids and genomic islands (GIs)
was. Bradyrhizobia are typically regarded as unireplicon bacteria,
however, strains with plasmids have been reported (Cytryn
et al., 2008) including a single case of a symbiosis plasmid

FIGURE 5 | Genome size range in the different genera of the
Bradyrhizobiaceae family. 1, Bradyrhizobium; 2, Tardiphaga; 3, Bosea; 4,
Rhodopseudomonas; 5, Afipia/Oligotropha; 6, Variibacter; 7, Nitrobacter.
Triangles indicate the mean genome size.

(Okazaki et al., 2015). The presence of extra-chromosomal
replicons was evaluated in the genome-sequenced strains
by searching for genes coding for homologs of the plasmid
partitioning protein RepB. We found repB genes in 35 genomes
(Supplementary Table 2) with almost half of the strains (n = 17)
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TABLE 2 | Percentage of genomic islands (GI) in the chromosomes and genomes of Bradyrhizobium.

Organism Genome size (bp) Chromosome (bp) GI (bp) GI/genome (%) GI/chromosome (%)

Bradyrhizobium diazoefficiens USDA110T 9,105,828 9,105,828 1,616,869 17.8 17.8

Bradyrhizobium sp. BTAi1 8,493,513 8,264,687 946,881 11.1 11.5

Bradyrhizobium sp. ORS 278 7,456,587 7,456,587 736,932 9.9 9.9

Bradyrhizobium sp. S23321 7,231,841 7,231,841 377,879 5.2 5.2

Bradyrhizobium japonicum USDA 6T 9,207,384 9,207,384 1,618,905 17.6 17.6

Bradyrhizobium sp. CCGE-LA001 7,833,499 7,833,499 992,465 12.7 12.7

Bradyrhizobium oligotrophicum S58 8,264,165 8,264,165 930,097 11.3 11.3

Bradyrhizobium japonicum E109 9,224,208 9,224,208 1,573,528 17.1 17.1

Bradyrhizobium diazoefficiens NK6 10,475,157 9,780,023 1,491,477 14.2 15.3

Bradyrhizobium icense LMTR 13 8,322,773 8,322,773 705,512 8.5 8.5

Bradyrhizobium japonicum J5 10,138,651 10,138,651 1,819,761 17.9 17.9

Bradyrhizobium diazoefficiens USDA 122 9,136,536 9,136,536 1,111,353 12.2 12.2

Bradyrhizobium sp. BF49_genome1 7,547,693 7,547,693 960,583 12.7 12.7

Bradyrhizobium sp. SK17 8,288,568 8003090 557625 6.7 7.0

Bradyrhizobium sp. ORS 285 7,797,098 7,797,098 796588 10.2 10.2

possessing a single homolog which suggested the presence of
a single plasmid. The remaining strains may harbor up to 6
plasmids, although it should be noted that a single plasmid could
harbor two repABC operons. The few completely-sequenced
plasmids ranged in size from 136 to 285 kbp which is a size
range similar to that found by pulse-field gel electrophoresis
analysis of plasmids in a diverse population of Bradyrhizobium
(Cytryn et al., 2008). Plasmids can represent from 2.7 to 6.6%
of the genome in a single strain. The sequence of the single
Bradyrhizobium symbiosis plasmid known to date was reported
as a scaffold that is larger than other plasmids in the genus
(736 kbp) and which represents 9.4% of the corresponding
genome (Okazaki et al., 2015).

Mobile elements in unireplicon bacteria are typically
present as clusters of genes known as genomic islands
(GIs) (Juhas et al., 2009). As mutualistic symbionts of
legumes, bradyrhizobia typically possess nodulation and
nitrogen fixation genes grouped in a symbiosis island (SI)

FIGURE 6 | Rarefaction curves of species found in meta-samples of
bradyrhizobia with sequenced recA or glnII genes. A hypothetical 1:1 line
(each strain equal a new species) was drawn for reference to better represent
the leveling of each meta-sample.

FIGURE 7 | Chao1 and ACE non-parametric estimates of Bradyrhizobium
species richness based on meta-samples of strains with sequenced recA or
glnII genes. The recA metasample was rarefied to the number of glnII
sequences (n = 3464). Vertical lines indicate standard errors.

(Kaneko et al., 2002). The percentage of a Bradyrhizobium
chromosome devoted to GIs was calculated using the Island
Viewer 4 server applied on completely sequenced genomes
(Table 2). It was found that from 5.2% and up to 17.8% of
the chromosome can be regarded as the GI mobilome of
individual strains.

How Many Species of Bradyrhizobium
Would Be?
Another aspect related to the wide diversity found among
bradyrhizobia is related to their species richness. Up to
December 2018, forty one Bradyrhizobium species have
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been described. As previously mentioned, there would be
93 species among the genome-sequenced Bradyrhizobium
strains, i.e., more than twice the number of presently
described species. A quick survey of some of the studies
published on Bradyrhizobium diversity in different regions
like North America (Ormeño-Orrillo et al., 2012), South
America (Delamuta et al., 2012), Africa (Aserse et al., 2012),
Asia (Vinuesa et al., 2008), and Australia (Stepkowski
et al., 2012) suggest that the number of bradyrhizobial
species must be larger than a hundred but the total
number is yet unknown.

To estimate the number of potential Bradyrhizobium
species we decided to treat the 5678 recA and 3575 glnII
sequences available in the GenBank database as meta-
samples of the worldwide population of bradyrhizobia.
Although other phylogenetic markers have also been
used to characterize bradyrhizobia, numbers of their
available sequences were much lower in comparison to
recA and glnII (2411, 1771, 1758, 1465 for dnaK, rpoB,
atpD, gyrB, respectively). We refrain to use the 16S rDNA
gene despite having a large number of sequences in the
databases because it is already known that sequences of this
gene are too conserved in bradyrhizobia to discriminate
between species and in some cases are even unable to
discriminate between Bradyrhizobium and closely related
genera (Willems et al., 2001).

Pair wise comparisons between sequences from
Bradyrhizobium type strains revealed that nucleotide identities
of 98.2% for recA and 98.8% for glnII can be used as cutoff values
to discriminate between currently described bradyrhizobial
species. Using those cutoff levels, the worldwide sampled
bradyrhizobia with sequenced recA genes can be clustered
into 648 species-level OTUs while glnII data revealed 431
potential species. Rarefaction curves of both meta-samples
did not leveled off (Figure 6) suggesting that there are still
species to be discovered. Non-parametric richness estimation
(Chao, 2005) applied to both meta-samples indicated that
there could be from 750 to 880 species of Bradyrhizobium in
nature (Figure 7). It is worth noting that both meta-samples
are composed primarily of root nodule isolates. Non-symbiotic
bradyrhizobia inhabiting niches such as soil or rhizosphere,
or as endophytes of non-legume plants may encompass
additional species.

Bradyrhizobium, the Mother of Nodule
Symbiosis in Legumes?
The large genomic and phenomic diversity, as well as the
high number of predicted species may indicate that the
Bradyrhizobium genus is old. Interestingly, up till now this is
the only nodule bacteria genus that contains photosynthetic
bacteria and rhizobia that do not need Nod factors for
nodulation. It is notable that it contains some very efficient
strains for nitrogen fixation but also many generalists that form
nodules in tropical legumes which in general are considered
to precede temperate legumes. Several authors have noted that
more “primitive” legume plants form nodules predominantly

with Bradyrhizobium, thus lending support to the hypothesis
that these rhizobia are their ancestral symbionts (Fonseca
et al., 2012; Yao et al., 2014, 2015; Santos et al., 2017; Rathi
et al., 2018). Similarly, in Phaseolus the ancestral symbionts
were bradyrhizobia with a later symbiont shift to Rhizobium
in nodules of some temperate species (Servín-Garcidueñas
et al., 2014). The large diversity and number of different
nod genes in bradyrhizobia (Martínez-Romero et al., 2010)
may be suggestive that nodulation arose in bradyrhizobia.
This has been a subject of discussion (Martínez-Romero,
1994; Parker, 2015; Sprent et al., 2017) with alternative views
placing the origin of nod genes in beta-proteobacteria (Aoki
et al., 2013) based on Nod factor exporter gene phylogenies.
Since these exporters are not strictly required for nodulation
(Cárdenas et al., 1996), we can suppose that accessory nod
genes such as those for transporting Nod factors may be later
additions after the emergence of common nodulation genes in
Bradyrhizobium, then we may conciliate other possible origins for
accessory nod genes.

During this article reviewing process, two papers that we
must mention were published. The first one by Tindall (2019)
stated that Bradyrhizobiaceae is an illegitimate name that needs
to be replaced by Nitrobacteraceae because the latter contains
Nitrobacter and was proposed earlier than Bradyrhizobiaceae
and therefore takes precedence. Since this nomenclatural change
did not affect our conclusions and because Bradyrhizobiaceae
is how the family is still known, we choose to retain the
name throughout this paper. However, we recognize that future
studies will probably have to use Nitrobacteraceae as the proper
family name. The second paper reported a phylogenomic analysis
of bradyrhizobia and related taxa (Avontuur et al., 2019).
Similar to our findings, Avontuur et al. (2019) confirmed the
distinctiveness of the japonicum, elkanii and photosynthetic
superclades and described additional infrageneric groups, albeit
with some differences probably due to the use of different
sets of genes for the phylogenomic reconstructions. In their
analysis, our superclade IV was scattered in three groups named
jicamae, soil 1 and soil 2; and our superclade VI was included
in the elkanii group. In the first case we recognized that the
larger number of genes used by Avontuur et al. (2019) in
comparison to us, may have better resolved strains from our
superclade IV, however, in the latter case we consider that
superclade VI can be rightly segregated from the elkanii group
by the presence of an insertion in their 23S ribosomal genes.
Unlike us, Avontuur et al. (2019) tried to relate symbiotic and
photosynthetic lifestyles with the infrageneric structure found
within Bradyrhizobium but no clear relationship was found
probably because those lifestyles are coded by accessory genes
that can be gained and loss. On the other hand, our study
includes aspects that were not covered by Avontuur et al. (2019)
like species richness in Bradyrhizobium and the mobilome and
putative plasmid content. We also provide a more thoroughly
consideration of genome size in the Bradyrhizobiaceae and
whether or not bradyrhizobia may be split into different
genera. Thus, our analysis and those of Avontuur et al.
(2019) provide complementary views on the highly diverse
Bradyrhizobium genus.
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