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Evidence of how environmental cues affect the phenotypes of, and compatibility
between Schistosoma mansoni and their hosts come from studies in environmental
parasitology and research on host diet and chemotherapeutic treatment. Schistosomes
deal with a multitude of signals from the water environment as well as cues that come
from their hosts, particularly in response to molecules that serve to recognize and
destroy them, i.e., those molecules that arise from their hosts’ immune systems. These
interactions shape, not only the parasite’s morphology, metabolism and behavior in the
short-term, but also their infection success and development into different stage-specific
phenotypes later in their life cycle, through the modification of the parasite’s inheritance
system. Developmental phenotypic plasticity of S. mansoni is based on epigenetic
mechanisms which are also sensitive to environmental cues, but are poorly understood.
Here, we argue that specific cues from the environment could lead to changes in
parasite development and infectivity, and consequently, environmental signals that come
from environmental control measures could be used to influence S. mansoni dynamics
and transmission. This approach poses a challenge since epigenetic modification
can lead to unexpected and undesired outcomes. However, we suggest that a
better understanding of how environmental cues are interpreted by epigenome during
schistosome development and host interactions could potentially be applied to control
parasite’s virulence. We review evidence about the role of environmental cues on
the phenotype of S. mansoni and the compatibility between this parasite and its
intermediate and definitive hosts.

Keywords: schistosomiasis, environmental cues, inheritance systems, imune response, host-para site
interactions

INTRODUCTION

In the course of evolution, parasites improve their fitness as a result of the selection of traits which
determine their relationships with hosts (Webster et al., 2007). Digenetic parasites which have
multiple (as a rule obligatory) consecutive hosts face the additional problem that different hosts
require specific parasite phenotypes plus free-living stages to transit between hosts. Furthermore,
to develop, each stage must address and deal with a multitude of signals from the environment,
such as temperature, pH, osmolarity and chemical compounds, and also signals that come from
the host, in particular those that serve to recognize and destroy them, i.e., the immune system
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(Coustau et al., 2000; Cosseau et al., 2017; Sures et al., 2017). In
this mini-review, the term “environment” will be used to refer
to biotic and abiotic conditions that interact with the parasite at
each stage of its life cycle. In Schistosoma (parasitic flatworms)
this could be a freshwater environment, or the intermediate host
or definitive host environment. This interaction shapes not only
the parasite’s morphology, metabolism and behavior in the short-
term, but also its development into different phenotypes over
the whole of its life cycle, i.e., subsequent stages that were not
directly exposed to that environment (Escobedo et al., 2005;
Augusto et al., 2017). As discussed by Cosseau et al. (2017),
the developmental and evolutionary trajectories of schistosomes
are based on an inheritance system composed of at least
three elements: (i) the genome G and (ii) the epigenome I,
which are exposed to signals from (iii) the environment E. All
three components interact to bring about the phenotype P in
different time scales [the (G × I) × E =>P concept]. The
dynamics of this system were recently demonstrated for the
whole S. mansoni life cycle where epigenetic changes (histone
methylations) are essential to generate phenotypically distinct
stages (Roquis et al., 2018). Here, we briefly present a broad view
of how environmental cues affect the phenotype and also the
compatibility between S. mansoni and their hosts.

Intestinal schistosomiasis is a chronic parasitic disease caused
mainly by the trematode S. mansoni. Around 67 million people
are infected worldwide and hundreds of thousands remain
exposed to the risk of parasitic infection by contact with infested
water used for crop irrigation, for recreational or for domestic
purposes (Jamison et al., 2006; Steinmann et al., 2006; Morgan
et al., 2010). The parasite has a complex life cycle which
involves two consecutive obligatory hosts and two transitions
between these hosts as free-swimming larvae; in each step, a
new environment interacts with the parasite (Figure 1). The
interaction with each environment demands regulation of gene
expression to meet the parasite’s biological needs and/or to
allow for interaction with the host’s immune response (Jolly
et al., 2007; Jeremias et al., 2017; Lu et al., 2017; Vasconcelos
et al., 2017). The life cycle starts when eggs are released into
freshwater and the change in osmotic pressure triggers release
of a free-swimming larva, the miracidium, that seeks out an
intermediate host, a freshwater snail of the Biomphalaria genus.
Here, as a free-swimming larva the parasite is susceptible for
the first time to an abiotic environment outside the vertebrate
host, with different water temperatures or soluble compounds,
that can affect directly and/or indirectly the parasite’s biology.
After this first environmental experience, miracidia have to
penetrate through the tegument of the snail host and transform
into primary sporocysts, multiply asexually, form secondary
sporocysts and produce hundreds of cercariae while dealing with
the snail’s immune system (Pinaud et al., 2016). Cercariae, a
second type of free-swimming larvae, actively seek a definitive
mammalian host (usually rodent, primate or human). It is
the second time that schistosomes face water quality issues
and again are vulnerable to freshwater pollutants such as
pesticides, molluscicides and heavy metals, which can affect
growth and development in the short or long term (King
and Highashi, 1992; Liang et al., 2010; Augusto et al., 2017;

Sures et al., 2017). Direct effects were observed, for instance, with
non-toxic concentrations of silver nitrate that reduce cercarial
infectivity by inhibition of lipid-induced penetration but do
not affect the worm’s development after subcutaneous injection
(King and Highashi, 1992). Other developmental effects are
triggered, for example, by the molluscicide Euphorbia milii latex
that does not affect cercarial infectivity, but which does lead
to developmental changes inside the definitive host (Augusto
et al., 2017). In addition, differential susceptibility of male and
female worms to pollutants has been described, with possible
epidemiological implications (Liang et al., 2010; Lamberton et al.,
2017). Differential male and female cercarial susceptibility to
Praziquantel (PZQ), the only anthelmintic drug widely applied, is
still not entirely understood but might lead to mating bias in field
populations in areas where mass drug administration is intense
(Liang et al., 2010). Unfortunately, to our knowledge, little to
no work has been done to evaluate the effects of different water
soluble compounds on field populations so far. After infection,
schistosomules migrate through the venous environment of the
vertebrate host to develop into adult parasites and to reproduce
sexually. Here they are exposed to a new host environment
and must deal with humoral and cellular (adaptive) immune
responses (summarized in section “What do we know about
the influence of the environment on the interaction with the
definitive vertebrate host?”).

WHAT DO WE KNOW ABOUT THE
INFLUENCE OF THE ENVIRONMENT ON
THE INTERACTION WITH THE
INTERMEDIATE SNAIL HOST?

Freshwater is the immediate environment for the intermediate
snail host. In laboratory settings, S. mansoni infections in
Biomphalaria spp. snails are commonly measured using snails
grown in clean dechlorinated water, for which the chemical and
biological composition can be different from water encountered
by snails in the field. Indeed, freshwater snails can occupy
different aquatic environments with varying degree of flow,
pollution, and turbidity (Kloos et al., 2004). Also, many
laboratory studies have defined the ecology of the snail by
assessing the effects of salinity, pH, water depth, and temperature
on snail physiology (Jurberg et al., 1987; Eveland and Haseeb,
2011; Kalinda et al., 2017). These parameters might influence
the compatibility between parasite and snail, but as yet,
experimental results are lacking. Other environmental cues
that might impact host and parasite include: the presence
of different contaminants such as pesticides, molluscicides,
heavy metals or endocrine disruptors (Iqbal and Sinha, 2011;
Augusto et al., 2015; Sures et al., 2017). Most ecotoxicological
approaches have focused on the toxicity of these pollutants
to uninfected or infected snails, using them as bioindicators
(Bianco et al., 2014; Fahmy et al., 2014; Mostafa et al.,
2014; Tallarico et al., 2014; Habib et al., 2016). The parasite’s
intramolluscan development may also be affected by the type of
feed used for snail breeding or rearing (Thompson et al., 1991;
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FIGURE 1 | Life cycle of the human parasite Schistosoma mansoni. The life cycle starts when eggs (in green) are released by mammalian’s host and are affected by
osmotic pressure in contact with freshwater (in blue) and deliver a free-swimming larva, the miracidium, that seek out an intermediate host, a freshwater snail of the
Biomphalaria genus. Here, as a free-swimming larva, is the first time that the parasite is susceptible to an abiotic environment (in blue). After this first, miracidia have
to penetrate the tegument of the snail host (in green) and transform into primary sporocysts while dealing with a sophisticated immune system with barrier functions
in the epithelium, a cellular immune response and a humoral defense response. Cercariae (in green) are realized and it is the second time that schistosomes face
water quality (in blue). Cercaria larva actively seek a definitive mammalian host (rodent, primate or human). After infection, schistosomules migrates through the
venous environment to develop into adult parasites and to reproduce sexually while dealing with humoral and cellular immune responses. In blue – eggs and
free-swimming stages under cues of the water environment. In green – parasitic stages under cues from the internal environment of the hosts.

Fried et al., 2001). For example, although this observation is
under debate, the development time for transformation of
infective cercariae could be delayed with a high lipid diet
(Thompson et al., 1991; Fried et al., 2001). Also, the number
of cercariae produced from each successful miracidial infection
can be significantly increased with protein-rich foods (Coles,
1973). Unsurprisingly, most of these studies were designed to
determine the toxicity of water contaminants for the snails, and
only a few studies have investigated the parasite’s physiological
changes and/or changes to molecular pathways which could
impact host/parasite compatibility. Environmental perturbations
can, of course, affect the immunological and physiological
parameters of Biomphalaria spp. snails, and thus, change the
relationship between the host and the parasite in one way or
another (Table 1).

It is important to highlight here that snail-schistosome
redox dynamics play a crucial role in compatibility, based on
a complex interplay between host defenses and the parasite’s
strategies to circumvent the immune response (Mitta et al.,
2017). Reactive oxygen species (ROS) are one of the main
immune effector molecules involved in the snail’s attempts
to stop the parasite’s development (Hahn et al., 2000).

The major form of ROS involved in sporocyst blocking is
hydrogen peroxide (H2O2), a compound produced by the
snail’s hemocytes (Hahn et al., 2001). Interestingly, susceptible
snails release less H2O2, indicating they might have lower
SOD activity after parasite infection (Bender et al., 2005).
Comparative genetic analyses between susceptible (compatible)
and resistant (incompatible) snails support an association
between compatibility and allelic variation and/or expression
at the SOD locus (Blouin et al., 2013; Tennessen et al., 2015).
To protect the sporocyst from deleterious oxidative effects,
several antioxidant enzymes or scavengers are produced
by the sporocyst itself (e.g., GST, glutathione peroxidase,
peroxiredoxin, thioredoxin) (Guillou et al., 2007; Mourão
et al., 2009; Wu et al., 2009). The reduction of parasite
antioxidant activity by an antifungal agent decreases its snail
infectivity (Moné et al., 2010). Moreover, experiments with
different host-parasite combinations have shown that parasites
displaying high levels of ROS scavenger production have
higher infection success, and conversely, snails with low
oxidative capability are more susceptible (Moné et al., 2011).
In response to the dynamics of environmental cues, parasites
show adaptive plasticity for the ROS scavenger production trait
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TABLE 1 | Effect of environmental cues on biology and molecular pathways of freshwater intermediate host.

Environmental
determinants

Biological effect Molecular pathways References

Euphorbia milii latex Molluscicidal activity, physiological
stress and altered reproduction

nd Mello-Silva et al., 2010, 2011;
Augusto et al., 2015

Endocrine disruptors
(Bisphenol A and Phthalate)

Increased oviposition and
reproduction traits

nd Iqbal and Sinha, 2011

Cadmium Lethal effect, locomotion alteration,
acquisition of thermal tolerance,
Diminution of egg hatching and
Increased parasite sensitivity

HSP70 gene expression + Salice and Roesijadi, 2002;
Habib et al., 2016; da Silva
Cantinha et al., 2017

Manganese Lethal effect nd Habib et al., 2016

Zinc oxide nanoparticles Molluscicidal activity NO concentration + GST protein –
GST, CAT and SOD activities –

Fahmy et al., 2014

Chromium Lethal toxicity and an embryonic
developmental effect

nd Tallarico et al., 2014

Azinphos-methyl
(organophosphorus
insecticide)

Lethal effect Carboxylesterases activity – Bianco et al., 2014

Diazinon and Profenfos
(organophosphorus
compound)

Lethal effect SOD, CAT, GR, TrxR, and SDH
activities – Lipid peroxidation +

Bakry et al., 2016

Paraquat (herbicide) Lethal effect SOD activity – Lipid peroxidation + Cochón et al., 2007

Butachlor and
Fluazifop-p-butyl (herbicide)

Lethal effect Acid and alkaline phosphatases
concentration +

Tantawy, 2002

Chlorine and Huwa-san
desinfectant

Lethal effect SOD and GST activities – Tantawy, 2002

Glyphosate Lethal effect Total hemocytes + Phagocytic activity
+ DNA damage +

Mohamed, 2011

Niclosamide and derivatives Lethal effect NOS, AChE and LDH activities –
Hemoglobin, NOS, SOD and FREP4
expression – HSP20, HSP40 and
HSP70 expression + CYP and GST
expression +

Zhang et al., 2015; He et al.,
2017

Circadian cycle disruption Host susceptibility Total hemocytes – Waissel et al., 1999; Steinauer
and Bonner, 2012

Nd, non detected studies; (++), increase; (−), decrease; NO, nitric oxide; NOS, nitric oxide synthase; HSP, heat shock proteins; GST, Glutathione S-transferases; CAT,
catalase; SOD, superoxide dismutase; GR, glutathione reductase; TrxR, thioredoxin reductase; SDH, sorbitol dehydrogenase; AChE, acetylcholinesterase; LDH, Lactate
dehydrogenase; CYP, cytochrome P450; FREP4, fibrinogen related protein 4.

(Moné et al., 2011). This could be due to epigenetic changes
(Li et al., 2018).

The S. mansoni-snail interaction is characterized by a
phenomenon called “compatibility polymorphism,” meaning
that some parasite-host combinations lead to infection success
(they are compatible) and others do not (they are incompatible).
S. mansoni mucin gene (SmPoMuc) is a conserved family
of polymorphic mucins which have been shown to be key
markers for compatibility polymorphisms observed between
different strains of S. mansoni and B. glabrata (Roger et al.,
2008; Perrin et al., 2013; Fneich et al., 2016). Expression of
SmPoMuc is associated with histone modifications, such as
trimethylation or acetylation of histone 3 lysine 9 (H3K9me3,
H3K9ac) (Fneich et al., 2016). Different enrichment profiles
in SmPoMuc promoters have been observed between the
compatible and incompatible strains (Perrin et al., 2013).
Treatment with inhibitors of histone modifying enzymes
changed the expression of these SmPoMuc phenotypic
variants in S. mansoni and increased parasite compatibility

with the intermediate reference host (Fneich et al., 2016).
Another study addressed the influence of the snail host
environment on frequency of epimutations that occurred in
the parasite during interactions with B. glabrata. The impact
of two host environments (an allopatric vs. a sympatric snail
host) on different histone markers, including H3K4me3,
H3K27me3, H3K27ac, and H4K20me1, was studied in cercariae
emerging from the two host environments and on the resulting
subsequent adult stages (Roquis et al., 2015). The authors
found three types of epimutations: genotype-dependent,
environment-dependent, and random epimutations. While
most environmentally induced epimutations appear to be
ephemeral in S. mansoni, epimutations that are passed through
the germ line can arise through paramutations (Roquis
et al., 2015). Paramutations are interactions between the
two alleles of a locus, where one allele induces heritable
changes in the other allele (reviewed in Chandler, 2007).
Hybridization of a compatible and an incompatible (vis-a-vis a
reference snail) S. mansoni strain led to heritable histone H3K9
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acetylation and methylation changes in the above-mentioned
SmPoMuc, and was associated with increased infection success
(compatibility) (Fneich et al., 2016). This goes in line with
the idea that epigenetic modifications are a way to produce
phenotypic plasticity and to survive in a changing environment
(Hu and Barrett, 2017).

In summary, it is therefore indispensable to include
measures of environmental (“ecotoxicological”) parameters,
and to investigate the environmentally mediated epigenetic
components, when evaluating snail-schistosome compatibility in
the field. The interaction between the parasite, the environment,
and the host can influence infection success and the risk
of transmission.

WHAT DO WE KNOW ABOUT THE
INFLUENCE OF THE ENVIRONMENT ON
THE INTERACTION WITH THE
DEFINITIVE VERTEBRATE HOST?

It is interesting to know that before infection, even brief
contact with soluble pollutants can trigger changes on the free-
swimming cercaria, and these changes can be inherited from
one parasite stage to another. Ultimately, disease dynamics
and host morbidity can be affected by epigenetic changes. We
recently described that short exposure to a plant extract used as
molluscicide (Euphorbia milii latex), at low doses, does not affect
cercarial survival or infectivity, but does trigger not only a change
in morphology, metabolic pathways, and fitness of the adult
worms, but also the size of hepatic granulomas in the definitive
host, an important clinical feature (Augusto et al., 2017).

Once inside its definitive host, variations of the parasite
phenotype can be induced by certain intra-host cues (e.g.,
gene expression perturbations, host diet, drugs, and metabolic
syndromes), which affect the parasite’s growth and development
(Jolly et al., 2007; Thornhill et al., 2009; Roquis et al.,
2015). The parasite’s surface, mainly the male tegument, has
a particular importance. It releases several classes of antigens
that interact with host antibodies and T cells (Jankovic et al.,
1999). Details on immunology of human schistosomiasis were
reviewed recently (Colley and Secor, 2014). Briefly, from the
first moments after cercarial infection to the end of worm
maturation in the blood stream, Th1-type immune responses
against schistosomulae result in noticeable increase in certain
cytokines (TNFα, IL1α, IL1β, and IL6) as well as Signal
Transducers, Activators of Transcription 1 (STAT1), and IFNγ

(Burke et al., 2009, 2010; Sanchez et al., 2017). However, once
adult worms start depositing eggs around 6 weeks after initial
infection, a dramatic shift to a Th2-type immune response
ensues. Here, specific egg antigens promote several different
classes of cytokines (IL4, IL5, IL10, IL13, and IL33), T regulatory
cells, B cells, antibodies and anti-idiotypic responses; complex
immunomodulatory mechanisms result in liver fibrosis and
hepatosplenic disease but also are thought to have a host
tissue protective function (Colley et al., 1999; Fairfax et al.,
2012; Colley and Secor, 2014). Through molecular mimicry,

adult schistosomes are able to avoid the host’s immune system,
possibly through acquiring host antigens and incorporating
them into their own surface (Keating et al., 2006; Jiz et al.,
2009; Colley and Secor, 2014). Currently, PZQ is the main
schistosomicidal compound used to treat the disease in humans,
but in the past, other drugs such as Oxamniquine and
Hycanthone were also used (Rosi et al., 1965). These chemical
compounds effect deformations, such as wrinkling, erosion and
loss of tubers, on the parasite’s surface (Shuhua et al., 2000;
Manneck et al., 2010). When adult worms are exposed to
PZQ, for instance, a progressive contraction of the longitudinal
musculature is associated with significant influx in Ca2+,
resulting in damage to the parasite’s surface (Gnanasekar et al.,
2009; Pinto-Almeida et al., 2016). This goes in line with
the finding that effectiveness of schistosomicidal compounds
depends on establishment of sufficient surface damage to allow
the host’s immune system to recognize the parasite as non-
self (Brindley and Sher, 1987; Fallon et al., 1992; Doenhoff
et al., 2008). Adult worms have long life expectancies (Colley
et al., 2014), and it is well accepted that a large part of
the mechanism allowing this may be due to the parasite’s
tegument, which goes through a constant renewal process in
the outer syncytium zone thanks to schistosome stem cells
(neoblasts) (Collins et al., 2013). Epigenetic processes, based
on DNA methylation machinery, maintain the proliferative
capacity of schistosome neoblasts (Geyer et al., 2018b). Recently,
it was demonstrated that even a partial depletion of DNA
methylation machinery (based on RNA interference suppression
of S. mansoni methyl-CpG-binding, SmMBD2/3, and chromobox
protein, SmCBX) significantly reduces neoblast proliferation
and egg production, and changes the parasite phenotype
(Geyer et al., 2018b). This is particularly important because
egg production impacts both human pathology and disease
transmission. Furthermore, due to a growing understanding that
schistosome development is regulated by epigenetic processes, a
certain number of studies have been conducted to characterize
important molecules (i.e., histone modifying enzymes) (Pierce
et al., 2011, 2012; Cabezas-Cruz et al., 2014; Carneiro et al.,
2014; Marek et al., 2015; Cosseau et al., 2017; Geyer et al.,
2018a,b; Roquis et al., 2018). Specifically, changes in chromatin
structure are observed during adult worm maturation inside
the definitive host; likewise, sex-specific gene expression profiles
can be observed throughout this process (Picard et al., 2016;
Roquis et al., 2018).

Epigenetic processes provide a wealth of potential therapeutic
targets for the development of novel therapies against
schistosomiasis. The impact of drugs on the schistosome
epigenome are mainly studied through dose-response trials,
often carried out using in vitro approaches, whereas, studies
on the impact of drugs on the schistosome epigenomics in
realistic (non-laboratory) situations are still lacking. Since
histones and histone modifications are conserved throughout the
eukaryotes, many histone methyltransferase enzyme inhibitors
have been used to understand the role of post-translation
histone modifications in schistosomes (Cabezas-Cruz et al.,
2014; Ballante et al., 2017; Padalino et al., 2018; Pereira et al.,
2018; Roquis et al., 2018). Recently, Padalino et al. (2018)
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used a histone demethylase, Lysine Specific Demethylase
1 (SmLSD1, Smp_150560), in vitro, and found significant
impacts on adult worm motility, reproduction rate, and
phenotype. Drugs that disrupt epigenetic processes or inhibit the
enzymes involved could offer novel therapeutics for controlling
schistosomiasis. Interestingly, laboratory-induced, Hycanthone-
resistant parasites present distinct chromatin structure following
post-translation histone modifications: H3K4me3, H3K9me3/ac
and H3K27me3 (Roquis et al., 2014). Even though the resistance
phenotype might not be heritable (this was not investigated),
transient improvements in survival might be sufficient to
ensure higher reproductive success of the epigenetically modified
individuals. To date, studies evaluating dose-response effects
are more frequent than studies that reflect a systemic view of
environmental cues and genetic and non-genetic inheritance in
the life cycle and transmission of S. mansoni. Understanding the
myriad ways in which environmental cues drive the schistosome
life cycle should be helpful to explain geographical differences
observed in parasite biology, distribution, spread, and morbidity,
and might improve the effectiveness of field control approaches.

FUTURE DIRECTIONS

Antihelminthic drugs are a relatively new experience
(evolutionarily speaking) for the parasite. Cues that result from
host nutrition, environmental quality, or even psychoactive
substances ingested by the definitive host, such as tobacco
or alcohol, are much older, but investigations on these latter
topics are missing and should be undertaken. Analogies are
evident in other parasite systems. For example, human daily
ethanol ingestion has a positive association with frequency of
Strongyloides stercoralis infection (Marques et al., 2010); chronic
alcohol ingestion significantly reduces granuloma and hepatic
fibrous tissue in mice infected with S. mansoni (Orrego et al.,
1981; Castro et al., 1993); and a high-fat diet has a prominent
effect on the course of chronic schistosomiasis mansoni in mice
(Alencar et al., 2009). Modern molecular techniques are needed
for better characterization of this phenomenon. While a direct
(maybe toxic) effect of alcoholism in the human host might not
be surprising, our group has suggested an additional rationale
concerning the possible functional (and evolutionary) link
between diet, drug consumption and schistosome snail infection
(Fneich et al., 2016). In our model, changes in environmental
cues would trigger an epigenetic switch between bet hedging and
plasticity strategies.

We showed that, as in many other species, the environment
can indeed have an influence on the chromatin structure of
schistosomes (Roquis et al., 2014, 2016; Fneich et al., 2016) and
epigenetic memory was identified as a promising drug target
(Cabezas-Cruz et al., 2014). Besides this, since histones and
histone modifications are extremely conserved through all taxa,
histone methyltransferase inhibitors developed to treat human
cancer have been used to understand specific functions for the
lysine or arginine residues they modify in adult schistosomes
(Padalino et al., 2018). Our group also demonstrated that
histone deacetylation and demethylation inhibitors can reversibly

inhibit miracidium to sporocyst transitions, suggesting that
heterochromatization is important during this step (Azzi et al.,
2009; Roquis et al., 2018). Our results indicate that HMT activity
is essential for parasite development, and therefore, this class
of enzymes represents a suitable drug target. It remains to be
seen whether differences in the environment do indeed lead to
heritable changes in one of the bearers of epigenetic information,
such as histone modifications, DNA methylation, non-coding
RNA or topology of the interphase nucleus in schistosomes.

CONCLUSION

The way the inheritance system interacts with the environment
could simply be of academic interest. However, the importance of
this interaction becomes evident when considering how to design
control measures. (Epi)Genome editing is, for the moment, out
of reach, or only available in the laboratory. Control measures
that influence epigenetics will, therefore, rely on changes to
environmental cues. These changes could effect (I) selection of
phenotypes, and (II) modifications in the inheritance system.
Designing interventions that capitalize on a better understanding
of epigenetic mechanisms in hosts and parasites poses a challenge
since it can lead to unexpected and undesired outcomes, but
also could represent a new opportunity: once we know how
environmental cues trigger phenotypes, we might be able to push
the right environmental “button” to effect lasting changes in
schistosome infectivity and transmission.
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