
fmicb-10-01394 June 21, 2019 Time: 18:9 # 1

ORIGINAL RESEARCH
published: 25 June 2019

doi: 10.3389/fmicb.2019.01394

Edited by:
Ziad Daoud,

University of Balamand, Lebanon

Reviewed by:
Mueen Aslam,

Agriculture and Agri-Food Canada,
Canada

Maria Bagattini,
University of Naples Federico II, Italy

*Correspondence:
Tiago Casella

tiago_casella@yahoo.com.br

Specialty section:
This article was submitted to

Antimicrobials, Resistance
and Chemotherapy,

a section of the journal
Frontiers in Microbiology

Received: 12 February 2019
Accepted: 04 June 2019
Published: 25 June 2019

Citation:
Gozi KS, Froes JR,

Deus Ajude LPT, da Silva CR,
Baptista RS, Peiró JR, Marinho M,
Mendes LCN, Nogueira MCL and

Casella T (2019) Dissemination
of Multidrug-Resistant Commensal

Escherichia coli in Feedlot Lambs
in Southeastern Brazil.

Front. Microbiol. 10:1394.
doi: 10.3389/fmicb.2019.01394

Dissemination of
Multidrug-Resistant Commensal
Escherichia coli in Feedlot Lambs in
Southeastern Brazil
Katia Suemi Gozi1, Juliana Rodrigues Froes1, Luana Perpetua Tobias Deus Ajude1,
Caroline Rodrigues da Silva1, Rafaela Speranza Baptista2, Juliana Regina Peiró2,
Marcia Marinho2, Luiz Claudio Nogueira Mendes2, Mara Corrêa Lelles Nogueira1 and
Tiago Casella1,3*

1 Centro de Investigação e Microrganismos, FAMERP, São José do Rio Preto, Brazil, 2 Faculdade de Medicina Veterinária,
São Paulo State University (UNESP), Araçatuba, Brazil, 3 Hospital de Base, São José do Rio Preto, Brazil

Antimicrobial resistance (AR) is a public health issue since it limits the choices to treat
infections by Escherichia coli in humans and animals. In Brazil, the ovine meat market
has grown in recent years, but studies about AR in sheep are still scarce. Thus, this
study aims to investigate the presence of AR in E. coli isolated from lambs during
feedlot. To this end, feces from 112 lambs with 2 months of age, after weaning, were
collected on the first day of the animals in the feedlot (day 0), and on the last day before
slaughtering (day 42). Isolates were selected in MacConkey agar supplemented with
4 mg/L of ceftiofur and identified by biochemical methods. Isolates were submitted to
an antimicrobial susceptibility test by disc-diffusion and PCR to investigate genes for
phylogenetic group, virulence determinants and resistance to the several antimicrobial
classes tested. The genetic localization of the bla genes detected was elucidated by
S1-PFGE followed by Southern blot-hybridizations. The isolates were typed by XbaI-
PFGE and MLST methods. Seventy-eight E. coli were isolated from 8/112 (7.1%)
animals on day 0, and from 55/112 (49.1%) animals on day 42. Since only fimH was
present in almost all E. coli (97.4%) as a virulence gene, and also 88.5% belonged to
phylogroups B1 or A, we consider that isolates represent intestinal commensal bacteria.
The dendrogram separated the 78 non-virulent isolates in seven clusters, two of which
comprised 50 E. coli belonging to ST/CC 1727/446 or ST 3994 recovered on day
42 commonly harboring the genotype blaCMY−2-aac(3)-IIa -tetA-sul1-sul2-floR-cmlA.
Special attention should be given to the presence of blaCTX−M−15, a worldwide gene
spread, and blaCTX−M−14, a hitherto undetected gene in Enterobacteriaceae from food-
producing animals in Brazil. Importantly, E. coli lineages and plasmids carrying bla genes
detected here have already been reported as sources of infection in humans either
from animals, food, or the environment, which raises public health concerns. Hence,
two types of commensal E. coli carrying important AR genes clearly prevailed during
feedlot, but lambs are also reservoirs of bacteria carrying important AR genes such as
blaCTX−M−14 and blaCTX−M−15, mostly related to antimicrobial treatment failure.

Keywords: Escherichia coli, sheep, multidrug resistance, cephalosporin, aminoglycoside, tetracycline,
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INTRODUCTION

The use of antimicrobial agents in humans and animals
can cause the emergence and dissemination of antimicrobial
resistance (AR) in pathogens, which may compromise the
effective treatment of infections in humans (Kaesbohrer et al.,
2012). International public health agencies have reported the
potential link and risks between the overuse or misuse of
antimicrobials in veterinary practices and the emergence of
human resistant pathogens, which encourage surveillance of AR
and antimicrobial use worldwide (EFSA, 2011; WHO, 2017).
Human exposure to AR bacteria through direct contact with
animals, consumption and handling of contaminated food, and
bacteria released into the environment may contribute to the
spread of AR determinants (Kaesbohrer et al., 2012).

Infections caused by AR E. coli and their isolation from
food-producing animals are increasing worldwide (EFSA, 2008,
2011; Kaesbohrer et al., 2012). This scenario is regarded
as a consequence of the selective pressure exerted on the
gastrointestinal tract (GIT) of the animals by the overuse of
antimicrobials (Graham et al., 2017). During slaughtering, the
carcass may be contaminated and AR commensal or pathogenic
bacteria might reach humans through the food chain (Cyoia
et al., 2019; Projahn et al., 2019). The relationship between
AR strains isolated from humans and the food chain has
been already reported (Belmar Campos et al., 2014). Therefore,
the monitoring of commensal bacteria is important since it
constitutes a reservoir of AR genes, which allows the tracking
of emerging resistance in livestock and possible spread to
animal-derived food and other zoonotic pathogens (EFSA, 2008;
Kaesbohrer et al., 2012; Madec and Haenni, 2018).

The majority of studies about antimicrobial use and resistance
in food-producing animals are carried out on cattle, chickens, and
pigs, but in regard to other food-producing flocks, such as sheep,
information is scarce. Little is known about AR in sheep in Brazil,
despite the increased consumption of lamb meat (FAO, 2018).
Therefore, this study aims to determine the distribution of AR
E. coli in the fecal microbiota of feedlot lambs in Brazil.

MATERIALS AND METHODS

Study Population
A special feedlot comprising 140 lambs with 2 months of age,
after weaning, coming from 35 different farms in the State
of São Paulo, Southeastern Brazil was chosen for this study.
Stool samples were collected weekly from the rectum of the
animals for parasitological screening between September 14, 2016
and October 27, 2016, under the Ethics Committee approval
number FOA00845-2017. Trimethoprim/sulfamethoxazole was
used to prevent and to treat clinical manifestations of
respiratory disease, and florfenicol was used to treat infectious
keratoconjunctivitis. Stool samples from 112 lambs were
collected immediately after the arrival of the sheep at the
feedlot (day 0) and then on the day before the slaughtering
of the animals (day 42) to further investigate the presence of
AR E. coli.

Bacterial Culture, Identification and
Antimicrobial Susceptibility
About one gram of feces was diluted in 5 mL of sterile NaCl
0.9% and directly inoculated onto MacConkey agar (Oxoid)
supplemented with 4 mg/L of ceftiofur (Lapisa). Following
incubation at 37◦C for 18–24 h, one of each of the different
presumptive E. coli colonies (i.e., pinkish round colony due to
lactose fermenting, dry to little mucous aspect, and characteristic
odor) were selected for identification by biochemical essays
using a commercial kit (NewProv) and further characterization
described below.

Antimicrobial susceptibility testing was performed
following the Clinical and Laboratory Standards Institute
(CLSI, 2017) guidelines using the disc diffusion method.
Bacterial susceptibility to 13 beta-lactam and non-beta-lactam
antibiotics (Oxoid) of veterinary and human interest was tested:
amoxicillin/clavulanate, ceftazidime, cefotaxime, ceftiofur,
cefoxitin, ertapenem, amikacin, gentamicin, enrofloxacin,
nalidixic acid, tetracycline, trimethoprim/sulfamethoxazole,
florfenicol, and chloramphenicol. Parallel to the antimicrobial
susceptibility test, the phenotypic test for production of
extended-spectrum beta-lactamase was performed by the
Modified Double Disc Synergy Test (Kaur et al., 2013). E. coli
ATCC 25922 and Klebsiella pneumoniae ATCC 700603 were used
as quality control strains.

AR and Virulence Genes, and
Phylogenetic Grouping
Investigation of the main plasmidial genes associated
with cephalosporins resistance (blaCTX−M and blaCMY),
aminoglycosides resistance [aac(3)-Ia, aac(3)-IIa, acc(6′)-Ih,
ant(2′′)-Ia, aph(3′)-VI, aph(3′)-Ia and aac(6′)-Ib], quinolones
resistance (qnrA, qnrB, qnrC, qnrD, qnrS, qepAB, and oqxAB),
tetracycline resistance (tetA, tetB, and tetC), trimethoprim
resistance (dfr Ia, dfr VII, and dfr XII), sulphas resistance (sul1
and sul2), and phenicols resistance (floR, cat and cmlA) was
performed in each respective resistant strain by PCR according
to previous protocols (Supplementary Table 1). Products of bla
genes were sequenced using the corresponding primers in order
to identify the variant detected and analyzed using BLAST1.

The following 20 virulence genes, which have been associated
with Extraintestinal Pathogenic E. coli strains, were investigated
by PCR as previously described (Supplementary Table 1): fimH,
papEF, papG I, papG II, papG III, sfa/focDE, sfaS, focG, afa/draBC,
nfaE, kpsMT K1, kpsMT K5, hlyA, cnf1, cdtB, sat, vat, fyuA, iutA,
and iroN. Since sheep are known as an important source of Shiga-
toxin producing-E. coli (STEC) (Vettorato et al., 2009), the stx1
and stx2 genes, as well as the aggR and the eae genes, associated
with Enteroaggregative E. coli (EAEC) and Enteropathogenic
E. coli (EPEC), respectively, were additionally searched by
PCR according to previous protocols (Supplementary Table 1).
E. coli isolates were also submitted to phylogenetic grouping for
predicting of commensal or pathogenic isolates as previously
described (Clermont et al., 2000; Doumith et al., 2012).

1http://blast.ncbi.nlm.nih.gov/
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Plasmids Typing
Replicon of the plasmids of the isolates was detected by PCR-
based Replicon Typing scheme (Carattoli et al., 2005; Villa
et al., 2010) using the PBRT 2.0 kit (DIATHEVA). S1 enzyme
(Promega) was used for 45 min to linearize plasmids and results
were visualized in Pulsed-Field Gel Electrophoresis (S1-PFGE) for
20 h with initial switch time = 1 s and final switch time = 30 s on
an electric field of 6 V/cm. Southern blot-hybridization analysis
on S1-PFGE gels was performed using adequate probes and
the kits AmershamTM AlkPhos Direct Labeling Reagents and
AmershamTM CDP-StarTM Detection Reagent (GE Healthcare).

Isolates Typing
Bacterial DNA was typed by restriction with XbaI (Thermo
Scientific) followed by a PFGE (XbaI-PFGE) for 22 h with initial
switch time = 2.2 s and final switch time = 54.2 s, and 6 V/cm.
The software BioNumericsTM version 7.6.3 (Applied Maths)
was used for dendrogram construction and clustering based on
the band-based Dice’s similarity coefficient and the unweighted
pair group method using arithmetic averages. Isolates were
considered to belong to the same cluster when the similarity
coefficient was ≥90%.

Escherichia coli isolates were additionally submitted to
Multilocus Sequence Typing according to the Achtman’s scheme2.

Nucleotide Sequence Accession Number
The bla genes sequences reported in this study have been
deposited to GenBank under accession numbers MK896925 to
MK896944 and MK917695 to MK917713.

RESULTS

Eight CTX-M-producing E. coli were isolated from eight animals
on day 0, and 70 CTX-M- or CMY-2-producing E. coli were
isolated from 55 lambs on day 42 (Figure 1 and Table 1). All
78 isolates presented resistance to at least one of the third-
generation cephalosporins – 3GC tested (ceftazidime, cefotaxime,
ceftiofur). The 53 CMY-2-producing E. coli presenting resistance
to amoxicillin/clavulanic acid also presented resistance to the
cephamycin cefoxitin (Figure 1). More than 80% of the isolates
presented additional resistance to at least one of the phenicols
tested (68, 87.2%), to tetracycline (66 isolates, 84.6%), to
trimethoprim/sulfamethoxazole (65, 83.3%), and at least one
of the aminoglycosides tested (64, 82.0%). Only seven isolates
(9.0%) presented resistance to nalidixic acid and/or enrofloxacin,
and all E. coli were susceptible to ertapenem (Table 1).

In total, 18 genes responsible for antimicrobial resistance
were detected in this study, and all of the 78 isolates presented
blaCMY−2 or blaCTX−M genes (Figure 1 and Table 2). The genes
blaCTX−M−8, blaCTX−M−14, and blaCTX−M−15 were identified in
the isolates from day 0 harbored by plasmids IncI1 of ∼97 kb
or IncHI1 ∼194 kb for blaCTX−M−8, and plasmid FII of about
97 kb for blaCTX−M−15. We could not detect plasmids harboring
blaCTX−M−14. The blaCTX−M−2, blaCTX−M−8, blaCTX−M−15, and

2https://pubmlst.org/bigsdb?db=pubmlst_mlst_seqdef

blaCMY−2 were identified in isolates recovered on day 42 inserted
into the chromosome in the case of blaCTX−M−2, and harbored
by plasmids IncI1 of about 95 kb or 97 kb for blaCTX−M−8,
plasmid IncHI2 of ∼335 kb for blaCTX−M−15, and plasmid
IncA/C of ∼170 kb for all blaCMY−2 (Table 3). Regarding
resistance to aminoglycosides, especially gentamicin, the aac(3)-
IIa gene was detected in 60 isolates (76.9%) on days 0 and 42
of feedlot while the ant(2′′)-Ia gene was detected only in five
isolates (6.4%) on day 42. The qnrB gene was the only one
detected as responsible for quinolone non-susceptibility, present
in six isolates (7.7%) obtained on day 42. The tetA and tetB
genes, responsible for tetracycline resistance, were detected in
54 (69.2%) and 10 (12.8%) isolates, respectively, on days 0 and
42 of feedlot. Concerning resistance to trimethoprim, the dfr
VII gene was detected only on day 0 of feedlot in four isolates
(5.1%), and dfr Ia and dfr XII were detected only on day 42 in
16 (20.5%) and 21 (26.9%) isolates, respectively. Resistance to
sulphas was detected at both the first and last days of feedlot, with
61 isolates (78.2%) carrying sul1, and 65 (83.3%) carrying the sul2
gene. Lastly, in regard to phenicols resistance, the floR and the
cmlA genes were detected in 65 (83.3%) and 67 (85.9%) isolates,
respectively, while the cat gene was detected in only eight isolates
(10.3%); all recovered on both days 0 and 42 of feedlot (Figure 1
and Table 2).

Four virulence genes were detected, but only fimH was present
in the majority (76 isolates, 97.4%). The papEF was detected in 3
isolates (3.8%), and papG II and fyuA in 2 (2.6%), as presented
in Figure 1. Furthermore, five genotypes concerning virulence
were detected, including the absence of any gene, the presence of
only fimH or a combination of it and the other genes detected
(Table 4). No genes predictive of STEC, EAEC or EPEC were
detected. Forty-eight (61.5%) E. coli belonged to phylogroup B1,
21 (27.0%) to phylogroup A, 5 (6.4%) to phylogroup D, and 4
(5.1%) to phylogroup B2. Phylogroup D was related only to the
blaCTX−M−2 gene (Table 4).

The XbaI-PFGE typing distinguished the 78 isolates in seven
major clusters. Two lambs (animals #45 and #87) presented AR
E. coli (isolates 0.45E1 and 42.45E1, and 0.87E1 and 42.87E1,
respectively) on both days 0 and 42, but the strains are not similar
by XbaI-PFGE and neither carry the same AR genes (Figure 1).
Typing with the MLST scheme revealed 10 Sequence Types (ST)
of E. coli in the studied feedlot, and one new allele profile in
seven blaCTX−M−8-carrying isolates (0.44E1, 42.91E1, 42.108E1,
42.114E1, 42.120E2, 42.127E1, and 42.140E1) recovered on the
first and last days of feedlot. The ST 1727 Clonal Complex
(CC) 446 was predominant and present only on day 42 in
52.6% of the total isolates regarding just blaCMY−2-carrying
E. coli from phylogenetic group B1, followed by the ST 3994,
the new combination of MLST alleles, ST/CC 58/155, ST 6618,
ST 1585, and the ST/CC 410/23, ST 457, ST 962, ST 1642, ST
5204 (Table 5).

DISCUSSION

Seventy-four (94.9%) E. coli isolates presented a multidrug-
resistant antibiotype (MRAb) according to the antimicrobial
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FIGURE 1 | Dendrogram obtained from XbaI-PFGE typing of the 78 E. coli isolated. Dendrogram was constructed using Optimization 0% and Tolerance 1.5%. AMC, amoxicillin/clavulanate; CAZ, ceftazidime; CTX,
cefotaxime; EFT, ceftiofur; FOX, cefoxitin; ETP, ertapenem; AK, amikacin; CN, gentamicin; ENR, enrofloxacin; NA, nalidixic acid; TE, tetracycline; STX, trimethoprim/sulfamethoxazole; FFC, florfenicol; C,
chloramphenicol. Antimicrobial Susceptibility Profile squares: black, resistance; gray, intermediate resistance; white, susceptibility. Virulence genes squares: black, presence; white, absence. PhG, phylogenetic
group. ST/CC, Sequence Type/Clonal Complex. ND, localization not detected. Isolation dates “Sep 14th, 2016” and “Oct 27th, 2016” refers to “day 0” and “day 42,” respectively.
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TABLE 1 | Isolates presenting resistance to each antimicrobial class among the 78
E. coli from stools of sheep in Southeastern Brazil.

Antimicrobial N isolates bla gene

class (%) associated

Penicillin + beta-lactamase
inhibitors

53 (68.0) CMY-2

Third-generation
cephalosporins

78 (100.0) CTX-M-2, −8, −14, −15,
CMY-2

Cephamycin 53 (68.0) CMY-2

Aminoglycosides 64 (82.0) CTX-M-2, −14, −15, CMY-2

Quinolones 7 (9.0) CTX-M-2, −15, CMY-2

Tetracycline 66 (84.6) CTX-M-2, −8, −14, −15,
CMY-2

Folate pathway inhibitors 65 (83.3) CTX-M-2, −8, −14, −15,
CMY-2

Phenicols 68 (87.2) CTX-M-2, −8, −14, −15,
CMY-2

The bla genes associated with each antimicrobial class resistance are also
presented.

susceptibility test, with the exception of the isolate 0.74E1,
recovered on day 0 from animal #74, and the isolates 42.120E2,
42.127E1, 42.140E1, obtained on day 42 from animals #120, #127
and #140. Interestingly, all the non-MRAb E. coli were associated
with blaCTX−M−8 gene (Figure 1). The high percentage of MRAb
isolates illustrates the potential for spread of AR bacteria through
a flock. Studies have already reported that the resistance rate to
some antimicrobials rises during cattle or pig feedlot because of
antimicrobial usage (Benedict et al., 2015; Gibbons et al., 2016;
Weinroth et al., 2018). However, a Canadian study surveyed
sheep flocks over a 1-year period and found no significant
difference between the initial and the final visits (Scott et al.,
2012), which is in disagreement with this study.

No isolate presented resistance to ertapenem (Table 1), which
could be related to the fact that carbapenems are not approved
for use in animals (OIE, 2018). The detection of AR E. coli
in 55 animals after feedlot, in comparison to eight animals
on day 0, indicates a selection pressure acting on the flock.
Beta-lactams, florfenicol, macrolides, quinolones, tetracycline,

TABLE 2 | Antimicrobial resistance genes distribution among the 78 E. coli from stools of sheep in Southeastern Brazil, according to the animals (ID) and the day of
feedlot they were detected.

Antimicrobial Resistance Distribution Animal ID Day

class gene (%) (n)

Third- blaCTX−M−2 5 (6.4) 2, 87, 118, 120 (4) 42

generation blaCTX−M−8 12 (15.4) 9, 44, 50, 72, 74, 91, 100, 108, 114, 120, 127, 140 (12) 0, 42

cephalosporins blaCTX−M−14 4 (5.1) 86, 87, 93, 113 (4) 0

blaCTX−M−15 4 (5.1) 32, 45, 49, 54 (4) 0, 42

blaCMY−2 53 (68.0) 3, 5, 7, 12, 16, 17, 19A, 19B, 20, 23, 26, 29, 30, 32, 38, 42, 45, 50, 53, 54, 55, 57, 61, 62,
64, 79, 84, 88, 90, 95, 96, 100, 101, 109, 111, 121, 125, 126, 129, 130, 133, 134, 135,

138, 140 (45)

42

Aminoglycoside aac(3)-IIa 60 (76.9) 2, 3, 5, 7, 12, 16, 17, 19A, 19B, 20, 23, 26, 29, 30, 32, 38, 42, 45, 49, 50, 53, 54, 55, 57,
61, 62, 64, 79, 84, 87, 88, 90, 93, 95, 96, 100, 101, 109, 111, 113, 118, 120, 121, 125,

126, 129, 130, 133, 134, 135, 138, 140 (52)

0, 42

ant(2′′)-Ia 5 (6.4) 2, 87, 88, 118, 120 (5) 42

Quinolone qnrB 6 (7,7) 32, 49, 54, 88, 91 (5) 42

Tetracycline tetA 54 (69.2) 3, 5, 7, 12, 16, 17, 19A, 19B, 20, 23, 26, 29, 30, 32, 38, 42, 45, 50, 53, 54, 55, 57, 61, 64,
79, 84, 88, 90, 95, 96, 100, 101, 109, 111, 120, 121, 125, 126, 129, 130, 133, 134, 135,

138, 140 (45)

0, 42

tetB 10 (12.8) 2, 72, 86, 87, 93, 113, 118, 120 (8) 0, 42

Trimethoprim dfr Ia 16 (20.5) 2, 3, 16, 17, 19A, 20, 30, 32, 54, 57, 87, 95, 118, 120, 138 (15) 42

dfr VII 4 (5.1) 45, 86, 87, 93 (4) 0

dfr XII 21 (26.9) 2, 3, 16, 17, 19A, 19B, 20, 30, 32, 50, 54, 57, 87, 88, 91, 95, 100, 108, 118, 120, 138 (21) 42

Sulphas sul1 61 (78.2) 2, 3, 5, 7, 12, 16, 17, 19A, 19B, 20, 23, 26, 29, 30, 32, 38, 42, 45, 50, 53, 54, 55, 57, 61,
62, 64, 79, 84, 87, 88, 91, 93, 95, 96, 100, 108, 109, 111, 118, 120, 121, 125, 126, 129,

130, 133, 134, 135, 138, 140 (50)

0, 42

sul2 65 (83.3) 2, 3, 5, 7, 12, 16, 17, 19A, 19B, 20, 23, 26, 29, 30, 32, 38, 42, 45, 49, 50, 53, 54, 55, 57,
61, 62, 64, 72, 79, 84, 86, 87, 88, 91, 93, 95, 96, 100, 108, 109, 111, 118, 120, 121, 125,

126, 129, 130, 133, 134, 135, 138, 140 (53)

0, 42

Phenicols floR 65 (83.3) 3, 5, 7, 9, 12, 16, 17, 19A, 19B, 20, 23, 26, 29, 30, 32, 38, 42, 44, 45, 50, 53, 54, 55, 57,
61, 62, 64, 79, 84, 86, 87, 88, 90, 95, 96, 100, 101, 108, 109, 111, 114, 120, 121, 125,

126, 127, 129, 130, 133, 134, 135, 138, 140 (53)

0, 42

cat 8 (10.3) 2, 32, 49, 54, 86, 88, 91, 108 (8) 0, 42

cmlA 67 (85.9) 2, 3, 5, 7, 9, 12, 16, 17, 19A, 19B, 20, 23, 26, 29, 30, 32, 38, 42, 44, 45, 50, 53, 54, 55,
57, 61, 62, 64, 72, 79, 84, 86, 87, 88, 90, 93, 95, 96, 100, 101, 109, 111, 118, 120, 121,

125, 126, 129, 130, 133, 134, 135, 138, 140 (54)

0, 42
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TABLE 3 | Genetic localization of bla genes detected in the 78 E. coli isolates.

bla gene Localization N isolates Day

CTX-M-2 chromosome 5 42

CTX-M-8 IncI1 (95 kb) 2 42

IncI1 (97 kb) 9 0, 42

IncHI1 (194 kb) 1 0

CTX-M-14 ND∗ 4 0

CTX-M-15 IncFII (97 kb) 1 0

IncHI2 (335 kb) 3 42

CMY-2 IncA/C (170 kb) 53 42

The size of plasmids is described between parentheses and represents
an approximation according to S1-PFGE gels and the molecular reference.
∗Not detected.

and trimethoprim/sulfamethoxazole are administered in sheep
(OIE, 2018). In fact, some animals included in this study received
florfenicol or trimethoprim/sulfamethoxazole, and this could
explain the presence of the AR E. coli because of direct or co-
selection of resistance determinants in the GIT of the animals
(Collignon et al., 2016; Makita et al., 2016; Knudsen et al., 2018).

The set of genes codifying beta-lactamase enzymes carried by
the E. coli isolated on the 2 days of analysis was diverse. On
day 0, 7.1% (8/112 animals) of the sampled lambs presented
E. coli harboring some blaCTX−M-variant. However, after 42 days
of feedlot the majority of E. coli isolated (53/78, 68.0% of the
total) harbored the blaCMY−2 gene, comprising essentially the
two great clusters of the dendrogram and the ST/CC 1727/446
and ST 3994 (Figure 1). Besides, blaCMY−2, the blaCTX−M−2 gene
was detected only on day 42, while blaCTX−M−14 was detected in
isolates recovered only on day 0 (Table 2). It seems that the first
two genes entered into the flock during feedlot by some external
factor such as surrounding animals, insects, or the environment
(Blaak et al., 2015; Huijbers et al., 2015; Solà-Ginés et al., 2015),
and the latter disappeared during feedlot perhaps because of
competition between the blaCTX−M−14-carrying E. coli and other
more successful strains, possibly the blaCMY−2-carrying E. coli.
On the other hand, blaCTX−M−8 and blaCTX−M−15 were present
on the first day of feedlot and persisted until the end (Table 2),
which is clearly not linked to the maintenance of isolates into
the feedlot, since the CTX-M-8- and the CTX-M-15-producing
E. coli isolated on days 0 and 42 are not clonally related by
PFGE or MLST (Figure 1). However, the majority of blaCTX−M−8
detected in isolates from day 42 are harbored by IncI1 plasmids of
∼97 kb, the same as two detected on day 0, which illustrates the

TABLE 5 | Sequence Types and Clonal Complexes detected for the E. coli
isolated from sheep in Southeastern Brazil.

ST/CCa N isolates bla gene Phylogroup Day

(%) associated

58/155 5 (6.4) CTX-M-8, CTX-M-14 B1 0

410/23 1 (1.3) CTX-M-15 A 0

457 1 (1.3) CTX-M-2 D 42

962 1 (1.3) CTX-M-8 B1 0

1585 2 (2.6) CTX-M-15 A 42

1642 1 (1.3) CTX-M-15 B1 42

1727/446 41 (52.6) CMY-2 B1 42

3994 14 (17.9) CTX-M-8, CMY-2 A 42

5204 1 (1.3) CTX-M-8 A 0

6618 4 (5.1) CTX-M-2 D 42

NEWb 7 (8.9) CTX-M-8 A, B2 0, 42

STs are linked to the number of isolates belonging to each lineage as well
as to the bla genes associated, the phylogenetic group and the day of
feedlot each ST was identified. aST/CC, Sequence Type/Clonal Complex. bNew
allelic combination: adk(295), fumC(54), gyrB(535), icd(767), mdh(260), recA(40),
purA(83).

maintenance and spreading of that plasmid through the feedlot.
On the other hand, the blaCTX−M−15 gene identified in three
E. coli recovered on day 42 probably entered the feedlot at some
point since they are harbored by plasmid IncHI2 of ∼335 kb,
differently from the blaCTX−M−15 harbored by an IncFII of ∼97
kb on day 0 (Table 3). Remarkably, some animals (2, 16, 19A,
19B, 20, 32, 50, 54, 57, 100, 111, 120, 140) carried more than
one CMY-2 or CTX-M-producing E. coli on day 42, which are
also present in other animals (Figure 1 and Table 2), which
demonstrates the exchanging of commensal GIT bacteria among
animals in the feedlot.

The use of a 3GC to enrich medium for recovery of E. coli
from the feces of broilers induced a positivity of 99% of
the samples containing blaCMY−2- and/or blaCTX−M-isolates
(Verrette et al., 2019), which could be the explanation for the
high percentage of such E. coli in our study. The blaCMY−2
gene has been reported as frequent in E. coli isolates causing
urinary tract infections in Brazil (Rocha D. A. C. et al., 2016),
and CMY-2- and CTX-M-producing E. coli were already isolated
from poultry and buffalo in the country (Aizawa et al., 2014;
Casella et al., 2018; Hoepers et al., 2018) but never in sheep. Apart
from the prevalence of isolates presenting the blaCMY−2 gene, the
occurrence of blaCTX−M−14- and blaCTX−M−15-carrying E. coli in
this study is remarkable. Those genes are the dominant blaCTX−M

TABLE 4 | Genotypes detected concerning virulence genes in the 78 E. coli isolates from stools of sheep in Southeastern Brazil.

Virulence genotypes N isolates Phylogroup bla gene Animal Day

– 2 A CTX-M-8, CMY-2 #120, #138 42

fimH 70 A, B1, B2 CTX-M-8, −14, −15, CMY-2 all others 0, 42

fimH papEF 2 D CTX-M-2 #118, #120 42

fimH papG II 2 D CTX-M-2 #2 42

fimH fyuA 1 A CTX-M-15 #45 0

fimH papEF fyuA 1 D CTX-M-2 #87 42

Genotypes are described according to the number of isolates, the phylogenetic groups and the bla genes related to each one, and also according to ID of the animals (#)
and the day in which the E. coli with each combination of virulence genes were isolated.
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variants in most regions worldwide, concerning isolates from
human infections and food-producing or companion animals
(Zhao and Hu, 2013; Bevan et al., 2017; Chong et al., 2018;
Dandachi et al., 2018). This means that the studied lambs
represent a potential source of hard-to-treat infections caused
by E. coli or at least a reservoir of important AR genes that
could reach human pathogens. The blaCTX−M−8 gene was the
second most detected in the studied population after blaCMY−2,
present on both first and last days of feedlot (Table 2). CTX-M-
8 was firstly identified in Brazil (Bonnet et al., 2000) and is still
frequent in isolates from food-producing animals and meat in the
country (Fernandes et al., 2016; Ferreira et al., 2016). However, it
is thought to have a relatively low prevalence in other territories
and is supposed to be transmitted by travelers or contaminated
food (Dhanji et al., 2010; Egervärn et al., 2014; Eller et al., 2014).

Both genes aac(3)-IIa and ant(2′′)-Ia codify resistance to
gentamicin, and are present in plasmids (Ramirez and Tolmasky,
2010; Norris and Serpersu, 2013; Cox et al., 2015). In this
study, aac(3)-IIa clearly predominated in relation to ant(2′′)-
Ia (Table 2). Notably, both genes reported here are clearly
related to E. coli associated with infections (Miró et al.,
2013; Fernández-Martínez et al., 2015). Resistance to phenicols
was detected on the first and last days of feedlot, with
floR and cmlA present in higher frequencies than the cat
gene (Figure 1 and Table 2). A Portuguese study found
only cmlA in E. coli isolated from sheep (Ramos et al.,
2013), and a Brazilian study carried out with Salmonella
Typhimurium isolated from humans and food revealed floR
associated with food isolates and the cat gene associated
with human Salmonella (Almeida et al., 2018). Furthermore,
cmlA has already been reported in E. coli from chicken
meat in the country (Casella et al., 2017a). Sixty-five isolates
(83.3%) presented resistance to trimethoprim/sulfamethoxazole,
but more than 60% of the E. coli presented at least one of
the sul genes screened while 33.3% presented some dfr gene.
Both sul1 and sul2 have been detected in E. coli isolated from
sheep in Portugal (Ramos et al., 2013), and those genes have
already been reported in E. coli isolated from clinical specimens
(Oliveira-Pinto et al., 2017), chicken meat (Casella et al., 2015)
and even surface water (Canal et al., 2016) in Brazil, but once
again we know nothing about the subject in sheep. Resistance
to tetracycline was detected during the entire feedlot stay of
the lambs, with tetA and tetB detected on days 0 and 42, with
considerable predominance of the first (Figure 1 and Table 2).
Interestingly, the isolate 42.120E1 carried tetA and tetB, which
is unexpected since both express the same tetracycline efflux
mechanism (Thaker et al., 2010). tetA and tetB have already
been detected in high frequencies in E. coli isolated from sheep
(Ramos et al., 2013). The rising in the content of genes codifying
resistance to tetracycline has been observed during bovine feedlot
(Weinroth et al., 2018), but to our knowledge, there is no report
of such an event concerning resistance to other antimicrobial
classes in general, as observed in this study. In fact, the use
of tetracyclines and trimethoprim/sulphonamides in sheep has
already been reported as presenting a significant association with
tetracycline resistance (Scott et al., 2012), and the tetA gene
was positively associated with blaCMY−2 after ceftiofur followed
chlortetracycline treatment in cattle (Kanwar et al., 2013), which

is in agreement with our study. The qnrB gene was detected
in six isolates recovered only on day 42, with all but one
presenting intermediate resistance to the quinolones (Figure 1
and Table 2). A Chinese study reported qnrB as low-frequency
among the genes detected in E. coli recovered from swine (Liu
et al., 2018), and a recent study conducted in Brazil showed E. coli
isolates carrying qnrB associated with the genes blaCTX−M−2
and blaCMY−2 in poultry (Ferreira et al., 2019). In our study,
resistance to quinolones had little importance as a disseminated
mechanism through the feedlot. Therefore, the presence of such
genes codifying resistance to different antimicrobial classes in
commensal isolates of food-producing animals as lambs raises
public health concerns. The occurrence of MRAb E. coli in the
studied lambs may be caused by the presence of animals and
insects carrying these bacteria in the surroundings of the feedlot
or even the environment (Blaak et al., 2015; Huijbers et al., 2015;
Chong et al., 2018). Since we have collected feces from 112/140
flock animals, another possibility is a lamb not sampled as the
source of that E. coli. Indeed, blaCMY−2-floR-tetA-sul2-harboring
plasmids have already been identified in food-producing animals
(Fernández-Alarcón et al., 2011) and could represent a similarity
found in this study.

Regarding virulence genes, most isolates presented only fimH
(Table 4), which is related to adhesion and is necessary for
GIT colonization (Waksman and Hultgren, 2009). The absence
of other virulence genes is not surprising, considering that the
E. coli were isolated from feces of healthy animals and represent
the GIT microbiota of the lambs. Instead of a known source of
STEC strains in Brazil (Vettorato et al., 2009), sheep studied here
did not present any evidence of carrying diarrheagenic E. coli
(DEC). Nevertheless, all isolates were primarily selected from
stools with the 3GC ceftiofur, which could represent a bias in
the absence of STEC, EAEC or EPEC strains since such DEC
could be present but do not carry genes for 3GC-resistance. The
majority of the isolates (61.5%) belong to the phylogenetic group
B1, 27.0% were classified as A, and 11.5% belong to phylogroups
B2 or D (Figure 1 and Table 4). These results are in agreement
with another study (Ramos et al., 2013), in which 61.1% of
E. coli isolated from sheep were classified as phylogroup B1,
31.5% were phylogroup A, and 7.4% as phylogroups B2 or D.
Traditionally, phylogenetic groups A and B1 are associated with
commensal E. coli, while B2 and D with pathogenic isolates
(Clermont et al., 2000), which is also in concordance with the few
virulence genes detected.

Although the CMY-2-producers were distributed in different
clusters according to XbaI-PFGE and belong to two different
lineages according to MLST, the IncA/C plasmid of about 170
kb was confirmed as responsible for blaCMY−2 mobilization.
This fact also illustrates the dissemination of that plasmid
through the feedlot, which was indeed related to blaCMY−2
mobilization in food-producing animals and meat before,
suggesting spread of the plasmid worldwide and in Brazil
(Guo et al., 2014; Casella et al., 2017b; Dame-Korevaar
et al., 2017). blaCTX−M−8 was carried by an IncI1 plasmid
of ∼97 kb in isolates recovered on days 0 and 42, which
seems to be responsible for the maintenance of that gene
in the feedlot during the period analyzed. blaCTX−M−8-IncI1
plasmids have already been reported in E. coli isolated from
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humans, wastewater, food-producing animals and meat, and
appear to be more responsible for the mobilization of that
gene in several countries, including Brazil (Ferreira et al.,
2014b; Dropa et al., 2016; Norizuki et al., 2017; Casella
et al., 2018; Dantas Palmeira et al., 2018). The blaCTX−M−15
gene was carried by very different plasmids on the first
and last days of feedlot (Table 3), which means that the
blaCTX−M−15-IncFII present on day 0 probably disappeared
and the blaCTX−M−15-IncHI2 entered the feedlot at any time
point during the period. Since both plasmids are carried
by extremely different E. coli, according to XbaI-PFGE and
MLST methodologies (Figure 1), it seems that the change on
plasmids responsible for blaCTX−M−15 mobilization was due
to the disappearance and entry of respective strains into the
feedlot, contrary to what happened to the blaCTX−M−8-IncI1
plasmids of about 97 kb mentioned above. IncHI2 plasmids
have also been reported as responsible for mobilization of
blaCTX−M−15 in several Enterobacteriaceae species isolated from
humans or animals (Kariuki et al., 2015; Haenni et al., 2016)
and have been detected in 3/4 of the CTX-M-15-producing
E. coli in this study. The CTX-M-2-producers identified in
this study seem to carry the blaCTX−M−2 inserted into the
chromosome. This is not a rare event nowadays and is
plausible since it has already been reported in E. coli isolated
from chickens and chicken meat in Brazil (Ferreira et al.,
2014a; Casella et al., 2018). In addition to that, blaCTX−M−2-
carrying E. coli were isolated just on day 42 and were
clonally related by XbaI-PFGE and MLST, with the exception
of isolate 42.2E2 (Figure 1). Finally, we could not detect the
plasmid linked to blaCTX−M−14, and this gene has already
been described inserted into the chromosome (Hamamoto
et al., 2016; Hamamoto and Hirai, 2019), which could be the
explanation for the present isolates. Further studies are required
to elucidate this subject.

XbaI-PFGE typing grouped most of the blaCMY−2-carrying
E. coli in the two major clusters, composed of 37 and 13
E. coli that carry essentially blaCMY−2-aac(3)-IIa-tetA-sul1-sul2-
floR-cmlA, with exceptions, belonging to phylogroups B1-ST/CC
1727/446 or A-ST 3994, respectively (Figure 1). Strains belonging
to the later cluster additionally carry the dfr Ia and dfr XII
genes. This finding indicates that two strains have spread among
animals throughout the feedlot, but all harboring the same
blaCMY−2-carrying plasmid as mentioned above. Interestingly,
two lineages were detected carrying different bla genes, such
as ST/CC 58/155 presenting blaCTX−M−8 or blaCTX−M−14 and
ST 3994 presenting blaCTX−M−8 or blaCMY−2, and both groups
have a considerable relationship within isolates (Figure 1).
E. coli ST/CC 58/155 has already been reported harboring
blaCTX−M−14 and others from clinical specimens and healthy
people in several countries (Gerhold et al., 2016; Kawamura et al.,
2017). In Brazil, this lineage has already been reported carrying
blaCTX−M−8 or blaCMY−2 in dogs, and the blaCTX−M−8 gene
was also harbored by an IncI1 plasmid (Melo et al., 2018), as
in this study. Furthermore, the same Brazilian study showed
an E. coli phylogroup D-ST 457 isolated from a diseased dog
carrying the blaCTX−M−2 inserted in the chromosome, the same
as the only CTX-M-2-producing isolate ST 457 in this study,
which demonstrates the presence of that clone in different

animals in the country. Contrary to the clonality described above
regarding ST/CC 58/155, the E. coli ST/CC 1727/446 isolated in
this study carry only blaCMY−2, but isolates were not clonally
related according to XbaI-PFGE typing (Figure 1). This could
represent micro-evolution occurring in the E. coli strains in the
feedlot during the period of 42 days. The new combination of
alleles (new ST) found in seven related blaCTX−M−8-carrying
isolates was the unique lineage recovered on days 0 and 42,
which means that the clone remained in the studied feedlot
lambs carrying the same blaCTX−M−8-IncI1 plasmid (Figure 1
and Table 5).

CONCLUSION

In conclusion, feedlot lambs act as reservoirs of commensal
multidrug-resistant E. coli, and those AR genes or bacteria
can reach humans through the food chain. The presence
of blaCTX−M−14 and blaCTX−M−15 deserves special attention
since they are the genes most related to human infections
worldwide. To the best of our knowledge, this is the first
report of blaCTX−M−14 in Enterobacteriaceae isolated from food-
producing animals in Brazil. Additionally, E. coli ST lineages
and plasmids harboring the bla genes detected have already
been identified in humans, animals, meat and the environment,
which demonstrates the concern for their dissemination and for
public health. Further studies are needed in order to determine
the reasons for the success of the blaCMY−2-aac(3)-IIa-tetA-
sul1-sul2-floR-cmlA-carrying E. coli in the studied feedlot. To
the best of our knowledge, this is the first study reporting
such a broad characterization of antimicrobial resistant E. coli
isolated from sheep.
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