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Based on advancements in deep sequencing technology and microbiology, increasing
evidence indicates that microbes inhabiting humans modulate various host physiological
phenomena, thus participating in various disease pathogeneses. Owing to increasing
availability of biological data, further studies on the establishment of efficient
computational models for predicting potential associations are required. In particular,
computational approaches can also reduce the discovery cycle of novel microbe-
disease associations and further facilitate disease treatment, drug design, and other
scientific activities. This study aimed to develop a model based on the random walk
on hypergraph for microbe-disease association prediction (RWHMDA). As a class
of higher-order data representation, hypergraph could effectively recover information
loss occurring in the normal graph methodology, thus exclusively illustrating multiple
pair-wise associations. Integrating known microbe-disease associations in the Human
Microbe-Disease Association Database (HMDAD) and the Gaussian interaction profile
kernel similarity for microbes, random walk was then implemented for the constructed
hypergraph. Consequently, RWHMDA performed optimally in predicting the underlying
disease-associated microbes. More specifically, our model displayed AUC values
of 0.8898 and 0.8524 in global and local leave-one-out cross-validation (LOOCV),
respectively. Furthermore, three human diseases (asthma, Crohn’s disease, and type
2 diabetes) were studied to further illustrate prediction performance. Moreover, 8, 10,
and 8 of the 10 highest ranked microbes were confirmed through recent experimental
or clinical studies. In conclusion, RWHMDA is expected to display promising potential
to predict disease-microbe associations for follow-up experimental studies and facilitate
the prevention, diagnosis, treatment, and prognosis of complex human diseases.

Keywords: hypergraph, random walk, microbe, human diseases, association prediction

INTRODUCTION

Microbes exist in almost all habitats of flora and fauna, including humans. Deeper microbiological
insights have indicated more compact associations between humans and their microflora (Sommer
and Backhed, 2013). Some microbes are harmless and vital for host health in various manners, such
as enhancement of host immunity, improvement of host metabolic capability, and protection of
the host against pathogens (Eckburg et al., 2003; Ventura et al., 2009). Over the past few decades,
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numerous studies have focused on microbes inhabiting humans
(Peterson et al., 2009). For instance, the gut flora are a
complicated microbial community in the human digestive tract
(Sommer and Backhed, 2013). Human gut microbes potentially
benefit the host by synthesizing different vitamins, metabolizing
bile acids, etc., thus exhibiting a fundamentally mutualistic
association between some gut flora and the human host
(Clarke et al., 2014). Therefore, microbes may be considered
a supplemental “organ” in the host (Bäckhed et al., 2005).
Furthermore, the number of microbial cells in the human
body is reportedly approximately 10-fold the number of human
cells (Rosner, 2014). Therefore, it is essential to systematically
analyze associations between microbes and humans. The
Human Microbiome Project (HMP) has furthered the current
understanding of microbial structure, diversity, and function
over the years (Human Microbiome Project Consortium, 2012).
However, numerous basic and clinical studies have investigated
the association between the human microbiome and human
health (Moore and Moore, 1995; Dethlefsen et al., 2007; Zhang
et al., 2009; Brown et al., 2011).

It is important to understand microbe-host interactions,
which could benefit the prevention, diagnosis, treatment, and
prognosis of human diseases (Bao et al., 2017; Zou et al., 2018).
Microbial communities could be influenced by not only maternal
genetic factors (Khachatryan et al., 2008; Turnbaugh et al.,
2009; Goodrich et al., 2014) but also the habitat environments,
such as the change of season (Davenport et al., 2014), host
diet (David et al., 2014), antibiotic consumption (Donia et al.,
2014), host smoking habits (Mason et al., 2015), and residential
hygiene of the host (Sommer and Backhed, 2013). Changes in
environmental variables may modify microbial communities and
alter host-microbe interactions (Ma et al., 2014). In the past
decades, with the development of high-throughput sequencing
techniques and ensuing computational tools, increasing evidence
demonstrates the close association between microbial dysbiosis
and various human diseases (Neish, 2009), such as inflammatory
bowel disease (IBD) (Frank et al., 2007), diabetes (Brown et al.,
2011; Giongo et al., 2011), asthma (Chen and Blaser, 2007),
obesity (Ley et al., 2006), and some cancers (Moore and Moore,
1995; Schwabe and Jobin, 2013). For example, through 16S rRNA
microarray and parallel clone library-sequencing analysis, Huang
et al. (2011) collected bronchial epithelial brushings from 65
asthma patients and compared them with 10 other samples from
healthy control subjects, reporting that members of the airway
microbiota, such as Comamonadaceae, Sphingomonadaceae, and
Oxalobacteraceae, were greater in asthma patients. Hoppe et al.
(2011) evaluated the effect of Oxalobacter formigenes on primary
hyperoxaluria, a rare genetic disease. In particular, the urinary
oxalate test and ad hoc analysis in their study revealed a
reduction in Oxalobacter formigenes in patients with kidney
stones. Furthermore, to analyze and elucidate the microbiota of
colon cancer patients, Sobhani et al. (2011) extracted bacterial
DNA from 179 colon cancer patients. Through qPCR and
the immunohistochemical analyses, C. coccoides, Bacteroides,
Lactobacillus groups, and Faecalibacterium prausnitzii species
were reportedly increased in colon cancer patients. Moreover,
on comparing microbes from 83 healthy control individuals

and 98 liver cirrhosis patients, Qin et al. (2014) identified
several biomarkers associated with liver cirrhosis, reporting
that certain groups were reduced (e.g., Alistipes finegoldii,
Bacteroides eggerthii, and Coprococcus) while certain others
were enriched (e.g., Fusobacterium, Haemophilus parainfluenzae,
and Phascolarctobacterium). Therefore, elucidation of the
association between microbes and human diseases may facilitate
novel drug discovery.

Despite some reported microbe-disease associations, they are
not sufficient to completely understand disease pathogenesis,
diagnosis, and treatment. Fortunately, Wang et al. (2015)
proposed the excellent work about cancer hallmark network
framework in the predictive genomics. The cancer hallmark
network framework offered great insights on modeling genome
sequencing data to predict cancer evolution and associated
clinical phenotypes, which provided valuable designment
strategies for using the framework in conjunction with genome
sequencing data in any other attempt to prediction works
on human diseases, drug targets and other fields, microbe
included. Indeed, construction of a computationally efficient
model from existing associations to predict potential ones
is practical, potentially providing novel insights into time-
consuming microbiology experiments by elucidating the most
promising previously unknown associations (Chen et al., 2017c).
Specifically, in determining lncRNA-disease associations (Chen,
2015), studies on drug targets (van Laarhoven et al., 2011;
Yamanishi, 2013) and miRNA-disease associations (Wang
et al., 2010; Chen et al., 2017d) have yielded various efficient
in silico models to predict the underlying associations. Recently,
based on experimentally verified microbe-disease associations,
Ma et al. (2017) constructed the first Human Microbe-
Disease Association Database (HMDAD). Thereafter, several
computational models have been proposed to further contribute
to the HMDAD. For example, Chen et al. (2017a) generated
a model based on the KATZ measure, named KATZHMDA.
In their model, they first constructed an association network
showing pairwise relationships between microbes and human
disease. Furthermore, they introduced Gaussian interaction
profile kernel similarity for microbes and diseases to predict
novel associations. Moreover, Huang Z.A. et al. (2017) developed
a model of Path-Based Human Microbe-Disease Association
Prediction (PBHMDA), wherein they used a special depth-first
search algorithm on the heterogeneous biological network.
In particular, they investigated all possible paths between
diseases and microbes to infer highly probable associations.
Resulting from the idea of collaborative recommendation
model, Huang Y.A. et al. (2017) provided a computational
model by adopting neighbor-based collaborative filtering and
a graph-based scoring approach to calculate the association
possibility of unknown microbe–disease pairs. The usage
of hybrid approach based on two single recommendation
methods contributed much more on their prediction results.
Based on the microbe-disease interaction network, Wang
et al. (2017) developed the model of Laplacian Regularized
Least Squares for Human Microbe-Disease Association
(LRLSHMDA). LRLSHMDA is a semi-supervised computational
model using the Laplacian regularized least squares classifier.
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Recently, Zou et al. (2018) integrated symptom-based disease
similarity to predict novel human microbe-disease associations
based on network consistency projection (NCPHMDA). In
detail, they conducted microbe space projection and disease
space projection and combined the projections to design
an advisable non-parametric approach. Based on adaptive
boosting approach, Peng et al. (2018) developed a model named
Adaptive Boosting for Human Microbe-Disease Association
prediction (ABHMDA) to reveal the underlying associations
between microbes and human diseases by calculating the
association probability of concerned disease-microbe pair
by grouped weak classifiers to form a stronger classifier for
further scoring and sorting samples. Not long time ago, Qu
et al. (2019) proposed a computational model on the basis of
HMDAD by the methods of matrix decomposition and label
propagation, which divided the original adjacency matrix about
the relationship between microbes and diseases into a linear
combination of itself and a low-rank matrix to predict novel
disease-microbe associations.

Herein, we present a Random Walk on Hypergraph for
Microbe-Disease Association Prediction (RWHMDA) model to
predict underlying microbe-disease associations. In particular,
we constructed a higher-order hypergraph model to accurately
determine the implicit inherent association between microbes
and human diseases. Thereafter, we generalized the well-
known random walk process to the hypergraph in a modified
manner, wherein vertices (microbes) within a hyperedge (human
disease) were differentiated by the walker depending on their
features. Finally, we ranked all candidate microbes for every
investigated human disease. The merit of this study is the
introduction of the concept and method of hypergraph to
predict microbe-disease associations. Hypergraph is practical
and suitable because it could provide biologically decipherable
aspects by placing all disease-associated microbes in one
hyperedge. Furthermore, we implemented global and local Leave-
one-out cross-validation (LOOCV) to evaluate the predictive
performance of RWHMDA.

MATERIALS AND METHODS

Human Microbe-Disease Associations
In this study, we utilized microbe-disease associations in
HMDAD database (Ma et al., 2017)1, containing 483 known
microbe-disease associations among 292 microbes inhabiting
the human body and 39 human diseases. The associations in
HMDAD were obtained from sequencing-based microbiological
analyses. In addition, if different data are available for overlapping
microbe-disease associations in the database, only one record
would be maintained. Finally, we obtained 450 distinct known
microbe-disease associations for further prediction. Microbe-
disease associations could be stored in an adjacency matrixA,
where element A(i, j) represented the binary association of disease
d(i) and microbe m(j). In other words, we obtained a nd × nm
matrix A, where 450 elements were 1 and the others were 0.

1http://www.cuilab.cn/hmdad

Meanwhile, nd was the number of diseases, and nm was the
number of microbes.

Gaussian Interaction Profile Kernel
Similarity for Microbes
Gaussian interaction profile kernel similarity was calculated on
the basis of a type of Radial Basis Function (RBF), namely
Gaussian kernel function. In this study, we adopted the Gaussian
interaction profile kernel similarity to determine the similarity
between microbes. In detail, based on the constructed adjacency
matrix A, microbial interaction profiles could be defined as a
binary vector IP(m(j)), representing the absence or presence
of the interaction between microbe m(j) and diseases. IP(m(j))
was the j-th column of matrix A. Thereafter, we calculated the
Gaussian kernel similarity between microbe m(j) and microbe
m(j), using Gaussian kernel function as follows:

GM
(
m (i) , m

(
j
))
= exp

(
−rm||IP (m (i))− IP

(
m
(
j
))
||

2)
(1)

where rm was set to balance the kernel bandwidth, and GM
defined the Gaussian interaction profile kernel similarity matrix
for microbes. Specially, rmwas calculated in accordance with a
new parameter rm and the average known association number per
miRNA as follows:

rm =
r′m( 1

nm
∑nm

i=1 ||IP (m (i)) ||2
) (2)

where nm is the total number of microbes. Technically, rm was set
as 1 here (Chen et al., 2017b).

RWHMDA
In this study, we proposed the RWHMDA model from
the random walk on hypergraph to predict novel microbe-
disease associations. Although Gaussian interaction profile kernel
similarity for microbes is also accounted for in this method,
RWHMDA is still a graph structure-based model without extra
domain information in microbiological studies. Random walks
on simple graphs have been investigated extensively in various
biological fields. However, random walks on hypergraph have
not been reported with respect to the prediction of microbe-
disease associations thus far. Hypergraph is a type of higher-
order graphical representation of biological data, compensating
for information loss in the normal graph method, exclusively
describing pair-wise association structures (Figure 1).

Generally, in the present model, we first constructed a
hypergraph comprising microbes and diseases, wherein diseases
are presented as hyperedges and microbes are presented as nodes.
If several microbes have been confirmed to be associated with
one disease, they would be presented as nodes in the hyperedge
corresponding to the disease. In the hypergraph, hyperedges
can join numerous vertices (not limited to two nodes as in
simple graph). Specifically, if microbe m(i) is associated with
disease d(j), then node m(i) belongs to hyperedge d(j). Obviously,
one microbe might belong to different hyperedges. We assessed
all known microbe-disease associations and established a
hypergraph with 39 hyperedges. Without loss of generalizability,

Frontiers in Microbiology | www.frontiersin.org 3 July 2019 | Volume 10 | Article 1578

http://www.cuilab.cn/hmdad
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01578 July 8, 2019 Time: 16:8 # 4

Niu et al. RWHMDA

FIGURE 1 | An example of a hypergraph comprising 5 hyperedges and 8
nodes. Different hyperedges are indicated with different colors. Every
hyperedge contains different numbers of nodes based on their practical
applications.

we defined the hypergraph as HG (V, E) where E is the set of
hyperedges, and V is the set of vertices. Hyperedge e ∈ E is a
subset of V, hyperedge e is incident with node v if the node
belongs to the hyperedge. Neighborhood relationships among
nodes can be defined if v ∈ e, w ∈ e.

After constructing the hypergraph, we implement random
walk with restart on it. The random walk on the normal graph
is a type of Markov process. The surfer travels between nodes in
the graph by starting at a node and shifting to an adjacent node
at each discrete time step t. The transition probability between
nodes is completely independent of the time t. Therefore, we
could define the transition probability matrix P ∈ R|V|×|V| for the
whole process. Matrix P represents the transition probabilities
of the random internodal movements. Matrix P is actually
a critical factor calculated on the basis of multifarious filed
knowledge. Furthermore, we introduced the random walk on the
hypergraph. Basically, the surfer shifts between two nodes only
if they are neighbors in the currently visited hyperedge. Briefly,
this process may be considered a two-step procedure as follows:
the surfer randomly selects a hyperedge incident with a currently
visited node in step 1; thereafter, the surfer selects a destination
neighbor node within the selected hyperedge in step 2 (Figure 2).
Thereafter, we would focus on capturing transition matrix P with
respect to the random walk on the hypergraph.

Considering an unweighted hypergraph HG (V, E), wherein
hyperedges and nodes have no weights, the incidence matrix
H ∈ R|V|×|E| was defined as follows:

h (v, e) =
{

1, if v ∈ e
0, if v /∈ e

(3)

δ (e) = |e| (4)

d (v) = |E (v)| (5)

where δ (e) is the degree of hyperedge e, d(v) is the degree of
vertex v, |e| indicates the number of nodes within hyperedge e,
E (v) is the set of hyperedges incident with vertex v. Thereafter,

we obtained the diagonal hyperedge degree matrix De ∈ R|E|×|E|,
the diagonal vertex degree matrix Dv ∈ R|V|×|V| .

Regarding data on microbe-disease associations, it means the
surfer would select a disease known to be associated with the
current microbe. We could not unambiguously distinguish the
more critical disease associated with the referenced microbe.
Therefore, we intend for the surfer to uniformly randomly
select a hyperedge at step 1. Furthermore, the surfer would
walk to a node within this hyperedge. In our predictive case,
although it is potentially difficult to evaluate the features of
nodes, we differentiated microbes within a hyperedge of disease
in accordance with the Gaussian interaction profile kernel
similarity. Technically, in step 2, we intend for the surfer to shift
to a node within a hyperedge in accordance with the sum of
similarities of the node with all other nodes in the hypergraph. In
summary, starting from node u, the surfer would select hyperedge
e incident with u proportional to the weight of hyperedge w(e).
Thereafter, the surfer selects node v proportional to the weight of
v within the current hyperedge e, namely w (ve ).

Considering the afore-mentioned motivation, we then
defined the weighted incident matrix W ∈ R|V|×|E|of hypergraph
HG(V, E) as follows:

w (v, e) =
{

w (ve) , if v ∈ e
0, if v /∈ e

(6)

where w (ve) is the weight of node v in hyperedge e. In the present
model, we calculated w (ve) on the basis of matrix GM. In this
study, the weight of a microbe m(i) in a hyperedge is the sum of
ith row in GM. Thereafter, we redefined hyperedge degree δ

′

(e)
and hyperedge degree matrix Dve ∈ R|E|×|E| as follows:

δ (e) =
∑
v∈e

w (v, e) (7)

where Dve is the diagonal hyperedge degree matrix with element
δ (e).

We then calculated the transition probability from vertex u to
vertex v as follows:

P (u, v) =
∑
e∈E

w (e)
h (u, e)∑
ê∈E w

(
ê
) w (v, e)∑

v̂∈e w
(
v̂, e
) (8)

which may also be expressed in matrix form as follows:

P = D−1
v HW eD−1

ve WT (9)

where We ∈ R|E|×|E| is the diagonal matrix of hyperedge weights,
wherein all diseases are considered with equal weightage in
accordance with the previously described practical consideration,
i.e., all hyperedges are 1/ |E|. Naturally, transition matrix P is
stochastic, implying that the sum of every row equals 1.

Furthermore, we implement the random walk with restart on
the hypergraph. In particular, assuming that microbes associated
with disease d(i) are to be predicted, all microbes with known
associations with d(i) are considered seed microbes, while the
others are considered candidate microbes. Thereafter, we set
the initially normalized probability vector Ev (0) ∈ R|V|×1 such
that seed microbes are assigned with equal probability and the

Frontiers in Microbiology | www.frontiersin.org 4 July 2019 | Volume 10 | Article 1578

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01578 July 8, 2019 Time: 16:8 # 5

Niu et al. RWHMDA

FIGURE 2 | Illustration of the random walk process on the hypergraph. Generally, the surfer selects a hyperedge in step 1 and then selects a node as the destination
vertex to shift to the selected hyperedge in step 2.

non-seed miRNAs are zero. After the first step, Ev (1) = PT
Ev (0).

Moreover, we set the restart probability at every step at source
nodes as α (0 < α < 1), Ev (1) = (1− α) PT

Ev (0)+ αEv (0). Finally,
we obtained the random walk with the following formula:

Ev (t + 1) = (1− α) PT
Ev (t)+ αEv (0) (10)

Ev (t) is defined such that the ith element means the probability of
moving to node i at step t. After some steps, the random walk
would stabilize, implying that the difference between Ev (t + 1)
and Ev (t) measured by the L1 norm is smaller than the provided
threshold. The stable state of the random walk with restart
is defined as Ev (∞). Stationary probability in Ev (∞) indicates
the probable associations between candidate microbes with the
currently investigated disease. We conducted the random walk
for every disease in the HMDAD database and ranked the
underlying microbe-disease associations in accordance with the
corresponding Ev (∞) of the current disease (Figure 3).

As a supplement, we set the α-value as 0.2 and set the cutoff
value as 10−6.

RESULTS

Performance Evaluation
LOOCV was usually implemented to assess the performance
of the prediction model. Global and local LOOCV in the
present study were both conducted to comprehensively assess
the performance of RWHMDA. Specifically, global LOOCV
was conducted on the basis of the known microbe-disease
associations in the HMDAD database (Ma et al., 2017). Each
association was left out in turn as the test sample, while others
were set as candidate samples. If the rank of the test sample was
higher than that of the candidate samples, the test association

was considered to have been correctly predicted. Furthermore,
local LOOCV was somewhat different from global LOOCV, and
it was implemented as follows: first, for an investigated disease,
based on the association records in the HMDAD (Ma et al., 2017)
database, each known disease-associated microbe was excluded in
turn as the test sample and the others were used as seed samples.
Thereafter, the predicted association probability of the current
test sample would be ranked with the probability of candidate
samples. If the test sample was ranked beyond the threshold, the
model successfully predicted this microbe–disease association.
Further, we plotted a receiver operating characteristics (ROC)
curve. The area under the ROC curve (AUC) was determined
to assess the prediction performance of RWHMDA. Specifically,
AUC = 1 implied an excellent performance, and AUC = 0.5
indicated a random performance. Consequently, RWHMDA
yielded a global AUC value of 0.8898 and local AUC value
of 0.8524, which were higher than some previously reported
computational models, such as LRLSHMDA (0.8959, 0.7657)
(Bao et al., 2017) and KATZHMDA (0.8382, 0.6812) (Chen et al.,
2017a; Figure 4).

Case Studies
To further assess the performance of the proposed model, we
conducted case studies of asthma, Crohn’s disease (CD), and
type 2 diabetes by assessing the 10 highest probable microbes
ranked by RWHMDA.

It is unambiguous that the human microflora play an
important role in asthma pathogenesis (Li N. et al., 2017).
Morbidity rates among asthma patients have significantly
increased since the 1960s (Anandan et al., 2010). Asthma caused
approximately 400 thousand deaths worldwide in 2015. More
recently, on evaluating data regarding the association between
Helicobacter pylori status with the history of asthma from 7663
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FIGURE 3 | Schematic representation of the RWHMDA model.

FIGURE 4 | Comparisons between the RWHMDA model and the other two state-of-the-art prediction models (LRLSHMDA and KATAHMDA) in terms of global and
local AUC values. Consequently, RWHMDA yielded AUCs of 0.8898 and 0.8524, yielding a better prediction performance.

adults in the Third National Health and Nutrition Examination
Survey, childhood acquisition of H. pylori is associated with a
reduced risk of asthma (Chen and Blaser, 2007). We implemented
RWHMDA for the asthma case study. Consequently, 9 of the
10 most highly ranked asthma-related microbes were confirmed
from the literature (Table 1). For example, the study reporting the
presence of Propionibacterium acnes (1st ranked in the prediction
list of RWHMDA) in asthma patients helped diagnose asthma

(Romero-Espinoza et al., 2018). Pseudomonas, ranked 3rd by
our model, was confirmed to be more prevalent in the sputum
of asthma patients (Jung et al., 2016). Moreover, as the 10th
predicted asthma-related microbe, Streptococcus are associated
with asthma, potentially contributing to its pathophysiology
(Zhang et al., 2016).

The worldwide prevalence of diabetes mellitus has
increased continuously over the past few decades
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TABLE 1 | A case study on predicted potential asthma-related microbes.

Rank Microbe Evidence

1 Propionibacterium acnes PMID:29447223

2 Propionibacterium PMID:29447223

3 Pseudomonas PMID:27433177

4 Burkholderia PMID:24451910

5 Enterobacter aerogenes PMID:18790035

6 Enterobacter hormaechei Unconfirmed

7 Klebsiella pneumoniae PMID:26220531

8 Shigella dysenteriae Unconfirmed

9 Actinobacteria PMID:23265859

10 Streptococcus PMID:27078029

Among the 10 highest ranked potential asthma-related microbes, eight were
confirmed from the literature.

(Tadic and Cuspidi, 2015). Type 2 diabetes mellitus is a
subclass of diabetes mellitus, accounting for approximately
90% of all the diabetes mellitus cases. The traditional view
holds that the pathogenesis of type 2 diabetes is associated
with both genetic and lifestyle-related factors. Recent evidence
suggests that the pathomechanism and pathogenesis of type
2 diabetes mellitus are also associated with an unbalance in
microbial communities (Ripsin et al., 2009; Furet et al., 2010).
Larsen et al. (2010) assessed the differences in the composition
of the intestinal microbiota in individuals without and those
with type 2 diabetes via high-throughput 16S rDNA gene
pyrosequencing, reporting an increase in Bacilli, Bacteroidetes,
and Betaproteobacteria and reductions in Clostridia, Clostridium,
Firmicutes, etc. Among the 10 highest ranked microbes by
probability, 8 were confirmed through recent evidence (Table 2).
For example, Fusobacterium nucleatum was ranked first
and confirmed to be significantly higher in type 2 diabetes
mellitus patients than in those without type 2 diabetes mellitus
(Miranda et al., 2017). Pseudomonas, abundant in the subgingival
plaque, ranked 2nd by our model and was markedly different
between individuals with and those without diabetes (Zhou
et al., 2013). Furthermore, Aerococcus and Atopobium were

TABLE 2 | RWHMDA used to predict candidate microbes associated with type 2
diabetes.

Rank Microbe Evidence

1 Fusobacterium nucleatum PMID:28198980

2 Pseudomonas PMID:23613868

3 Aerococcus PMID:28786059

4 Atopobium PMID:28177125

5 Atopobium vaginae unconfirmed

6 Candidate division TM7 unconfirmed

7 Eggerthella PMID:26046242

8 Gardnerella PMID:28316574

9 Gardnerella vaginalis PMID:2131794

10 Lactobacillus crispatus PMID:28608654

Consequently, 8 of the 10 most probable microbes were experimentally confirmed
through the relevant literature.

associated with the risk of type 2 diabetes (Li H. et al., 2017;
Long et al., 2017).

Crohn’s disease (CD) is a type of IBD. Although the etiology
of CD is generally believed to associated with the combination
of immune, environmental, and bacterial factors, however, the
precise etiology of CD is still unclear (Dessein et al., 2008;
Stefanelli et al., 2008; Cho and Brant, 2011). In fact, no surgical
treatment or pharmacotherapeutic methods have been reported
to cure Crohn’s disease (Baumgart and Sandborn, 2012). Studies
have increasingly investigated the bacterial factors associated
with the etiology of CD. Gevers et al. (2014) reported that
the increased abundance of Fusobacteriaceae, Enterobacteriaceae,
Pasteurellacaea, and Veillonellaceae and the decreased abundance
of Clostridiales Erysipelotrichales, and Bacteroidales are closely
correlated with Crohn’s disease. A case study on Crohn’s
disease revealed that the 10 most probable microbes were
confirmed through recent researches (Table 3). For example,
the two most promising microbes predicted by our model were
Clostridium difficile and Bacteroides fragilis, both confirmed to be
present at high levels in CD patients compared than in healthy
individuals (Cojocariu et al., 2014; Zhou et al., 2016). Moreover,
studies evaluating the association between disease status and gut
microbiota in CD patients revealed that Clostridium coccoides
(3rd place in the ranking list) was abundant in febrile patients
presenting with remission in comparison with patients with
active CD (Prosberg et al., 2016).

DISCUSSION AND CONCLUSION

Accumulating falsifiable evidence indicates that microbial
involvement is associated with disease pathogenesis in some
cases. In this study, with data from microbiological studies,
hypergraph theory, and other research areas, we introduced
an in silico model named RWHMDA to predict underlying
microbe-disease associations. Many previous computational
models performed pairwise comparisons and illustrated microbe-
disease associations as a normal graph. RWHMDA has been
developed primarily on the basis of a hypergraph, thus
compensating for the information loss issue by normal graph.
Known microbe-disease associations in the HMDAD database

TABLE 3 | A case study on Crohn’s disease verifying all 10 of the 10 most
probable candidates of Crohn’s disease-related microbes.

Rank Microbe Evidence

1 Clostridium difficile PMID:25599768

2 Bacteroides fragilis PMID:27684872

3 Clostridium coccoides PMID:27687331

4 Bacilli PMID:29559804

5 Betaproteobacteria PMID:27833911

6 Lachnospiraceae PMID:26628508

7 Clostridium PMID:29722832

8 Prevotella PMID:28852861

9 Alistipes finegoldii PMID:28877044

10 Alistipes putredinis PMID:29311644

Frontiers in Microbiology | www.frontiersin.org 7 July 2019 | Volume 10 | Article 1578

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01578 July 8, 2019 Time: 16:8 # 8

Niu et al. RWHMDA

and the Gaussian interaction profile kernel similarity for
microbes were utilized to design a weighted hypergraph
comprising microbes and diseases. Random walk with restart
was implemented on the hypergraph for every disease to identify
the potential disease-associated microbes. Both cross-validation
and case studies on asthma, type 2 diabetes, and Crohn’s disease
revealed the reliability of RWHMDA. In addition, the predicted
microbes for all diseases were publicly released for further
validation through biological assays (Supplementary Table S1).

Generally, RWHMDA performed reliably, thus revealing
several important factors. First, as a representation of a higher-
order structure, hypergraphs adequately illustrate and present
data on microbe-disease associations without information loss.
In particular, the practice of setting disease as a hyperedge
and microbe as a node was reasonable and biologically
decipherable, thereby naturally benefiting the prediction of
potential associations. Second, owing to the valid and updated
data on disease-microbe associations through numerous
biological analyses, RWHMDA had a greater prediction accuracy
with greater probability. Third, random walk process is a
widespread and significant physical dynamic process, used
extensively in numerous studies. RWHMDA was developed on
the basis of the random walk with restart process, following
a seemingly iterative 2-step walking strategy to investigate
the potential association probability between any pair of
microbe and disease.

However, the present RWHMDA model has some limitations.
Hypergraph and Gaussian interaction profile kernel were both
constructed largely on the basis of known associations. Therefore,
the model may have a bias toward those well-known diseases
and microbes. Furthermore, some other similarity measures
of diseases could also be meticulously integrated into the
RWHMDA model, such as symptom-based disease similarity
and disease semantic similarity. Finally, the RWHMDA model
could not be implemented for new diseases without known

associations with microbes, being an inherent limitation of the
graph-based model.

In conclusion, RWHMDA is expected to display promising
potential to predict disease-microbe associations for follow-up
experimental studies and facilitate the prevention, diagnosis,
treatment, and prognosis of complex human diseases.
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