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The viruses play an important role in limiting bacterial abundance in oceans and, hence,
in regulating bacterial biogeochemical functions. A cruise was conducted in September
2005 along a transect in the deep South China Sea (SCS). The results showed the
double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: a
deep maximum at 800–1000 m coinciding with the oxygen minimum zone (OMZ) and
a subsurface maximum at 50–100 m near the subsurface chlorophyll maximum (SCM)
layer. At the deep maximum of VBR, both viral and bacterial abundances were lower
than those in the upper layer, but the former was reduced less than the latter. In contrast,
at the subsurface maximum of VBR, both viral and bacterial abundances increased to
the maximum, with viral abundance increasing more than bacterial abundance. The
results suggest that two VBR maxima were formed due to different mechanisms. In
the SCM, the VBR maximum is due to an abundant supply of organic matter, which
increases bacterial growth, and stimulates viral abundance faster. In contrast, in the
OMZ, organic matter is consumed and limits bacterial growth, but viruses are less limited
by organic matter and continue to infect bacteria, leading to the maximum VBR. The
OMZ in the deep-water column of oceans is over hundreds of years old and receives
a constant supply of organic matter from the water above. However, the oxygen level
cannot be depleted to anoxia. Bacterial respiration is largely responsible for oxygen
consumption in the OMZ; and hence, any process that limits bacterial abundance and
respiration contributes to the variation in the OMZ. Viral control of bacterial abundance
can be a potential mechanism responsible for slowing down oxygen consumption
to anoxia in the OMZ. Our finding provides preliminary evidence that viruses are an
important player in controlling bacterial abundance when bacterial growth is limited
by organic matter, and thus, regulates the decomposition of organic matter, oxygen
consumption and nutrient re-mineralization in deep oceans.

Keywords: vertical distribution, marine virus, marine bacterium, nutrients, oxygen minimum zone, South
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INTRODUCTION

The viral shunt plays an important role in biogeochemical
processes in oceans (Suttle, 2005). Viruses are present at
concentrations in the levels of 108 ml−1 in coastal waters,
107 ml−1 in offshore waters and 106 ml−1 in oceanic
waters, one order of magnitude higher than the bacterial
abundance for coastal, offshore and oceanic waters, respectively.
Most observations of viruses are focused on surface waters.
Measurements of oceanic viral-particle direct counts in the deep
oceans (>1000 m) are relatively scarce, and they have been
conducted only in regions of the Southeastern Gulf of Mexico
(Boehme et al., 1993), the Mediterranean Sea (Magagnini et al.,
2007; Winter et al., 2009; Fonda Umani et al., 2010; Magiopoulos
and Pitta, 2012), the North Pacific (Hara et al., 1996), the Atlantic
(Parada et al., 2007; De Corte et al., 2010; De Corte et al., 2012;
De Corte et al., 2016), the Southern Oceans (Yang et al., 2014),
and the tropical and subtropical waters of the global ocean (Lara
et al., 2017). The subsurface maximum of viral abundance has
often been observed, for example, at 50 m in the southeastern
Gulf of Mexico (Boehme et al., 1993) and in the North Pacific
(Hara et al., 1996), at 75–100 m at all stations of the Ionian,
Libyan and South Aegean Seas (Magiopoulos and Pitta, 2012) and
50–100 m in the Mediterranean Sea (Magagnini et al., 2007). In
the North Aegean Sea, the maximum viral abundance occurred
at 2 to 50 m (Magiopoulos and Pitta, 2012). The ratio of viral
to bacterial abundance (VBR) is often used as an indicator
for the relationship between bacteria and viruses. The ratio of
viral abundance to prokaryotic abundance is the result of a
comprehensive balance of factors, such as the viral production,
the transport of viruses through sinking particles, decay rates
and life strategies (Hara et al., 1996; Weinbauer et al., 2003;
Wigington et al., 2016).

Viruses affect bacterial ecological functions such as
decomposition and respiration of organic matter, and thus,
play an important role in biogeochemical processes in the
deep ocean. A previous study (Liu et al., 2015) has shown that
viruses reduce bacterial abundance and bacterial respiration in
laboratory cultures compared with virus-free bacterial cultures.
However, such viral effects depend on the nutrient conditions.
Viruses exert more control on bacterial abundance and activities
in eutrophic seawater, but viruses sustain the bacterial population
by viral lysates of bacteria under nutrient-limited seawater. This
clearly suggests that viruses play a more important role where
the organic supply is limited. Dissolved oxygen (DO) is a key
indicator for biological activity and biogeochemical processes
in deep oceans. Because of the thermohaline circulation in
the ocean and biological consumption of oxygen, an oxygen
minimum zone (OMZ) exists in the middle water column
of the deep oceans. The OMZ feature occurs in most world
oceans. The formation of an OMZ is thought to result from the
balance of organic-matter-sustained oxygen consumption and
the thermohaline circulation (Paulmier and Ruiz-Pino, 2009).
Given the long residence time of the OMZ water mass, DO
should be depleted; however, DO has rarely been depleted in
the OMZ. We hypothesize that viruses play a regulating role
in controlling bacterial abundance and the bacterial growth

is limited by the organic matter in the water column. To test
this hypothesis, a cruise was conducted in the northern South
China Sea (SCS).

The SCS is the largest inland sea in the tropical region,
extending from the equator to 22◦N and from 99◦E to 121◦E, with
a surface area of approximately 3.5 × 106 km2. The maximum
water depth is approximately 5000 m (Shaw and Chao, 1994),
with the average depth being approximately 1200 m. The SCS
exchanges waters with the Pacific and Indian Oceans through
several passages, most of which are very shallow (less than 100 m).
Only the Luzon Strait has a depth of approximately 2500 m and
allows more exchange of deeper waters in the Philippine Sea
between the western Pacific and SCS (Qu et al., 2006; Wang
et al., 2018). The SCS is oligotrophic with a high sea-surface
temperature, low nutrients, low chlorophyll a, and low primary
productivity (Liu et al., 2002; Wu et al., 2003; Ning et al., 2005),
but relatively high viral and bacterial abundance (He et al.,
2009). However, there is little information on the occurrence and
characteristics of viruses and bacteria in the deep oceanic water
column in the SCS. The major objectives of this study were to test
the hypothesis by investigating the vertical distribution of viruses
and bacteria and to examine the role of viruses in regulating
bacterial abundance and biogeochemical processes in the deep
ocean water column in the SCS.

MATERIALS AND METHODS

Sampling Stations and Sampling
A cruise on board the R/V Experiment No. 3 was conducted
in the northern SCS during September 5–23, 2005. Four deep
stations were visited (Figure 1): E703 (water depth 1182 m,
19◦54′N, and 115◦06′E), E701 (water depth 3099 m, 18◦59′N, and
116◦00′E), E409 (water depth 3945 m, 17◦59′N, and 116◦59′E),
and E407 (water depth 4150 m, 17◦59′N, and 119◦00′E). The
sampling depths covered the entire water column from the
surface to 4000 m. A CTD rosette with 12 Niskin bottles was
used to read vertical profiles of the salinity and temperature.
Water samples were collected at twelve discrete sampling depths
throughout the water column: three in the epipelagic zone
(3, 50, and 100 m), four in the mesopelagic zone (200, 300,
500, and 800 m) and five in the bathypelagic zone (1000,
1500, 2000, 3000, and 4000 m). A YSI@ 6600 probe was used
and slowly lowed into the water column, taking readings of
chlorophyll fluorescence, down to 100 m. Samples for DO were
collected following the water overflow procedure, and DO was
determined by the Winkler titration method as outlined by
Parsons et al. (1984).

Counting of Viruses and Bacteria
Samples for bacterial and viral abundance were transferred to
2 ml centrifuge tube, fixed immediately with glutaraldehyde
(final concentration, 0.5%) and stored in darkness for 15 min.
Fixed for 15 min, 0.8 ml samples were filtered onto 0.02 µm
Anodisc filters (Whatman, Maidstone, United Kingdom). The
vacuum pressure was about 20 kPa. The filters were placed
on a drop of SYBR-Green-I solution (final concentration,
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0.25%) and dyed in darkness for 15 min, according to Noble
and Fuhrman (1998). The slides with the fixed filters were
completed in about 30 min and stored at −20◦C. The counting
of bacteria and viruses was made within 4 weeks. With the
immersion oil (type A, Nikon), Virus and bacterial particles
were counted at 1000 times magnification under 100 W mercury
lamp for the epifluorescence illumination using an OLYMPUS
BX41 microscope in the laboratory. At least 200 bacteria
and viruses in each field were counted in at least 10 fields
(Noble and Fuhrman, 1998).

Nutrients
Nitrite samples were filtered through glass fiber filters (GF/F)
and frozen immediately (−20◦C) until analysis. All plastic-
wares were pre-cleaned with 10% HCl. The nitrite was analyzed
colorimetrically with a SKALAR (San Plus) Autoanalyzer using
JGOFS Protocols (Knap et al., 1996). Dissolved organic carbon
(DOC) samples were filtered through pre-combusted 0.7 µm
GF/F filters. The DOC samples were acidified with 50 µl 50%
H3PO4 to pH < 2 to remove the inorganic carbon, and the
acidified samples were purged with ultra-high purity nitrogen for
about 10 min before analysis to drive off the inorganic carbon
(Knap et al., 1996).

Statistical Analysis
Spearman correlation coefficient was used to test the relationships
between variables. By using an analysis of variance and a Tukey
post-test, the significant differences for all parameters between
depth zones were studied. All statistical analyses and the principal
components analysis (PCA) were performed using SPSS statistics
19.0 software (SPSS Inc.).

RESULTS

Vertical Profiles of Salinity and
Temperature
The salinity was 33.97 in the mixed layer of approximately 30 m at
E409 (Figure 2), and the halocline depth was 70 m at E409. Below
70 m, the salinity increased gradually and reached a maximum
(34.65) at approximately 150 m throughout the water column.
There was a salinity minimum of 34.42 at 445 m from which the
salinity increased to 34.60 at approximately 1500 m. The salinity
was constant below 1500 m. The temperature was 29.50◦C in the
mixed layer of approximately 30 m at E409. The thermocline
was thick; the temperature decreased with depth within the
mesopelagic zone, reaching 4.42◦C at 1000 m and 2.50◦C at
2000 m, below which temperature was constant throughout the
bathypelagic layer (2.40◦C). The vertical distribution of salinity
and temperature at the other deep stations E407 (Figure 3),
E701 (Figure 4), and E703 (Figure 5) was similar to that at
E409 except for variations in the depth of the mixed layer, the
thickness of the halocline and the depth of the salinity minimum.
The average values of salinity and temperature among stations
are summarized for the epipelagic, mesopelagic and bathypelagic
zones (Table 1).

Vertical Distribution of Viral Abundance,
Bacterial Abundance, and VBR
Viral Abundance
In general, the viral abundance decreased from the surface to
the deeper layer. At E409 (Figure 2), the viral abundance was
21.59 × 106 ml−1 at the surface, decreased to 2.43 × 106 ml−1

at 200 m and was lower below 200 m. However, there was a
deep maximum (3.15 × 106 ml−1) at 800 m. At E407, the deep
maximum of viral abundance was more pronounced, running
from 300 to 1000 m (Figure 3); however, the vertical distribution
of viral abundance was similar to that at E409. At E701 (Figure 4)
and E703 (Figure 5), there were one or two maximums above
100 m, and the viral abundance was low below 100 m.

Bacterial Abundance
At E409 (Figure 2), the bacterial abundance decreased sharply
from 3.64 × 106 ml−1 at the surface to 0.73 × 106 ml−1 at
100 m, and the decrease was slower from 0.73 × 106 ml−1 at
100 m to 0.17 × 106 ml−1 at 500 m. The bacterial abundance
was lower than 0.20 × 106 ml−1 below 500 m. The vertical
distribution of bacterial abundance at the other deep stations
E703 (Figure 5), E701 (Figure 4), and E407 (Figure 3) was similar
to that at E409.

VBR
The VBR value remained constant or decreased from the
epipelagic to the mesopelagic and bathypelagic zones on average
(Table 1). The distinct feature in the vertical distribution of
bacterial and viral abundance were the occurrences of two
maxima of VBR in the water column at the deep stations: the
subsurface maximum between 50 and 100 m and the deep
maximum at approximately 800 m. At E409 (Figure 2), VBR
was 8.21 at the subsurface maximum and higher (12.33) at the
deep maximum. The double maximum also occurred at E407
(Figure 3), E701 (Figure 4), and E703 (Figure 5).

Chemical and Biological Parameters
The DO in the epipelagic zone was higher than that in the
mesopelagic and bathypelagic zones (Table 1). At the deep station
E409 (Figure 2), DO was 6.12 mg L−1 at the surface, increased to
7.13 mg L−1 at 50 m, decreased to 2.91 mg L−1 at 800 m, and
increased again to 3.90 mg L−1 at 3800 m. A deep minimum for
DO occurred at approximately 800 m. The vertical distribution
of the other deep stations, E407 (Figure 3), E701 (Figure 4),
and E703 (Figure 5), was similar to that at E409. In these
deep stations, DO presented a maximum at the subsurface layer
and a deep minimum at approximately 800 m. The chlorophyll
fluorescence was 0.80 µg L−1 at the surface, increased to 1.68 µg
L−1 at 65 m, and decreased to 1.20 µg L−1 at E409. For the other
stations, the chlorophyll fluorescence values increased from the
surface layer to the subsurface layer. The DOC in the epipelagic
zone was higher than that in the mesopelagic and bathypelagic
zones (Table 1). For the deep station E409 (Figure 2), DOC was
45.68 µmol L−1 at 50 m, increased to 98.27 µmol L−1, formed
a maximum at 100 m, decreased to 49.75 µmol L−1 at 200 m,
and remained at approximately 40 µmol L−1 below 200 m. The
vertical distribution of DOC at E701 (Figure 4) was similar to
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FIGURE 1 | Location of the stations sampled in the northern South China Sea (SCS) during the cruise of 5–23 September 2005 (PR-Pearl River, GD-Guangdong,
HN-Hainan, TW-Taiwan, and PHI-Philippines). Dashed lines indicate the depth contours of 50 m, 200 m, 1000 m, 2000 m, 3000 m, and 4000 m.

FIGURE 2 | The vertical distributions of salinity (S, psu), temperature (T, ◦C), chlorophyll fluorescence, bacterial abundance (BA, 106 ml−1), viral abundance (VA,
106 ml−1), VBR, dissolved oxygen (DO, mg L−1), DOC (µmol L−1), and NO−2 (µmol L−1) at E409.

that at E409. At E703 (Figure 5), there were two maximum DOC
at 50 m and 150 m, and the DOC remained at 50.00 µmol L−1

below 300 m. Nitrite was lower at all layers. At the deep stations,
E409 (Figure 2), E701 (Figure 4), and E703 (Figure 5), nitrite was

below 0.10 µmol L−1 in the water column. At the deep station
E407 (Figure 3), there were two maxima at 200 m (0.10 µmol
L−1) and 500 m (0.14 µmol L−1), and the value remained low at
other depths.
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FIGURE 3 | The vertical distributions of salinity (S, psu), temperature (T, ◦C), chlorophyll fluorescence, bacterial abundance (BA, 106 ml−1), viral abundance (VA,
106 ml−1), VBR, dissolved oxygen (DO, mg L−1), and NO−2 (µmol L−1) at E407.

Relationships Between Viruses and
Other Variables
The viral abundance was positively correlated with the bacterial
abundance (Figure 6A, r = 0.874, p < 0.001, n = 48). The
regression slope of VA against BA was 5.67, smaller than the
10:1 line (Figure 6A). Whether the correlations among VA,
BA, and VBR are significant depends on the different layers.
For the epipelagic zone, the correlation between VBR and BA
(r = −0.454, p = 0.058, n = 18) was not significant at p < 0.05,
but was stronger than that between VBR and VA (r = −0.039,
p = 0.879, n = 18); meanwhile, in the mesopelagic-bathypelagic
zone the correlation between VBR and BA was not significant
(r = −0.299, p = 0.109, n = 30), but the correlation between
VBR and VA (r = 0.504, p = 0.005, n = 30) was significant.
This indicates that in the epipelagic zone, the variation in BA
dominated the variation in VBR, whereas in the mesopelagic and
bathypelagic zones, VA drove the variation in VBR (Figure 6B).
However, no correlation was found between the viral abundance
and chlorophyll a concentration (r = 0.201, p = 0.531, n = 12).
A PCA was applied to the epipelagic and the mesopelagic-
bathypelagic zones separately (Table 2). For the epipelagic
zone, the first PC (PC1) had important contributions from
chlorophyll, VBR and temperature, whereas PC2 was heavily
loaded by the contributions from VA, BA, and DOC. PC3 had
important contributions from salinity and nitrite, whereas PC4
was heavily loaded by the contributions from DO. For the

mesopelagic and bathypelagic zones, PC1 was heavily loaded by
the contributions from VA, VBR, nitrite and DOC; PC2 had
significant contributions from BA, temperature and DO, whereas
PC3 had significant contributions from salinity.

DISCUSSION

The Subsurface VBR Maximum
The variability of viral abundance is largely affected by bacteria;
however, it is also influenced by other organisms as well as
environmental factors. Viral abundance is known to fluctuate
with bacterial variation, which is coupled with organic matter
supply. The subsurface chlorophyll maximum (SCM, also known
as the deep chlorophyll maximum, DCM) exists near the bottom
of the surface mixed layer or the top of the pycnocline and
nutricline in the water column in oligotrophic oceans (Cullen,
2015); it is also a common permanent feature in the SCS
observed in many studies (Lu et al., 2010; Wang et al., 2015).
As phytoplankton have access to nutrients at the nutricline, they
can carry out photosynthesis and produce organic matter at the
SCM layer. The maximum photosynthetic rate is just above SCM
versus that in the surface mixed layer (Ghai et al., 2010), and as
a result, the extracellular production of organic carbon is also
the highest in the photosynthetic activity maximum zone (Avril,
2002). The subsurface DO maximum (Figure 2) above the depth
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FIGURE 4 | The vertical distributions of salinity (S, psu), temperature (T, ◦C), chlorophyll fluorescence, bacterial abundance (BA, 106 ml−1), viral abundance (VA,
106 ml−1), VBR, dissolved oxygen (DO, mg L−1), DOC (µmol L−1), and NO−2 (µmol L−1) at E701.

of the chlorophyll maximum in our study indicates the presence
of the maximum photosynthetic activity zone. The increased
organic matter thus increases bacterial activities and stimulates
viral infection and viral abundance in the SCM layer (Santinelli
et al., 2010). As a result, this sequence of organic carbon-bacteria-
viruses could result in the VBR maximum observed in our
study (Figure 7). Our previous study found a significant and
positive correlation between the viral abundance and chlorophyll
concentration in the northern SCS (He et al., 2009). The more
rapid increase in viral abundance versus bacterial abundance
likely caused the subsurface VBR maximum. The observation of
the subsurface maximum of viral abundance is consistent with
other studies. The subsurface maximum has been reported to
occur at varying depths from 15 m (Maranger and Bird, 1995)
to 150 m (Cochlan et al., 1993; Hara et al., 1996) and is related
to discontinuities in the water column (e.g., the pycnocline) or
the gradients of chemical and biological parameters (e.g., the
nutricline or SCM) (Weinbauer, 2004). Viral phage production
and the frequency of bacteria containing mature phages increased
with bacterial abundances (Steward et al., 1992; Weinbauer et al.,
1993). Vertical profiles showing the maximum viral abundance
were also reported in the Southern California Bight (Cochlan
et al., 1993), the southeastern Gulf of Mexico (Boehme et al.,
1993) and the Northern Adriatic Sea (Weinbauer and Peduzzi,
1995). In our study, the subsurface virus maximum usually
occurred above the depth of the SCM at 75 m (E409, E407) to

100 m (E703). Both the depths of the subsurface virus maximum
and SCM increased when the water column became deeper and
further offshore.

The Deep VBR Maximum
Herndl and Reinthaler (2013) noted that the function of deep-
sea microbial community is fundamentally different from that
of surface water communities. One of the concepts to measure
the efficiency of bacterial utilization of organic matter is the
remineralization length scale in the OMZ. With regard to the
abnormally high remineralization length scale, one of the five
hypotheses is a low utilization rate of sinking organic matter
by microbes, as summarized by Cavan et al. (2017). Our
observation suggests that one mechanism is viral control of
bacterial activities, which slows down the utilization of sinking
organic matter. In open oceans, the oxygen minimum is a result
of bacterial consumption of oxygen by bacterial utilization of
organic particles, which sink through the subsurface pycnocline
and slow down through the deep pycnocline between 700 and
1200 m (Paulmier and Ruiz-Pino, 2009; Liu et al., 2011; Cavan
et al., 2017). In the SCS, the OMZ is a permanent feature, as is
often observed in other studies (Qu et al., 2006; Wang et al., 2017;
Wang et al., 2018). Because the seawater of western Pacific Ocean
invades the SCS through the Luzone Strait over the 2400 m sill
(Qu et al., 2006; Wang et al., 2018), it brings in the OMZ water
mass and moves westward with it (Yang, 1991; Liu et al., 2011).
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FIGURE 5 | The vertical distributions of salinity (S, psu), temperature (T, ◦C), chlorophyll fluorescence, bacterial abundance (BA, 106 ml−1), viral abundance (VA,
106 ml−1), VBR, dissolved oxygen (DO, mg L−1), DOC (µmol L−1), and NO−2 (µmol L−1) at E703.

TABLE 1 | Average and standard deviation (SD) of environmental variables at E409, E407, E701, and E703.

Layers Depth(m) Salinity (psu) Temperature (◦C) VA (×106 ml−1) BA (×106 ml−1)

Epipelagic 0–200 34.13 ± 0.56 25.17 ± 4.28 9.07 ± 5.10 1.24 ± 0.77

Mesopelagic 200–1000 34.48 ± 0.06 10.17 ± 3.51 2.56 ± 1.15 0.35 ± 0.15

Bathypelagic 1000–4000 34.58 ± 0.04 3.03 ± 0.86 1.78 ± 1.03 0.22 ± 0.08

Layers Depth(m) DO (mg L−1) chlorophyll fluoresces (µg L−1) DOC (µmol L−1) VBR

Epipelagic 0–200 5.89 ± 0.61 0.17 ± 0.10 74.12 ± 19.22 7.94 ± 3.75

Mesopelagic 200–1000 3.77 ± 0.76 – 48.45 ± 8.27 7.60 ± 3.41

Bathypelagic 1000–4000 3.54 ± 0.42 – 40.34 ± 7.47 7.58 ± 2.21

However, the thickness of the OMZ in the western part of the
SCS is much thicker than that across the Luzone Strait along the
same latitude, and this indicates that local biological activities
contribute to the vertical expansion of the OMZ in the SCS.
The DO concentrations in the minimum zone varied from 2.72
to 3.21 mg L−1 in our study, comparable with other studies
which have reported 2.00 ml L−1, (1.40 mg L−1, Yang, 1991), and
83.50 µmol L−1, (2.66 mg L−1, Liu et al., 2011). However, DO has
rarely been depleted in the OMZ. This suggests that the biological
consumption of DO is limited by in situ factors, considering that
the intermediate water mass has over at least 40 years’ residence
time (Li and Qu, 2006).

The coincidence of deep VBR maximum and the OMZ at the
same depth suggests their coupling association. Compared with

the SCM, the decrease in both bacterial and viral abundance in
the OMZ indicates the substrate limitation. The NO2 maximum
indicates the occurrence of denitrification, suggesting oxygen
limitation as reported by other studies (Ganesh et al., 2014).
Bacterial growth is limited by refractory DOC, since DOC is
estimated to be 3700 and 6000 years old in the North Atlantic and
North Pacific Oceans, respectively (Loh et al., 2004). As bacterial
phages do not see the substrate limitation, they maintain the same
lytic rate. A recent study that synthesizes many data sets from
various ecosystems found that the slope between viral (Y-axis)
versus bacterial abundance (X-axis) tilts higher (becoming more
horizontal) near lower bacterial abundance, signifying that VBR
is relatively higher when bacterial abundance decreases (Knowles
et al., 2016). In the study by Arrieta et al. (2015), viruses increased
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FIGURE 6 | The relationship among VA, BA, and VBR. (A) Best fit for each study plot (solid line) and the 10:1 line (dashed line); (B) VBR is larger in the smaller
bacterial abundance side in the mesopelagic and bathypelagic (E represents epipelagic zone, M represents mesopelagic, and bathypelagic zones).

TABLE 2 | Main results of the PCA application for all parameters in the epipelagic
zone (a) and the mesopelagic and bathypelagic zones (b).

Rotated Component Matrixa

a Component

1 2 3 4

VA −0.022 0.948 −0.204 −0.033

BA −0.455 0.843 −0.163 −0.087

Chla 0.931 0.189 −0.131 −0.211

VBR 0.918 −0.259 0.020 0.115

S 0.573 −0.014 0.643 0.161

T −0.816 0.036 −0.413 −0.192

DO 0.021 0.088 −0.046 0.971

NO2 −0.056 −0.268 0.891 −0.144

DOC −0.237 −0.820 0.014 −0.356

Eigenvalue 3.48 2.484 1.142 1.013

Variance (%) 38.668 27.6 12.689 11.251

Cumulative variance(%) 38.668 66.268 78.957 90.208

Rotated Component Matrixa

b Component

1 2 3

VA −0.647 0.571 −0.372

BA 0.054 0.842 −0.190

VBR −0.809 −0.161 −0.264

S −0.053 −0.228 0.912

T 0.142 0.879 −0.068

DO −0.061 0.726 0.612

NO2 0.848 −0.101 −0.274

DOC 0.894 0.183 −0.158

Eigenvalue 2.624 2.48 1.528

Variance(%) 32.803 31.003 19.106

Cumulative variance(%) 32.803 63.806 82.912

Bold Values represent the variables that mainly influence the corresponding
principal component.

when the concentrated bacterial abundance collapsed due to the
substrate limitation, increasing VBR dramatically. These studies
support our notion of the substrate limitation of bacterial growth,
causing the maximum VBR in the OMZ. In the laboratory study,
when the substrate in the culture was limited, viruses lysed
bacterial lysates supported more bacterial cell growth (Liu et al.,
2015), suggesting more recycling of the substrate. The same study
also found the respiration per bacterial cell increased with viruses
compared with the control without viruses. This also supports
our hypothesis of the viral control of bacterial depletion of DO
when organic matter is limited.

The high VBR in the bathypelagic waters reported from
the open North Atlantic (Parada et al., 2007; De Corte et al.,
2010; De Corte et al., 2012), the South Atlantic Ocean (De
Corte et al., 2016), and the Pacific (Yang et al., 2014). The
formation of the maximum VBR can also have contributions
from responses to other factors influencing bacteria and viruses.
A possible explanation of the high VBP at depth is a longer
viral turnover time (that is, lower decay rates) in deeper waters
than in the surface waters where the viruses remain infective
for 1–2 day (Wilhelm et al., 1998; Yang et al., 2014; De Corte
et al., 2016). Another possible factor is the physical transport
of viruses attached to sinking particles from the euphotic layers
and subsequent dissociation in the deeper waters (Proctor and
Fuhrman, 1991; Taylor et al., 2003; Bochdansky et al., 2010;
Yang et al., 2014). Temperature can affect changes in VBR in
the water column; the decay rates of viral assemblages increased
between 4 and 25◦C, suggesting a positive effect of decreasing
temperature on the survival of viruses (Cottrell and Suttle, 1995;
Garza and Suttle, 1998; Wei et al., 2018). Therefore, the decreased
temperature of 12◦C in the mesopelagic waters of the SCS may
lead to an increase in the survival rate of viruses at 800–1000 m.
Viral abundance and VBR have been reported to be high during
anoxia events in deep waters of the Cariaco Trench (Taylor et al.,
2001) and Mediterranean Sea (Weinbauer et al., 2003), which
supports our notion of the viral control of bacterial activities
because anoxia often indicates depletion of organic matter as
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FIGURE 7 | The relationship among DOC, bacteria, and viruses in the SCM and OMZ.

a result of organic matter consumption. The decreased organic
concentrations associated with the DO minimum limited the
bacterial abundance. The long viral turnover time, the sinking-
particle transport, the lower temperature and near-hypoxic
waters favoring viral survival are responsible for the deep VBR
maximum observed.

Biogeochemical Implications of the
Findings
The decomposition of host cells by marine virus releases DOC
and particulate organic carbon (POC) back into the environment,
where they can be absorbed by microorganisms or exported from
surface water to the deep ocean (Figure 7). This virus-mediated
organic matter recycling process is known as the “viral shunt”
(Wilhelm and Suttle, 1999). This in turn affects nutrient cycle
and alters the way of OC utilized by prokaryotes (Fuhrman,
1999; Wilhelm and Suttle, 1999; Wommack and Colwell, 2000;
Weinbauer, 2004; Suttle, 2005).

Refractory dissolved organic carbon (RDOC) in the deep
ocean is the largest carbon pool on the earth (Siegenthaler and
Sarmiento, 1993) and very old (Santinelli et al., 2010). In the
North Atlantic and North Pacific Oceans, the weighted mean
turnover time for DOC in deep-water estimated by δ14C, is 3700
and 6000 years, respectively (Loh et al., 2004). However, recently,
a new study investigating the dilution hypothesis found that it is
the very low DOC concentrations that limit bacterial utilization
in the deep ocean (Arrieta et al., 2015). In their incubation
experiments, the viral abundance increased after the bacterial
abundance declined after the bacterial abundance reached a
plateau. This suggests that viral abundance is stimulated by
bacterial growth, and the increasing rate of viral abundance
exceeded that of bacterial abundance when the substrate became
limited again. The finding supports our hypothesis of the viral
control of bacterial abundance and bacterial respiration in the
OMZ, indicated by the deep maximum VBR. In the OMZ, DOC
is very low, such that bacterial growth is more limited than
in both the upper and lower zones. However, viruses are less
limited by the low DOC and continue to lyse bacteria. This
could result in the VBR maximum. Zhang et al. (2014) recently

commented on the role of viruses and suggested that viruses
can kill the winner “bacteria,” and therefore, leave more DOC
in the water column. The VBR maximum in the deep ocean
appears to corroborate this notion and suggests that viruses
can control bacterial growth due to the already reduced DOC
associated with the oxygen minimum and slow down further
utilization of DOC, which would otherwise be reduced and
consume more oxygen.
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