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Mycobacterium paragordonae (Mpg) is a temperature-sensitive Mycobacterium species
that can grow at permissive temperatures but fails to grow above 37◦C. Due to this
unique growth trait, Mpg has recently been proposed as a novel live vaccine candidate
for the prevention of mycobacterial infections. Furthermore, the increasing frequency
of the isolation of Mpg from water supply systems led us to hypothesize that the
free-living amoeba system is the natural reservoir of Mpg. In this study, we report the
complete 6.7-Mb genome sequence of Mpg and show that this genome comprises four
different plasmids with lengths of 305 kb (pMpg-1), 144 kb (pMpg-2), 26 kb (pMpg-3),
and 17 kb (pMpg-4). The first two plasmids, pMpg-1 and -2, encode distinct Type VII
secretion systems (T7SS), ESX-P5 and ESX-2, respectively. Genome-based phylogeny
indicated that Mpg is the closest relative to M. gordonae, which has a 7.7-Mb genome;
phylogenetic analysis revealed an average of 86.68% nucleotide identity between these
two species. The most important feature of Mpg genome is the acquisition of massive
genes related to T7SS, which may have had effect on adaptation to their intracellular
lifestyle within free-living environmental predators, such as amoeba. Comparisons of
the resistance to bacterial killing within amoeba indicated that Mpg exhibited stronger
resistance to amoeba killing compared to M. gordonae and M. marinum, further
supporting our genome-based findings indicating the special adaptation of Mpg to free-
living amoeba. We also determined that, among the strains studied, there were more
shared CDS between M. tuberculosis and Mpg. In addition, the presence of diverse
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T7SSs in the Mpg genome, including an intact ESX-1, may suggest the feasibility of
Mpg as a novel tuberculosis vaccine. Our data highlight a significant role of lateral gene
transfer in the evolution of mycobacteria for niche diversification and for increasing the
intracellular survival capacity.

Keywords: Mycobacterium paragordonae, genome sequence, lateral gene transfer, Type VII secretion systems,
M. gordonae

INTRODUCTION

Mycobacterium paragordonae (Mpg) is a slow growing,
scotochromogenic non-tuberculous mycobacteria (NTM) that
prefers a lower temperature for growth (28◦C to 30◦C) and is
phylogenetically closest to M. gordonae (Kim B.J. et al., 2014).
Mpg exhibits distinct temperature-sensitive growth and fails to
grow above 37◦C. Higher temperatures lead to the failure of Mpg
to replicate, e.g., at deeper regions within the body in in vivo
challenges, guaranteeing its feasibility as a safe live bacterial
vaccine vehicle. Indeed, we previously demonstrated that a
live Mpg strain exerted enhanced protective vaccine efficacies
against mycobacterial infections such as Mycobacterium
tuberculosis or M. abscessus in vaccinated mice, compared to
BCG (Kim et al., 2017).

Free-living amoeba (FLA) have been frequently isolated from
habitats common to mycobacteria (Thomas and McDonnell,
2007; Falkinham, 2009), including cold drinking water
distribution systems (Eddyani et al., 2008; Thomas et al.,
2008), hot water systems in hospitals (von Reyn et al., 2002),
and cooling towers (Pagnier et al., 2008). Several lines of
evidence indicate the infection of Acanthamoeba FLA with both
pathogenic and environmental mycobacteria, such as M. avium
subsp. paratuberculosis, M. intracellulare, and M. bovis (Taylor
et al., 2003; Adekambi et al., 2006; Samba-Louaka et al., 2018). In
addition, isolated FLAs, have also been reported to be associated
with various mycobacterial species, including M. gordonae,
M. xenopi, M. avium, and M. kansasii, in hospital water (Cirillo
et al., 1997; Steinert et al., 1998; Vaerewijck et al., 2005; Thomas
et al., 2008). These findings strongly support the notion of an
“endosymbiotic” relationship between mycobacteria and the
host FLA (Drancourt et al., 2007; Iovieno et al., 2010; Glaser
et al., 2011). In this model, the host protozoa would theoretically
protect phagocytized mycobacteria from adverse environmental
insults, including extreme temperature, drought and diverse
biocide attacks via cyst formation (Barker and Brown, 1994; Ben
Salah and Drancourt, 2010; Denoncourt et al., 2014). Moreover,
mycobacteria could also make use of the protozoan nutrients
(Thomas and McDonnell, 2007). Overall, FLA could contribute
to the survival of intracellular mycobacteria by providing an
environmental niche for persistent infection and by acting as a
transmission vector.

In the proposed mycobacterial evolutionary scenario in water
and in soil, the most recent common ancestor (MRCA) of
mycobacteria may have encountered free-living predators such
as FLA (Salah et al., 2009). Mycobacteria have evolved various
strategies to resist such unicellular predators, including the
capacity to avoid phagocytosis and to replicate intracellularly

within the protozoa (Medie et al., 2011). Over time, as
mycobacteria diverged from the MRCA, they have been further
evolved to resist destruction by the infected host macrophage or
dendritic cell (DC), which is a key step for pathogenicity (Salah
et al., 2009). Thus, a better understanding of the evolution and
biology of mycobacteria and their adaptation to the intracellular
lifestyle within FLA via a genome-based approach is necessary to
elucidate the virulence mechanisms of pathogenic mycobacteria
and to develop treatment strategies.

Although the exact natural habitat of Mpg remains a
mystery, after our initial description of Mpg (Kim B.J. et al.,
2014), the isolation of this species from water supply systems
has recently increased worldwide (Azadi et al., 2016, 2017).
Therefore, together with the distinct preference of Mpg for
lower temperatures, the recent epidemiologic study suggests
that Mpg may make use of FLA as a natural reservoir or a
transmission vector.

Here, we have introduced the complete genome sequences of
Mpg, the type strain M. paragordonae JCM 18565T. This genome-
wide comparison of Mpg with the genomes of M. gordonae
and M. marinum provides deeper insight into the biology
of Mpg as an environmental generalist and discloses the
evolutionary history among these three closely related but clearly
distinct species.

RESULTS AND DISCUSSION

Genome Sequencing and General
Features of the Mpg Genome
The Mpg genome sequence was obtained using a Pacific
Biosciences RS sequencer and an Illumina Hi-Seq sequencer.
A total of approximately 87,929,586 reads were obtained,
comprising more than ∼1,288.2× coverage of the estimated
6.7 Mb of the Mpg genome. The sequencing data revealed that
Mpg has a circular chromosome of 6,730,319 bp (GenBank
accession no. CP025546) and four circular plasmids with
lengths of 305,730 bp (pMpg-1, CP025547), 144,093 bp (pMpg-
2, CP025548), 26,922 bp (pMpg-3, CP025549), and 17,187
bp (pMpg-4, CP025550) (Figure 1 and Tables 1, 2). The
genome contains 6,265 predicted ORFs, a single rRNA operon
and 47 tRNAs; the four plasmids (pMpg-1 thorough 4)
contain 284, 145, 30, and 20 ORFs, respectively. Among
Mpg, M. gordonae and two pathogenic mycobacterial strains,
M. tuberculosis and M.marinum, Mpg exhibited a higher number
of ORFs (6,265 ORFs) compared with the two pathogenic
M. tuberculosis (4,086 ORFs) and M. marinum (5,604 ORFs)
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FIGURE 1 | Circular representation of the Mpg genome and plasmids. Whole-genome sequencing of Mpg revealed that Mpg harbors (A) a single circular
chromosome (6,730,319 bp) and (B) four plasmids (pMpg-1, 305,730 bp; pMpg-2, 144,093 bp; pMpg-3, 26,922 bp; pMpg-4, 17,187 bp). From inside to outside,
track 1 (black peaked line) indicates the GC content, and track 2 (red peaked line) indicates the GC skewness of the Mpg genome and plasmids. Track 3 and 4
represent the predicted ORFs in the reverse and forward orientation, respectively. In the case of the Mpg genome, track 5 indicates the locations of tRNAs. Tracks 6
through 8 represent the sequence identities compared with M. tuberculosis H37RvT, M. gordonae DSM 44160T, and M. marinum M, respectively.

TABLE 1 | General genomic features of Mpg compared with three other mycobacteria.

M. paragordonae JCM 18565T M. gordonae DSM 44160T M. marinum M M. tuberculosis H37Rv

Chromosome size (base pairs) 6,730,319 7,601,632 6,660,144 4,411,532

G+C (%) 67.0 66.8 65.7 65.6

Protein-coding sequences (CDS) 6,265 6,915 5,604 4,086

Average CDS length 1,013 984.5 1,073 977

rRNA 1 1 1 1

tRNA 47 48 46 45

strains. However, M. gordonae, which is genetically related
to Mpg, contains more ORFs (6,915 ORFs) compared with
Mpg. The G+C content (67.03%) of the Mpg genome was
shown to be higher than that of the pathogenic mycobacterial
strains M. tuberculosis (65.6%) and M. marinum (65.7%);
however, M. gordonae has a percentage of G+C content (66.8%)
similar to that of Mpg. The identified plasmids exhibited a
lower percentage of G+C content (64.7 to 65.7%) compared
with that of the genome from Mpg, except for the pMpg-
4 plasmid (67.9%) (Figure 1 and Tables 1, 2). Overall, our
genome data indicate that Mpg may have evolved from a
more generalist species, M. gordonae, via chromosome genome
reduction and the acquisition of diverse plasmids by lateral
gene transfer (LGT).

Phylogenetic Relationships Based on the
Mpg Genome
Using the genome sequence of Mpg, a phylogenetic analysis
was conducted which included other mycobacterial genome
sequences. A genome-based phylogenetic tree showed that Mpg

TABLE 2 | General plasmid features of Mpg.

pMpg-1 pMpg-2 pMpg-3 pMpg-4

Chromosome size (base pairs) 305,730 144,093 26,922 17,187

G+C (%) 65.7 65.3 64.7 67.9

Protein-coding sequences (CDS) 284 145 30 20

Average CDS length 946 915 678 697

was grouped together with M. gordonae DSM 44160T, which was
previously demonstrated to be genetically close to Mpg (Kim
B.J. et al., 2014). Moreover, Mpg was clustered with pathogenic
mycobacterial strains, such asM.marinumM,M. ulceransAgy99,
and M. tuberculosis H37RvT (Figure 2). The average nucleotide
identity (ANI) value between Mpg and M. gordonae DSM 44160T

was 88.68%, which was below the recommended cut-off value
of 95 to 96% ANI for species delineation (Goris et al., 2007;
Richter and Rossello-Mora, 2009; Kim M. et al., 2014). However,
the ANI value between Mpg and M. gordonae was higher than
that between Mpg and M. marinum M (78.12%) and between
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FIGURE 2 | Phylogenetic tree based on the whole-genome sequences of
Mpg and other mycobacterial strains. The tree was constructed using the
neighbor-joining method using the MAUVE Genome Alignment software and
visualized using the TreeViewX program. The bar indicates the number of
substitutions per nucleotide position.

Mpg and M. tuberculosis H37Rv (78.58%) (Supplementary Table
S1). Therefore, these findings are in agreement with our previous
report showing that Mpg is a distinct species within the genus
Mycobacterium and is phylogenetically closest to M. gordonae
(Kim B.J. et al., 2014).

Functional Classification of Mpg Proteins
To functionally classify the predicted ORFs of the Mpg genome,
the amino acid sequences of Mpg proteins were analyzed using
the BLAST program against the COG database, which serves
as a platform for the functional annotation of prokaryotic
genomes (Tatusov et al., 2003). Based upon the similarity with
the COG database, 65.9% of the Mpg proteins were assigned
COG functions; however, 34.1% of the Mpg proteins were not
annotated in the COG database. The COG analysis of the Mpg
genome revealed that 31.96% of the Mpg proteins belong to the
“Metabolism” category, 10.43% belong to “Information storage
and processing” (ISP), 10.45% belong to “Cellular processes
and signaling” (CPS), and 13.06% of the proteins were ‘Poorly
categorized’ proteins (Supplementary Figure S1).

A COG-based comparative analysis of the gene distribution
among the genomes of Mpg, M. gordonae DSM 44160T,
M. marinum M, and M. tuberculosis H37RvT revealed that
these strains have similar proportions of COG-based functional
classifications. However, there were certain variations in each
functional category. In the ‘ISP’ category, the pathogenic
mycobacterial strains M. marinum M and M. tuberculosis
H37RvT exhibited a higher proportion of genes involved in
‘Translation, ribosomal structure and biogenesis’ (J, 27.52 and
27.08%, respectively) compared to the Mpg and M. gordonae
DSM 44160T strains (22.14 and 21.29%, respectively).
Additionally, the Mpg and M. gordonae DSM 44160T strains
(50.08 and 50.29%, respectively) exhibited a higher proportion
of genes related to ‘Transcription’ (K) compared with the
M. marinum M and M. tuberculosis H37RvT strains (48.74
and 35.04%, respectively) (Supplementary Figure S2). Overall,
the functional classification of the genome indicated that the
general function of the Mpg genome is similar to that of the

generalist M. gordonae but distinct from the more specialist
group, M. marinum and M. tuberculosis.

Comparative Genomic Analysis Among
the Genome Sequences of Mpg,
M. gordonae, M. marinum, and
M. tuberculosis
Our synteny analysis of the Mpg genome structure (6.7 Mb)
compared with that of M. marinum M (6.6 Mb) and
M. tuberculosis H37Rv (4.4 Mb) revealed a relatively high
conservation of genome size and gene order between the genomes
of Mpg and M. marinum M; however, between the genomes of
Mpg and M. tuberculosis H37Rv, there were two large loci which
exhibited reversed gene orientation, and genome reduction was
also detected (Supplementary Figure S3).

To assess the number of genes that are shared between
each genome, a web-based program, OrthoVenn was used to
analyze the protein sequences of Mpg, M. gordonae, M.marinum,
and M. tuberculosis. The results are summarized in a Venn
diagram, which shows the CDS that were both conserved
and unique between these species (Figure 3A). Mpg shares
more CDS (4,854/5,028 CDS, 96.5%) with M. gordonae DSM
44160T compared with M. marinum M (3,814/5,028 CDS,
75.9%) or M. tuberculosis H37Rv (2,899/5,028 CDS, 57.7%).
Based on the numbers of shared CDS, Mpg is more closely
related to M. marinum M than to M. tuberculosis H37Rv.
This finding supports our genome synteny analysis among the
genomes of Mpg, M. marinum M, and M. tuberculosis H37Rv
(Supplementary Figure S1). However, the ANI value between
the genomes of Mpg and M. tuberculosis (78.58%) was slightly
higher than that between Mpg and M. marinum M (78.12%)
(Supplementary Table S1).

Mycobacterium indicus pranii (MIP), which was formerly
known as Mycobacterium w, is non-pathogenic and is classified
in Runyon group IV (Reddi et al., 1994). MIP has been
evaluated as a candidate for leprosy and tuberculosis vaccines
(Gupta et al., 2009) due to the presence of several B
and T cell determinants common with M. leprae (Yadava
et al., 1991). As indicated in Figure 3B, Mpg shares more
CDS (342 ORFs) with M. tuberculosis than with MIP (113
ORFs). Additionally, the average sequence similarity of shared
CDS between Mpg and M. tuberculosis was 88%, which
was slightly higher than that of the shared CDS between
MIP and M. tuberculosis (87%). These results suggest that
Mpg may have advantages over MIP for use as a live
tuberculosis vaccine.

ESX Locus of the Mpg Chromosome
The type VII secretion system (T7SS) has been reported to
play a pivotal role in the intracellular survival and host
infection of mycobacteria, including M. tuberculosis. All five
ESX loci (ESX-1, ESX-2, ESX-3, ESX-4, and ESX-5) are intact
in the genome of M. tuberculosis (Cole et al., 1998; Tekaia
et al., 1999; Gey van Pittius et al., 2001), but attenuated BCG
strains lack RD1 of the ESX-1 locus (Hsu et al., 2003; Lewis
et al., 2003). Interestingly, although Mpg has relatively low
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FIGURE 3 | Venn diagrams showing orthologous CDS among Mpg and other mycobacterial species as determined by BLASTCLUST analysis (0.8 of length
coverage threshold). (A) Comparison among the Mpg, M. gordonae DSM 44160T, M. marinum M, and M. tuberculosis H37RvT strains. (B) Comparison among the
Mpg, M. tuberculosis H37RvT, and M. indicus pranii strains.

sequence similarities compared to M. tuberculosis orthologs, Mpg
contains all five types of ESX loci in its genome (Figure 4).
In the ESX-1 locus of Mpg, except for an ortholog of PE35,
all of the components (19 ORFs, C0J29_29945∼30035) are
conserved with 69 to 85% sequence similarity compared to
M. tuberculosis. The effector molecules ESAT-6 (esxA) and
CFP-10 (esxB), which are lost in BCG, are also intact in the

Mpg genome, showing relatively high sequence similarities with
those of M. tuberculosis (83 and 86%, respectively), suggesting
an advantage of Mpg over BCG as a tuberculosis vaccine
(Figure 4A). The ESX-1 system is also found in a range
of mycobacteria, including pathogenic mycobacteria, such as
M. kansasii (Sorensen et al., 1995), M. leprae (Cole et al.,
2001) M. marinum (Stinear et al., 2008), and the saprophytic

FIGURE 4 | Comparison of the genetic organization of the ESX loci in various mycobacterial genomes, including Mpg. Comparison of the genetic organization of the
ESX loci identified in the genomes of M. tuberculosis, BCG, M. marinum, M. kansasii, M. gordonae, M. avium, and Mpg. (A) ESX-1 locus. (B) ESX-2 locus.
(C) ESX-3 locus. (D) ESX-4 locus. (E) ESX-5 locus. The sequence similarities with M. tuberculosis are indicated for each ORF. The red dashed box indicates the
deleted genes. The red lined box in panel (B) indicates the separation of the genes involved in the ESX-2 locus, and their location is also indicated above the box.
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M. smegmatis (Coros et al., 2008). However, the live tuberculosis
vaccine, M. bovis BCG (BCG) strain lacks esxA, owing to
spontaneous deletions of the ESX-1 locus, which is known as
region of difference 1 (RD1) (Mahairas et al., 1996). Given
that the ESX-1 system is essential for resistance to and evasion
of the host immune system and also contributes to the high
antigenicity of M. tuberculosis, the presence of a nearly intact
ESX-1 system in the genome of Mpg might be likely to
contribute to survival within the host. However, PE35 was
not found in the ESX-1 locus of Mpg genome. This gene has
recently been shown to play an important role in secretion
of the ESX-1 substrate, EsxA (Abdallah et al., 2019). So,
to explain the direct relationship between the ESX-1 locus
of Mpg genome and their intracellular survival, additional
analyses using ESX-1 deletion mutant should be conducted
in the future study. Actually, in the previous report (Pym
et al., 2003), recombinant BCG subject to reintroduction of
the RD-1 complete locus resulted in specific ESAT-6-dependent
immune responses and demonstrated better protection against
challenge with M. tuberculosis in vaccinated mice, showing less
severe pathology and reduced dissemination of the pathogen,
as compared with control animals immunized with BCG alone.
It highlights the importance of ESX-1 gene in tuberculosis
vaccine and also suggests the potential use of Mpg as a novel
tuberculosis vaccine.

Of the five ESX loci (Figure 4), a pronounced difference
between Mpg, M. gordonae, and M. marinum was found in
the ESX-2 locus. The ESX-2 locus was also shown to be
intact in the Mpg genome. However, none of the orthologs
of ESX-2 were found within the M. marinum M genome,
and only the partial orthologs of the ESX-2 were detected
in the M. gordonae genome. Notably, the ESX-2 genes of
Mpg were separated into two distantly located regions in its
genome, unlike the case of M. tuberculosis, in which all ESX-2
genes (corresponding ORFs are Rv3884c∼Rv3895c) are located
in one region proximal to the ESX-1 locus (corresponding
ORFs are Rv3869∼Rv3883c). In the case of Mpg, the first
part of ESX-2 (8 ORFs corresponding to C0J29_30050∼30085)
is located next to the ESX-1 locus, but the second part
of ESX-2 (corresponding to C0J29_00275∼00290) is located
distantly from the ESX-1 locus (Figure 4B). Given that
the genes corresponding to pe36, eccC2, and eccB2 in the
second region of Mpg were not detected in the M. gordonae
genome, and the sequence similarity values were very low
compared to those of the first part of Mpg, the second
part of the ESX-2 genes of Mpg appears to be acquired by
lateral gene transfer from other bacteria after the gene loss
of M. gordonae.

The Presence of Genes Encoding ESX
Systems on Two Plasmids of Mpg
In addition to the known chromosomal ESX loci of mycobacterial
strains, the existence of plasmid-encoded ESX systems was
recently reported (Ummels et al., 2014). Apart from the five
types of intact ESX loci in the Mpg chromosome, we found
two additional distinct ESX on the pMpg-1 and -2 plasmids,
respectively. On the pMpg-1 plasmid, the putative ESX locus (12

ORFs corresponding to C0J29_30435∼30490) exhibited a gene
orientation similar to that of recently identified mycobacteria
plasmid-encoded ESX-P5 systems (Ummels et al., 2014; Newton-
Foot et al., 2016; Figure 5A). On the pMpg-2 plasmid,
another putative ESX system was also identified; however,
this system has no homology with any ESX system derived
from mycobacterial plasmids. Instead, it has an orientation
similar to the chromosomal ESX-2 system in the genome of
M. tuberculosis (Figure 5B and Supplementary Table S2).
These results suggest that the ESX system on the pMpg-
2 plasmid may be an ancient ESX system that evolved
into ESX-P2.

To examine the phylogenetic relationship of the two
ESX loci from the pMpg-1 and -2 plasmids, various EccC
protein sequences from mycobacterial chromosomes (from
ESX-1 to ESX-5 of M. marinum and M. tuberculosis) and
plasmids (ESX-P1 through -P3 and -P5) were aligned, and
an alignment-based phylogenetic tree was constructed.
As indicated above, the EccC protein from the pMpg-1
plasmid was grouped with those of mycobacterial ESX-
P5 [M. yongonense (pMyong1), M. kansasii (pMK12478),
M. marinum (pRAW), and M. avium subsp. hominissuis
(pMAH135)]. The EccC protein from the pMpg-2 plasmid was
clustered with the EccC protein of the chromosomal ESX-2 locus
in M. tuberculosis, not with the plasmid-derived ESX-P2 system
(Supplementary Figure S4).

Enhanced Resistance of Mpg to
Bacterial Killing by Amoeba
Our genome data on diverse T7SS systems, along with the high
isolation frequency of Mpg from water supply systems worldwide
and the unique growth traits of Mpg (its failure to grow above
37◦C), led us to hypothesize that Mpg could make use of FLA
systems as its natural reservoir and could resist phagocytic
death. To address this issue, we compared the intracellular
survival capacity against the amoeba (Acanthamoeba castellanii)
phagocytic killing mechanism between Mpg, M. gordonae
and M. marinum via coculturing with A. castellanii for
7 days. Before the test for survival ability in amoeba, the
growth rate of three mycobacterial strains, Mpg, M. gordonae
and M. marinum was determined in 7H9 broth media for
7 days. These strains showed similar growth rate until 5 days,
however, M. marinum showed slightly slow growth rate at
30◦C (Supplementary Figure S5). At the indicated time-
points (0, 1, 4, and 7 days) of the infection experiment,
the viability of Mpg, M. gordonae and M. marinum was
compared by counting the colony forming units (CFUs) of
each strain. Viable Mpg, M. gordonae and M. marinum
were detected at all time-points. Mpg showed lower CFU
[(133.50 ± 4.95) × 104 CFUs] at the infection time of Day
0, than M. gordonae [(226.00 ± 36.77) × 104 CFUs] and
M. marinum [(209.00 ± 11.31) × 104 CFUs]. Also, bacterial
viability of the three strains was decreased in a time-dependent
manner. However, CFUs [(1155.00 ± 219.20) × 102 CFUs] of
Mpg was maintained 7 days after infection compared to those
of M. gordonae [(45.50 ± 2.12) × 104 CFUs] and M. marinum
[(1.5 ± 0.71) × 102 CFUs]. This finding indicates that Mpg
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FIGURE 5 | Comparison of the genetic organization of the ESX loci in various mycobacterial plasmids, including Mpg. (A) The ESX-P5 locus from pMpg-1 was
compared with other loci in the mycobacterial plasmids pRAW (M. marinum E11), pMAH135 (M. avium subsp. hominissuis TH135), pMK12478 (M. kansasii ATCC
12478), and pMyong1 (M. yongonense). (B) The ESX-2-like locus in pMpg-2 was compared with the ESX-2 locus of M. tuberculosis. In panel (A), the sequence
similarities are indicated for each ORF, which were calculated against genes from pRAW. Genes which were not matched with those of pRAW and additional
insertions were represented as white arrows.

may have an advantage in resistance to phagocytic death after its
infection of amoeba (Figure 6).

CONCLUSION

We conducted a comparative genome analysis of Mpg with
evolutionarily close species, such as M. gordonae, M. marinum,
or M. tuberculosis to gain insight into questions regarding the
potential use of Mpg as a novel tuberculosis vaccine candidate
and its frequent isolation from water supply systems, such as
tap waters; we primarily focused on T7SS systems. Our data
indicate that Mpg genome has acquired massive genes related to
T7SS, and these genes may have contributed to the adaptation
of Mpg to intracellular lifestyle within free-living environmental
predators, such as amoeba. Comparison of the survival capacity
within amoeba indicated that Mpg exhibited the better resistance

to bacterial killing within amoeba, compared with M. gordonae or
M.marinum, further supporting our genome-based finding of the
special adaptation of Mpg to free living amoeba. Taken together,
our data highlight a significant role for lateral gene transfers in
mycobacteria evolution for niche diversification and for adapting
to intracellular survival.

MATERIALS AND METHODS

Genome Sequencing
The genomic DNA of Mpg was sequenced using a Pacific
Biosciences RS sequencer (300,584 and 5,647 reads) and an
Illumina Hi-Seq sequencer (105,177,988 reads). PacBio raw
data was assembled de novo with the hierarchical genome
assembly process (HGAP) of the single molecule real-time
(SMRT) analysis software (Pacific Biosciences, United States).
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FIGURE 6 | CFU enumeration of Mpg, M. gordonae and M. marinum from
infected A. castellanii. CFU counts of Mpg, M. gordonae and M. marinum
after infection of A. castellanii at a M.O.I. of 10 for 7 days. Statistical analyses
(Student t-test) were performed among the CFUs of Mpg, M. gordonae and
M. marinum at each infection time-point (∗P < 0.05 and ∗∗ P < 0.01).
Asterisks above each bar of M. gordonae and M. marinum indicate the
statistical significance between M. paragordonae and those two strains at
each time point.

After the de novo assembly, a total of 6 contigs were
obtained, which were corrected by mapping using the CLC
reference assembler compared with the Illumina Hi-Seq raw
data. There were 87,929,586 total mapped reads, representing
∼1,288.2 × coverage for the estimated 6.7-Mb genome. All
of the remaining gaps between contigs were filled using gap-
filling PCR amplification. After obtaining the genome sequence,
gene prediction was performed using the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP)1 (Tatusova et al., 2016;
Haft et al., 2018). The sequencing analysis was performed
in the National Instrumentation Center for Environmental
Management (NICEM) (Genome Analysis Unit) at Seoul
National University. The GenBank accession numbers of the
sequences are CP025546 to CP025550.

Genome Sequence-Based Phylogenetic
Analysis
Using the genome sequences of Mpg (GenBank accession
No. CP025546∼CP025550), M. tuberculosis H37Rv (AL123456),
M. gordonae DSM 44160T (LQOY00000000), M. marinum
M (CP000325), M. ulcerans Agy99 (CP000325), M. avium
subsp. avium 104 (CP000479), M. intracellulare ATCC 13950T

(CP003322), M. smegmatis NCTC 8159T (LN831039), and
M. abscessus ATCC 19977T (CU458896), genome sequence based
phylogenetic analysis was conducted. These genome sequences
were subjected to whole-genome multiple sequence alignments
using the neighbor-joining method with the Mauve Genome
Alignments software2 (Darling et al., 2004). A phylogenetic

1https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
2http://darlinglab.org/mauve/mauve.html

tree was generated using the aligned genome sequences and
visualized with the TreeView X program3 (Yoon et al.,
2017). Additionally, using the genomes of Mpg, M. gordonae,
M. marinum, and M. tuberculosis and Mpg, M. tuberculosis,
and M. indicus pranii, Venn diagrams were constructed using
the web-based program, OrthoVenn (Wang et al., 2015).
An E-value cut off of 1e−5 was used for protein similarity
comparisons. An inflation value of 1.5 was used for the
generation of orthologous clusters. Also, a neighbor-joining
phylogenetic tree based on the EccC protein sequences of the
pMpg-1 and -2 plasmids and the various EccC proteins from
mycobacterial chromosomes (ESX-1 through -5 of M. marinum
and M. tuberculosis) and plasmids (ESX-P1, pMFLV01 of
M. gilvum PYR-GCK; ESX-P2, pMKMS01 of Mycobacterium
sp. KMS and plasmid 2 of M. abscessus subsp. massiliense
50594; ESX-P3, pMKMS02 of Mycobacterium sp. KMS and
plasmid 1 of Mycobacterium sp. MCS; ESX-P5, pMyong1 of
M. yongonense, pMK12478 of M. kansasii, pRAW of M.marinum
and pMAH135 of M. avium subsp. hominissuis) was constructed
with the MEGA7 software.

Strains Used in This Study
The M. paragordonae JCM 18565T (Kim B.J. et al., 2014),
M. gordonae ATCC 14470T, and M. marinum JCM 17638T

strains were used in this study. All strains were cultured from
low-passaged frozen stocks (at -70◦C) to the exponential phase
and subcultured in Middlebrook 7H9 broth supplemented with
albumin dextrose catalase (ADC) and on Middlebrook 7H10
agar plates supplemented with oleic albumin dextrose catalase
(OADC) for 2 weeks at 30◦C and/or 37◦C. To obtain single
bacterial cell suspensions, all strains were suspended in PBS
with 0.05 % Tween 80 (PBS-T) and passed through a 27-
gauge needle three to five times. The growth rate of Mpg,
M. gordonae and M. marinum was determined by optical density
(OD) at 600 nm after culture in 7H9 broth supplemented
with ADC for 7 days.

Acanthamoeba castellanii Infection and
CFU Assays
To evaluate the survival of Mpg, M. gordonae and M. marinum
within the infected amoeba, the A. castellanii strain ATCC
30234 was cultured and maintained in PYG medium [20 g/L of
proteosepeptone, 1 g/L of yeast extract, 1 g/L of sodium citrate,
0.1 M glucose, 0.4 mM CaCl2, 4 mM MgSO4, 2.5 mM Na2HPO4,
2.5 mM KH2PO4, 50 µM Fe(NH4)2(SO4)2, pH 6.5] at 28◦C.
The cultured A. castellanii cells were seeded in a 6-well plate at
7.5 × 105 cells per well, and then the cells were infected with the
Mpg, M. gordonae and M. marinum strains at an M.O.I. of 10
for 4 h at 28◦C. Infected amoeba were washed and resuspended
in 1 mL of fresh PAS buffer (Page’s amoeba saline; 1 g/L of
sodium citrate, 0.4 mM CaCl2, 4 mM MgSO4, 2.5 mM Na2HPO4,
and 2.5 mM KH2PO4) and cultured for 0, 1, 4 and 7 days. At
each time-point, the infected amoeba was centrifuged at 800 × g
for 5 min, after which the supernatant was discarded, the pellet
was lysed with 0.5% Triton X-100 (in PBS) and, finally, the

3https://treeview-x.en.softonic.com/

Frontiers in Microbiology | www.frontiersin.org 8 July 2019 | Volume 10 | Article 1524

https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
http://darlinglab.org/mauve/mauve.html
https://treeview-x.en.softonic.com/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01524 July 1, 2019 Time: 17:2 # 9

Kim et al. ESX Systems in Mycobacterium paragordonae

homogenized suspensions were diluted and plated onto 7H10
agar plates. The plates were incubated at 28◦C for 2 or 3 weeks
before the CFUs were counted.

Statistical Analysis
All presented data are expressed as the mean ± standard
deviation (SD). Student’s t-test was used to compare the
variance using Microsoft Excel software, and the differences were
considered statistically significant at probability values less than
0.05. Two independent experiments were conducted and the
representative data are presented.
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