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Type IV secretion systems (T4SS) are used by a number of bacterial pathogens to attack

the host cell. The complex protein structure of the T4SS is used to directly translocate

effector proteins into host cells, often causing fatal diseases in humans and animals.

Identification of effector proteins is the first step in understanding how they function

to cause virulence and pathogenicity. Accurate prediction of effector proteins via a

machine learning approach can assist in the process of their identification. The main

goal of this study is to predict a set of candidate effectors for the tick-borne pathogen

Anaplasma phagocytophilum, the causative agent of anaplasmosis in humans. To our

knowledge, we present the first computational study for effector prediction with a focus

on A. phagocytophilum. In a previous study, we systematically selected a set of optimal

features from more than 1,000 possible protein characteristics for predicting T4SS

effector candidates. This was followed by a study of the features using the proteome of

Legionella pneumophila strain Philadelphia deduced from its complete genome. In this

manuscript we introduce the OPT4e software package for Optimal-features Predictor for

T4SS Effector proteins. An earlier version of OPT4e was verified using cross-validation

tests, accuracy tests, and comparison with previous results for L. pneumophila. We use

OPT4e to predict candidate effectors from the proteomes of A. phagocytophilum strains

HZ and HGE-1 and predict 48 and 46 candidates, respectively, with 16 and 18 deemed

most probable as effectors. These latter include the three known validated effectors for

A. phagocytophilum.

Keywords: T4SS effector proteins, machine learning, Anaplasma phagocytophilum, protein prediction, OPT4e

software

1. INTRODUCTION

Anaplasma phagocytophilum is a tick-borne zoonotic Gram-negative pathogen that causes Human
Granulocytic Anaplasmosis (HGA). Incidence of this potentially fatal disease is rising in the
United States, with the number of cases increasing from 348 in 2000 to 5,762 in 2017 and incidence
rates increasing from 1.4 cases per million people in 2000 to 17.9 cases per million in 2017.
The number of cases in the United States increased 39% from 2016 to 2017 alone (CDC, 2019).
Moreover, the geographic range of A. phagocytophilum seems to be increasing along with the
range expansion of the tick vector Ixodes scapularis (blacklegged tick). HGA is now the third most
common vector-borne infection in the United States (Dumler et al., 2005; Dumler, 2012; Bakken
and Dumler, 2015; Sinclair et al., 2015; CDC, 2019).
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The geographic distribution of HGA is mainly focused in the
upper midwest and northeastern United States, which coincides
with Lyme disease and other I. scapularis-transmitted diseases
(CDC, 2019). The agent of Lyme disease, Borrelia burgdorferi,
and other human pathogens such as Babesia microti, Borrelia
mayonii, Borrelia miyamotoi, and Ehrlichia muris eauclairensis
are also transmitted by I. scapularis, with co-infections with A.
phagocytophilum reported in <10% of cases (CDC, 2019).

Some Gram-negative bacteria such as A. phagocytophilum
have evolved specialized secretion systems, secreting proteins
that interact with host cells. The type IV secretion system (T4SS)
is a macromolecular complex composed of proteins that are
responsible for secreting effector proteins directly into the cytosol
of eukaryotic host cells. The transported proteins, called effector
proteins, are instrumental agents of virulence and pathogenesis
and play a key role in altering environmental niches to allow
pathogen replication (Voth et al., 2010, 2012; Abby et al., 2016;
Han et al., 2016), yet relatively little is known about them. A
critical goal is to understand how effectors cause infection in
humans and animals which requires knowledge of the function
of each effector. The first step toward this goal is identifying the
effectors from among the entire set of proteins in the complete
genome of a bacterial pathogen with a T4SS.

In addition to experimentally validating effector proteins by
means of fusion protein reporter assays in translocation studies
(Voth et al., 2012; Maturana et al., 2013), a time-consuming
and expensive process, several computational methods have
been proposed for the prediction of effectors (Burstein et al.,
2009; Yu et al., 2010; Lockwood et al., 2011; Meyer et al.,
2013; Zou et al., 2013; Wang et al., 2014, 2018a,b). Accurate
prediction of effector proteins greatly limits the number of
proteins requiring experimental verification which reduces costs.
Current computational methods use either a scoring method
(Meyer et al., 2013) or a machine learning approach (Burstein
et al., 2009; Zou et al., 2013; Wang et al., 2014, 2018a,b) to predict
a set of candidate effectors. For example, Meyer et al. (2013) used
a scoring method to predict effectors for Legionella pneumophila
and other pathogens. Burstein et al. (2009) usedmachine learning
to focus on the L. pneumophila genome while (Wang et al., 2014)
studiedHelicobacter pylori effectors. In addition, there are several
reviews on T4SS effector prediction and the progress made in this
area (McDermott et al., 2011; Wang et al., 2017a; An et al., 2018;
Zeng and Zou, 2019) as well as several databases for curating
experimentally validated effector proteins for some species
(Bi et al., 2013).

The computational methods previously reported for T4SS
effector prediction used different sets of protein characteristics
as features for their methods. We suspect that the use of
these differing feature sets explains the differences in effector
predictions by the different algorithms. As a result of the
disparities between the results of earlier methods, we assembled
all the features used in prior studies and used a multi-level,
statistical approach to determine which were the most effective
in predicting effector proteins (Esna Ashari et al., 2017, 2018).
Because of the number of validated effectors available for L.
pneumophila, we then ran a number of experiments on the whole
genome of L. pneumophila using our optimal set of features

(Esna Ashari et al., 2019). A comparison of our results with the
list of validated effectors and those of previous studies was highly
encouraging.

Although A. phagocytophilum employs the T4SS to invade
human cells and cause anaplasmosis, a disease sometimes fatal to
humans, it has just three experimentally verified effector proteins.
As such, in order to conduct further research on this increasingly
important human pathogen, there is a need to identify more
effector proteins. Accurate prediction of effectors will assist
in this identification. In this paper we turn our attention to
the prediction of effector proteins in A. phagocytophilum. This
pathogen has not been the focus of previous computational
studies for effector prediction, in part because of its lack of
validated effector proteins. Because of the high accuracy of
the prediction results we obtained for L. pneumophila using a
combination of validated effectors for four different pathogens,
we decided to apply our method to A. phagocytophilum.

In addition to applying our model for T4SS effector prediction
to A. phagocytophilum, we also improved it based on what we
learned from our previous study (Esna Ashari et al., 2019) and
expanded the code to make it easy for microbiologists to use for
other bacteria with T4 secretion systems. We created a software
package called OPT4e, for Optimal-features Predictor for T4SS
Effector proteins, that performs all the steps described in our
previous studies as well as incorporating new steps, including
automation of feature evaluation which is very time consuming
for whole proteomes. OPT4e is specifically designed for T4SS
effector protein prediction and for use on Windows, Mac OS
X, and Linux operating systems. One of the main characteristics
of OPT4e is that it integrates all the tools, scripts, and software
needed for calculation of our optimal set of features (Esna Ashari
et al., 2018) and automatically creates the set of optimal features
for training or test sets. OPT4e predicts candidate effectors
and groups them based on their degree of likelihood of being
an effector. In addition, OPT4e can be updated to become a
stronger predictor over time. Finally, OPT4e has a very simple
and intuitive graphical-user interface (GUI)making it easy to use.

The remainder of themanuscript is organized as follows: First,
we focus on introducing OPT4e and the steps taken to create its
framework and the related algorithms. Next we explain our set
of optimal features and the machine learning algorithm used for
OPT4e. We then introduce the datasets used in this study for the
training and test sets followed by presentation of our results. In
the final section, we discuss the results we obtained for OPT4e for
two input proteomes.

2. MATERIALS AND METHODS

2.1. OPT4e Software
We designed and created OPT4e as a software package for
the purpose of predicting effector proteins in different T4SS
bacterial pathogens. OPT4e is an easy-to-use and user-friendly
software package written in Python 3. Its specific features are as
follows: It is based on usage of a machine learning approach for
effector prediction. Each protein characteristic in a sequence is
identified as a feature and is assigned the appropriate coefficient
by the machine learning algorithm based on its significance
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as determined by the training data, and it is not necessary to
determine the importance of each feature manually. Moreover,
it gathers and connects multiple bioinformatic tools in order to
automatically calculate and assign all the needed features and to
select the best ones. Therefore, installation is simple, and there
is no need to use lots of online tools or to know a specific
programming language to be able to use OPT4e as is necessary
for some previously developed tools (Burstein et al., 2009; Zou
et al., 2013; Wang et al., 2014). In addition, OPT4e predictions
are based on protein sequences and are not dependent on an
entire bacterial proteome. In fact, the input to OPT4e can be a
single protein sequence selected by the user. Also, OPT4e is based
on predictions using a specific machine learning algorithm while
taking advantage of two additional algorithms in order to present
the results in three different groups of more-likely, possible, and
less-likely candidate effectors. One of themost important features
of OPT4e is that it can be updated over time. Thus, if a user
has some new experimentally verified effectors or discovers some
critical non-effectors, they can add them to the software using
a few mouse clicks. The software will then include them in the
training set and update the model automatically. Enriching the
set of validated effectors in the software dataset will help with
the accuracy of the machine learning predictions, and OPT4e will
become increasingly more accurate with time.

2.1.1. Framework

The framework and Graphical User Interface (GUI) for OPT4e
are presented in Figure 1. First we provide an explanation of the
framework, shown in Figure 1A, as follows: In the initial step
a training set of known effectors and non-effectors is provided,
and values for the optimal features are calculated for them
automatically (Esna Ashari et al., 2018). OPT4e uses this set
as its input. Note that in the first step a user has to select the
appropriate button related to the purpose for using the software.
If it is being used for effector prediction, the user will need to
provide the test file for a protein sequence or a set of sequences in
fasta-file format for classification as effectors or non-effectors by
the OPT4e software. Then the software will calculate the feature
values for each of the sequences provided such that they are
available for machine learning prediction. The features used in
this package are explained in the next section.

In the next step, OPT4e uses a support vector machine (SVM)
algorithm with a radial basis function (RBF) kernel to predict
effector protein sequences. This algorithm was found to give
the best results as explained in Esna Ashari et al. (2019). In
addition, OPT4e uses two additional classifiers (SVM with linear
kernel and logistic regression) with the test sequences and uses
their results to group the initially predicted effectors into three
groups of more-likely (predicted by all three classifiers), possible
(predicted by an additional classifier), and less-likely (predicted
by just the initial SVM RBF classifier). The predicted groups of
effector sequences are given as the output of the program. It
should be noted that this methodology was used in the previous
version of our algorithm as well (Esna Ashari et al., 2019).
However, in our earlier work we used two ensemble classifiers
and divided the features into three different groups for each
ensemble set in addition to using the SVM with radial basis

function with all the features. We found that a single classifier
used with all the optimal features gave better results (Esna Ashari
et al., 2019). Hence, we have replaced the ensemble classifiers with
an SVM with a linear kernel and logistic regression in order to
improve the model.

If a user wants to add experimentally verified effectors or
some new known non-effectors to the training set to enrich it,
they should select the appropriate option when using OPT4e.
Then the software will automatically calculate the corresponding
feature values for the new sequences and will add them to the
feature set of the older training set.

We have added an option in OPT4e in case a user has made
changes to the training set incorrectly or decides they do not
want to change it. When the user clicks on the last button on the
GUI (Figure 1B), OPT4e will reset the training data back to the
original version. Finally, OPT4e is an open-source package, and
users can update it as they wish.

2.2. Features and Feature Selection
As described in the introduction, in our earlier study we
analyzed a comprehensive set of features gathered from previous
computational studies performed in the field of T4SS effector
protein prediction. The total number of features, including
elements of vector features, was 1,027. The complete list of these
features and the tools and software needed for their computation
are presented in Esna Ashari et al. (2017, 2018).

We used a multi-step feature selection algorithm, described
briefly in the next paragraph, to generate a set of optimal
features for prediction of effector proteins consisting of 370
features. The detailed list of selected features, including the
selected vector feature elements, can be found in Esna Ashari
et al. (2018). The features can be grouped into chemical
properties determining the way proteins interact with their
environment and how effectors enter host cells (Yu et al., 2010;
Zou et al., 2013), structural properties affecting protein-protein
interactions between bacterial pathogens and host cells (Yu
et al., 2010; Zou et al., 2013; Wang et al., 2014), compositional
properties including the amino acid and dipeptide composition
of protein sequences, and position-specific scoring matrix
(PSSM)-related properties including PSSM composition and
PSSM auto-covariance correlation composition (Zou et al., 2013;
Wang et al., 2017b). The compositional properties determine the
shapes and motifs of the protein sequences and, therefore, can
affect the way they interact with host cells.

The first step in determining our optimal set of features was to
use a filtering selection approach. For this purpose we used the t-
test as a hypothesis testingmethod to filter features based on their
associated p-values. Next we used Principal Component Analysis
and Factor Analysis for dimensional reduction and to eliminate
any redundancy and correlation in our feature set. The final step
in our statistical approach was designing a fast backward feature
selection method based on a Hosmer-Lemeshow goodness-of-fit
test and using binary logistic regression. In this fashion we were
able to retrieve a set of optimal features that work well together
for effector prediction, and the concordance percentage from
the Hosmer-Lemeshow goodness-of-fit test was still high after
removal of the less related features.
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FIGURE 1 | OPT4e Software: (A) The framework for OPT4e. (B) The Graphical User Interface (GUI) for OPT4e.

2.3. Machine Learning Model
After selecting a set of optimal features, we designed multiple
machine learning-based classifiers and tested them in order
to select the most accurate predictor with our feature set
(Esna Ashari et al., 2019). In due course, we focused on three
classifiers. They included the SVM with the RBF kernel which is

a well-known classifier and two ensemble classifiers (Esna Ashari
et al., 2019). Based on 10-fold cross-validation results for our
training set, results for our test set, and comparison with the
results of previously developed methods, the SVM with the RBF
kernel classifier was selected for further predictions, and it is
the main classifier used in the OPT4e software package. As
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mentioned earlier, the ensemble classifiers were replaced by an
SVM with a linear kernel and logistic regression.

2.4. Dataset
In order to create our training set, we gathered known effectors
and non-effectors for four Gram-negative bacterial pathogens
from the Alphaproteobacteria and Gammaproteobacteria classes.
This set is composed of effectors and non-effectors from: L.
pneumophila, Coxiella burnettii, Brucella spp., and Bartonella
spp. Furthermore, we added the three validated effectors and
multiple non-effectors from A. phagocytophilum to our training
set. The numbers of non-effector sequences added from A.
phagocytophilum strains HZ and HGE-1 were 115 and 120
sequences, respectively. The final training set included 1,365
sequences consisting of 432 effectors and 933 non-effectors.
Moreover, we added four experimentally validated effector
proteins for Anaplasma marginale to the training set and
repeated all the experiments (Lockwood et al., 2011). Therefore,
the final training set consisted of 436 effectors. The complete file
of protein sequences in fasta format used in the training set is
presented in Supplementary Data Sheet S1.

For this study we selected two strains of A. phagocytophilum,
strain HZ (accession number CP000235) and strain HGE-1
(accession number APHH01000001), for use with OPT4e. These
strains are composed of 1,352 and 1,148 protein sequences,
respectively. We used these two sets of protein sequences as input
files for OPT4e. In addition, the proteome for L. pneumophila
strain Philadelphia with 2,942 sequences was examined. Results
for the latter proteome are briefly described later to explain the
performance of OPT4e. More details concerning these datasets
are given in the next section.

3. RESULTS

In this section we present the results obtained by OPT4e for the
proteomes of A. phagocytophilum strain HZ and strain HGE-
1. First, however, we present a brief discussion on validation of
our classifier for the results obtained for the proteome of L.
pneumophila strain Philadelphia.

3.1. Validation of OPT4e
We performed a thorough validation of the earlier version of
our machine learning model as described in Esna Ashari et al.
(2019). Briefly, in our previous study we performed 10-fold cross-
validation for our training set and achieved an average accuracy
of 94.05% over all folds for the SVM with radial basis function.
Also, the model was verified using other performance metrics
and achieved an average precision of 92.49%, an average recall
of 92.00%, an average MCC (Matthews Correlation Coefficient, a
measure of correlation between real and predicted values) of 0.87,
and an average AUC (area under the curve) of 0.98. For further
validation of our method, we tested the algorithm using the
proteome for L. pneumophila strain Philadelphia and compared
our predictions with ones from previous computational methods.
Our results for effector candidates considered to be the most
likely agreed with 80.5 and 72.2% of candidate effectors predicted
using previous methods developed by Burstein et al. (2009) and

TABLE 1 | Number of effector candidate proteins for A. phagocytophilum strains

HZ and HGE-1 before and after adding A. marginale validated effectors to the

OPT4e training set.

Before adding A. marginale

effectors

After adding A. Marginale

effectors

Ap strain HZ Ap strain HGE-1 Ap strain HZ Ap strain HGE-1

More likely 14 17 16 18

Possible 10 6 9 5

Less likely 22 23 23 23

Total 46 46 48 46

A. phagocytophilum is indicated by Ap.

Meyer et al. (2013), respectively. Also, the results predicted 93.7
and 99.8% of known effectors and non-effectors, respectively,
from our training set (Esna Ashari et al., 2019).

As mentioned earlier, in our previous study we learned
that using all the features with a single classifier gave more
accurate results than separating the features and using them in
an ensemble classifier (Esna Ashari et al., 2019). Thus, for OPT4e
we replaced the ensemble classifiers in ourmodel for determining
more-likely, possible, and less-likely effectors. To ensure that
changing to the SVM with linear kernel and logistic regression
classifiers actually does give more accurate results, we used 10-
fold cross validation with our L. pneumophila strain Philadelphia
effector and non-effector proteins. We obtained accuracies of
93.73% for the SVM with linear kernel and 93.79% using logistic
regression. This is in contrast to our previous ensemble results
for which we obtained average accuracies of 93.64 and 92.44%.

3.2. Predicted Effectors for A.
phagocytophilum Strains HZ and HGE-1
Anaplasma phagocytophilum strain HZ contains 1,352 protein
sequences consisting of 115 known non-effectors including
the protein sequences associated with the genes rpoB (DNA-
directed RNA polymerase subunit beta), rpoC (DNA-directed
RNA polymerase subunit beta’), and Msp2/P44. For this strain,
14 protein sequences were predicted to be more likely to be an
effector protein.

Anaplasma phagocytophilum strain HGE-1 contains 1,148
protein sequences consisting of 120 known non-effectors
including DNA pol III, delta subunit (HGE1_05467), DNA-
binding protein HGE1_04712 (a helix-turn-helix DNA binding
protein somewhat specific to bacteria), MerR transcriptional
regulator-HGE1_05592 (a helix-turn-helix DNA binding protein
somewhat specific to bacteria), type IV secretion system
VirB6-HGE1_01722 (a part of the T4SS structure), putative
ABC transporter, permease protein-HGE1_00015 (an outer
membrane protein also found in Escherichia coli), thiamine
biosynthesis protein ThiS-HGE1_00315 (a sulfur carrier protein
common in bacterial metablolism), andMsp2/P44 sequences. For
this strain, 17 protein sequences were predicted to be more likely
to be an effector protein.

Table 1 lists the number of candidate effectors for both strains
of A. phagocytophilum according to their likelihood as predicted
by OPT4e.
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TABLE 2 | Effector candidates predicted by OPT4e.

Suggest HGE1 HGE1 (other) HZ HZ (other) Notes

HGE1_00145 APH_0033

* HGE1_00220 S, T4 APH_0049 S, T4

* HGE1_00312 T4 APH_0068 T4

* HGE1_00527 S APH_0117 S, T4

HGE1_00815 APH_0189 HZ: 7-aa insert at start

* HGE1_01135 S, T4 APH_0259 S, T4

* HGE1_01175 T4 APH_0267 T4 HGE1: 17-aa insert at start

HGE1_01752 APH_0382

* HGE1_01772 APH_0385 T4

HGE1_02100 APH_0385

HGE1_01777 APH_0386

HGE1_01782 APH_0387

HGE1_02092 APH_0452

HGE1_02095 APH_0453

HGE1_02117 APH_0453

HGE1_02107 APH_0455 S Known effector

* HGE1_02112 APH_0457 T4

* HGE1_02242 T4 APH_0485 T4

* HGE1_02492 S, T4 APH_0546 S, T4

* HGE1_02802 T4 APH_0633 T4

* HGE1_02817 T4 APH_0636 T4 HGE1: 3-aa insert at start

HGE1_02827 APH_0641

HGE1_02947 APH_0670 First aa different

* HGE1_03022 APH_0688 T4

* HGE1_03117 APH_0708 T4

* HGE1_03122 S APH_0709 S, T4

* HGE1_03182 S, T4 APH_0726 S, T4

* HGE1_03232 S, T4 APH_0740 S, T4 Known effector

HGE1_03297 APH_0755

* HGE1_03432 APH_0792 T4

* HGE1_03492 S APH_0805 S, T4

* HGE1_03497 APH_0807 T4

* HGE1_03502 T4 APH_0808

HGE1_03532 APH_0815

HGE1_03557 APH_0820

HGE1_03697 S, T4 APH_0859 S, T4 Known effector

* HGE1_03707 T4 APH_0861 T4

* HGE1_02737 T4 APH_0863 S

* HGE1_03892 S, T4 APH_0914 S, T4

* HGE1_05072 T4 APH_1167 T4

* HGE1_03907 APH_0916 T4

HGE1_03962 APH_0928

* HGE1_04167 T4 APH_0976 T4

HGE1_03507 HZ homolog not predicted

HGE1_05977 APH_1365 First aa different

* HGE1_05997 T4 APH_1369 T4 HZ: 6-aa insert at start

* HGE1_06052 S APH_1379 S HZ: 14-aa insert in middle

* HGE1_06067 T4 APH_1383 T4

APH_0239 No equivalent sequence in HGE1

APH_0904 No equivalent sequence in HGE1

APH_0028 No equivalent sequence in HGE1

APH_0640 No equivalent sequence in HGE1

APH_0816 No equivalent sequence in HGE1

HGE1 and HZ homologs are row aligned. Blue, orange, and red text colors indicate More Likely, Possible, and Less Likely effector candidates, respectively. Black text indicates that a

sequence was not predicted as an effector. The columns HGE1 (other) and HZ (other) indicate when a sequence was predicted as an effector candidate by S4TE (S) or T4EffPred (T4).

The Notes column lists differences between HGE-1 and HZ homologs, and finally the Suggest column indicates effector candidates proposed for initial experimental validation based

on the strength of their predictions.
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Because Anaplasma marginale is more closely related to
A. phagocytophilum than the bacteria used in our model, we
added four experimentally verified effector proteins for A.
marginale (Lockwood et al., 2011) to our training set and
repeated our experiments. Two new candidate effectors were
predicted for A. phagocytophilum strain HZ. Also, the more
likely category of candidate effectors was increased by 2 and
1 for A. phagocytophilum strains HZ and HGE-1, respectively.
Specific numbers are reported in Table 1, and all predicted
candidate effectors are presented in Tables 2–4 by locus number.
In addition, Tables 2–4 present suggestions for the order of
experimental verification of candidate effectors as explained in
detail in the next section.

4. DISCUSSION

The main goal of this study was predicting a set of candidate
effectors for A. phagocytophilum using a new package called
OPT4e which we developed for this purpose. In fact, OPT4e
can be used to give reasonable candidate effector predictions
for most T4SS bacteria from the Alphaproteobacteria and
Gammaproteobacteria classes. For A. phagocytophilum strains
HGE-1 and HZ, we predicted 48 and 46 candidate effectors,
respectively, with 16 and 18 more likely to be effectors. All three
experimentally-verified effector proteins were included in the 16
and 18 more-likely category.

We compared the differences between the predictions for
the two strains and found that whenever there was a difference
between the category in which an effector was predicted or an
effector was not predicted for one of the strains, there was a
difference between the homologous protein sequences of the two
strains. These differences are noted in Table 2. In addition, five
effector proteins were predicted in strain HZ for which there
is no equivalent protein sequence in strain HGE-1. Strain HZ
was the first A. phagocytophilum genome to be sequenced, and
many small open reading frames (ORFs) were annotated that
have not been retained in subsequent annotations (including
the RefSeq for HZ). Some of these small ORFs account for the
differences between the effector predictions for the two strains.
Interestingly, there was one effector predicted in HGE-1 for
which there was not an equivalent protein annotated in HZ.
However, closer inspection of the HZ genome revealed that the
sequence is present.

It should be noted that in machine learning-based prediction,
an algorithm tries to fit as many training samples as it can
based on the given features, and as the numbers of features
and samples increase, the task increases in complexity. Also, it
should be noted that the greater part of our positive training set
consists of known effectors for L. pneumophila because it has
the largest number of verified effectors. Moreover, there are only
three verified effectors for A. phagocytophilum in our dataset.
Therefore, it is possible that our set of candidate effectors for
A. phagocytophilum include the ones that are mostly similar to
L. pneumophila effectors. In addition, OPT4e may be detecting
genes with a different signature from the rest of the genome such
as those acquired by horizontal gene transfer in species where this

TABLE 3 | Groups recommended for experimental verification of effector

candidates for strain HZ.

Effector candidates Other models Notes

Group 1

APH_0259 S, T4

APH_0740 S, T4 Known effector

APH_0859 S, T4 Known effector

Group 2

APH_0239 T4

APH_0385 T4

APH_0457 T4

APH_0636 T4

APH_0904 T4

APH_0455 S Known effector

Group 3

APH_0033

APH_0382

APH_0385

APH_0386

APH_0387

APH_0452

APH_0453

APH_0928

Group 4

APH_0267 T4

APH_0633 T4

APH_0861 T4

APH_1167 T4

APH_1369 T4

APH_0863 S

APH_1379 S

Group 5

APH_0028

APH_0640

APH_1365

Group 6

APH_0049 S, T4

APH_0546 S, T4

APH_0709 S, T4

APH_0726 S, T4

APH_0805 S, T4

APH_0914 S, T4

Group 7

APH_0068 T4

APH_0485 T4

APH_0688 T4

APH_0708 T4

APH_0792 T4

APH_0807 T4

APH_0916 T4

APH_0976 T4

APH_1383 T4

APH_0117 S

(Continued)
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TABLE 3 | Continued

Effector candidates Other models Notes

Group 8

APH_0641

APH_0670

APH_0755

APH_0808

APH_0815

APH_0816

APH_0820

APH_1383

Groups are based on whether effector candidates areMore Likely shown in blue, Probable

shown in orange, and Less Likely shown in red, followed by prediction by both S4TE (S)

and T4EffPred (T4), prediction by one of them, or prediction by neither. We recommend

starting with Group 1 and proceeding successively through Group 8.

occurs. Thus, caution is necessary when evaluating the output.
It should be noted, however, that a strength of OPT4e is that
it can be updated over time, and a user has the ability to add
newly verified effectors to the training dataset. As a result, as new
effectors for A. phagocytophilum are verified, they can be used in
OPT4e to increase its accuracy for predicting effector proteins.

As a final note, we compared our effector candidates for A.
phagocytophilum with those predicted by S4TE (Noroy et al.,
2019) and T4EffPred (Zou et al., 2013) after we used these
two programs to predict effectors for both A. phagocytophilum
strains in our study. For HZ, OPT4e shared 13 of 48 predictions
with S4TE and 27 of 92 predictions with T4EffPred. S4TE and
T4EffPred shared ten predictions. Two of these were for known
effectors. The third known effector was predicted by S4TE but
not by T4EffPred. Thus, both OPT4e and S4TE predicted all three
known effectors (seeTable 2). For HGE-1, OPT4e shared 11 of 49
predictions with S4TE and 19 of 45 predictions with T4EffPred.
S4TE and T4EffPred shared seven predictions. Two of these were
for the homologs of known effectors. The third effector homolog
was not predicted by either method; only OPT4e predicted
all three.

One strategy for deciding which effector candidates to choose
for experimental verification is to select from among the ones
predicted by OPT4e for both strains of A. phagocytophilum
and also predicted by one of the other two methods, S4TE or
T4EffPred. There are 28 of these indicated by asterisks in Table 2,
where HGE1 and HZ homologs are row aligned.

An alternative strategy and more systematic approach is to
first group the predicted effectors on the basis of more-likely,
probable, and less-likely and then based on predictions by the two
methods, S4TE or T4effPred. Experimental verification would
begin with Group 1 and proceed in order through successive
groups as shown in Tables 3, 4. Table 3 is for HZ and Table 4

is for HGE-1, and for both strains Group 1 candidate effectors
have literally been predicted by five different algorithms, the
three from OPT4e plus S4TE and T4EffPred. For HZ, two
of the three sequences in Group 1 are for known effectors,
and the third known effector is in Group 2. For HGE-1, two
of the sequences in Group 1 are for homologs of known

TABLE 4 | Groups recommended for experimental verification of effector

candidates for strain HGE-1.

Effector Candidates Other Models Notes

Group 1

HGE1_01135 S, T4

HGE1_03232 S, T4 Homolog of known effector

HGE1_03697 S, T4 Homolog of known effector

Group 2

HGE1_01175 T4

HGE1_05997 T4

Group 3

HGE1_00145

HGE1_01752

HGE1_01772

HGE1_01777

HGE1_01782

HGE1_02092

HGE1_02095

HGE1_02100

HGE1_02107 Homolog of known effector

HGE1_02112

HGE1_02117

HGE1_03507

HGE1_03962

Group 4

HGE1_02737 T4

HGE1_02802 T4

HGE1_02817 T4

HGE1_03707 T4

HGE1_05072 T4

Group 5

HGE1_00220 S, T4

HGE1_02492 S, T4

HGE1_03182 S, T4

HGE1_03892 S, T4

Group 6

HGE1_00312 T4

HGE1_02242 T4

HGE1_03502 T4

HGE1_04167 T4

HGE1_06067 T4

HGE1_00527 S

HGE1_03122 S

HGE1_03492 S

HGE1_06052 S

Group 7

HGE1_00815

HGE1_02827

HGE1_03022

HGE1_03117

HGE1_03297

HGE1_03432

HGE1_03497

HGE1_03532

HGE1_03557

HGE1_03907

Groups are based on whether effector candidates areMore Likely shown in blue, Probable

shown in orange, and Less Likely shown in red, followed by prediction by both S4TE (S)

and T4EffPred (T4), prediction by one of them, or prediction by neither. We recommend

starting with Group 1 and proceeding successively through Group 7.
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effectors, and the third effector homolog is in Group 3. Thus
the first three groups for each strain present excellent choices for
experimental verification.
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