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Past endosymbiotic events allowed photosynthetic organisms to flourish and evolve
in terrestrial areas. The precursor of chloroplasts was an ancient photosynthetic
cyanobacterium. Presently, cyanobacteria are still capable of establishing successful
symbioses in a wide range of hosts. One particular host plant among the gymnosperms
is cycads (Order Cycadales) in which a special type of root system, referred to as
coralloid roots, develops to house symbiotic cyanobacteria. A number of studies
have explained coralloid root formation and cyanobiont invasion but the questions on
mechanisms of this host-microbe association remains vague. Most researches focus on
diversity of symbionts in coralloid roots but equally important is to explore the underlying
mechanisms of cycads-Nostoc symbiosis as well. Besides providing an overview of
relevant areas presently known about this association and citing putative genes involved
in cycad-cyanobacteria symbioses, this paper aims to identify the limitations that
hamper attempts to get to the root of the matter and suggests future research directions
that may prove useful.

Keywords: cyanobacteria, cycads, coralloid roots, symbiosis, cyanobionts, endosymbiosis, heterocyst,
hormogonia

INTRODUCTION

Cyanobacteria are the ancestors of chloroplasts. Gaining a deeper understanding on how
communication between a symbiont and a host occurs at the molecular level may provide insights
on the evolution of green plants. Studies addressing the function and symbiotic mechanisms
between cycads and cyanobacteria in coralloid roots are scant when compared to studies of
associations of cyanobionts with other host plants such as the angiosperm Gunnera, the water
fern Azolla and the bryophytes Blasia and Anthoceros, to cite a few (Adams et al., 2013; Warshan,
2017). Most of the literature on cyanobacterial associations with cycads are old. Recent publications
(Bergman et al., 1992; Kluge et al., 1992; Adams and Duggan, 2008; Rikkinen, 2015; Pereira,
2017) based their analyses on other host-symbiont models in an attempt to explain this ancient
partnership. Therefore, this review aims to summarize current knowledge about endosymbiosis
and highlighting past and present work on cycads-cyanobacterial associations. A section is also
dedicated to briefly citing symbiosis-associated genes already identified from other symbiotic
models that are relevant in trying to determine the core functions and mechanisms of maintaining
stable symbiotic relationships. This review targets readers whose knowledge about coralloid roots
of cycads are limited with the aim to spark interest in this infrequently-studied root symbiosis. This
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paper also aims to tackle the hindrances in this field of research
and to suggest where future research may prove productive.

Early Symbiosis
The capacity of various microbes to interact with other life
forms existed even before plants flourished – an evolutionary
event triggered by symbiotic microbes (Suárez-Moo et al.,
2019). Plastids originated from cyanobacteria (Douglas, 1998),
also known as blue green algae, through the process of
endosymbiosis which gave rise to the photosynthetic eukaryotes
we now refer to as plants and algae (de Vries and Gould,
2017). Chloroplasts became an important component of
plant cells because during the past endosymbiotic event by
which a heterotrophic unicellular protist engulfed a free-living
photosynthetic organism, the former did not allow digestion
of the latter – a cyanobacterium. This is the brief story of
how plastids originate (Chan and Bhattacharya, 2010). The
endosymbiotic cyanobacterium became a plant organelle that
harnesses solar energy and converts it to sugar and starch for
food and in the process generated the oxygen in the atmosphere
that is vital to most life forms (Sarma et al., 2016). In contrast
to how free-living cyanobacteria evolved to become chloroplasts
(de Vries and Gould, 2017), the event of symbiotic cyanobacteria
that entered the roots of cycads had a different outcome. Instead
of co-evolving and the symbiont being inherited intracellularly
by the host from generation to generation, or giving rise to
another organism, symbiotic cyanobacteria just enter and reside
in cycad roots in a later part of its host’s development (Norstog
and Nicholls, 1997) in an engorged and dichotomously-branched
root modification called coralloid roots (Ahern and Staff, 1994).
Similar to this is the evolution of modified plant roots observed in
pines (Faye et al., 1981) and legumes (Long, 1989) to house their
respective microsymbionts for a specialized function (Suárez-
Moo et al., 2019). Still, regardless of how symbionts invade and
evolve in their hosts, life as we know it would not have flourished
if not for endosymbiosis (Govindjee and Shevela, 2011; Shestakov
and Karbysheva, 2017). Research focusing on endosymbiosis is
interesting, since intimate associations between two unrelated
species may trigger another critical event that might cause
changes in the Earth’s atmospheric composition which would
impact many life forms (Raven and Allen, 2003; Green, 2011;
Martin et al., 2015).

Based on evidence obtained from fossils, cyanobacteria are
known to be among the earliest groups of microorganisms
that dominated the Earth since the late Archean to early
Paleoproterozoic eon around 3500 to 2700 MYA (Krings
et al., 2009; Falcon et al., 2010; Schopf, 2011; Shestakov and
Karbysheva, 2017). Free-living and symbiotic cyanobacteria
vary from spherical and cylindrical unicellular to filamentous
multicellular forms (Narainsamy et al., 2013). Known symbiotic
cyanobacteria are mostly filamentous members of the genus
Nostoc (Adams and Duggan, 2008).

Cycads are the only members of gymnosperms currently
capable of forming new associations with cyanobacteria. Initially
reported by Reinke in 1872 (cited in Adams et al., 2013),
all known species of cycads form symbiotic associations with
cyanobacteria in specialized structures called coralloid roots.

Similar to cyanobionts (endosymbiotic cyanobacteria), cycads
belong to the earliest members of the five major groups of seed
plants – the gymnosperms Cycadales, Coniferales, Ginkgoales,
Gnetales, and angiosperms. Cycads are sisters with Ginkgo (Wu
et al., 2013) and both share a common ancestor with gnetophytes
and conifers (Wu et al., 2007; Roodt et al., 2017). Cycads are
assumed to have coexisted with dinosaurs during the Mesozoic
era around 300 MYA and thus are often referred to as “living
fossils” (Wu et al., 2007; Wu and Chaw, 2015; Jiang et al., 2016).
Since cycads and cyanobacteria date back to ancient times, the
symbiotic partnership and coevolution formed between the two
may have developed millions of years ago (Usher et al., 2007).
The origin of this association is still debated and questions
regarding the purpose of this symbiosis and why it still prevails
remains to be answered.

Implications of Symbiosis Between
Cycads and Cyanobacteria
Since ancient soils 300 million years ago (Brenner et al.,
2003) were not as fertile as they are today, it was thought
that cycads developed a mechanism to harbor cyanobacteria
to withstand poor-nutrient soils (Halliday and Pate, 1976).
Specialized root structures to house endosymbiotic cyanobacteria
were formed and a mutualistic association was maintained by
both partners (Gutiérrez-García et al., 2019). Whether coralloid
roots were formed by cycads only for the purpose of hosting
cyanobionts is an open question. As opposed to cycads, terrestrial
cyanobacteria can live in diverse and harsh environments (Sand-
Jensen, 2014) and are considered to be the most successful
group of microorganisms on Earth (Stewart and Falconer,
2011). Free-living cyanobacteria also form associations with
other life forms such as plants and fungi and in some cases
with tripartite-structured cyanolichens made up of fungi, green
algae and cyanobacteria (Henskens et al., 2012). As to why
they need a host to spend a part of their life cycle, some
scientists believe that terrestrial cyanobacteria also prefer a stable
environment to survive and prevent predation and desiccation
from intense heat (Adams et al., 2013). Thus, mutualistic
relationships between hosts and endosymbionts are formed
wherein the host provides shelter while the symbiont performs
specialized functions, such as supplying the host with various
needs (Walsh et al., 2011; Haselkorn, 2016). Additionally, it was
suggested that cyanobacteria produce arabinogalactan-proteins
(AGPs) that contribute to helping plants grow and develop
(Pennell, 1992) by assisting in plant cell proliferation, expansion
and differentiation (Steele-King et al., 2000). Moreover, AGPs
are known to have a role in cell signaling in plant-microbe
interactions (Seifert and Roberts, 2007; Jackson et al., 2012).

In a symbiotic relationship, cyanobacteria fixes nitrogen for
their hosts. Naturally-occurring dinitrogen in the atmosphere is
unreactive with other chemicals, thereby preventing formation
of essential and useful compounds. This is where endosymbiotic
cyanobacteria enter the Earth’s nitrogen cycle and play a major
role. Cyanobionts are able to break down the triple bonds from
atmospheric dinitrogen (N2) using the enzyme nitrogenase to
convert the inert compound into useful forms of nitrogen. The
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N2 atoms can then be converted to ammonia (NH3) (Hoffman
et al., 2014), which facilitates plant growth and soil fertilization
(Halliday and Pate, 1976). Other nitrifying microbes such as
Nitrospira sp. assist in oxidation of ammonia to nitrite and nitrate
followed by the action of denitrifying microbes that completes the
nitrogen cycle (Kuypers, 2015). Nitrogen fixation in Nostoc, the
dominant species symbiotic to cycads coralloid roots (Gehringer
et al., 2010), occurs in structures called heterocysts, which
occur as chain of cells forming a filament. Sufficient evidence
shows that nitrogenase activity of cyanobacteria in symbiosis
is significantly higher than in their free-living counterparts,
as shown by a 25–35% increase in heterocyst formation in
cyanobionts (Lindblad et al., 1985a).

Studies show that cyanobionts in symbiosis with cycads
maintain complete photosynthetic apparatus – thylakoids,
phycobilisomes, phycobiliproteins, and carboxysomes, associated
pigments and enzyme levels comparable with free-living
cyanobacteria (Lindblad et al., 1985b; Adams et al., 2013).
However, as coralloid roots grow beneath the soil surface where
light is insufficient or lacking, the photosystems of cyanobionts
may be inactive as shown in an in vivo study conducted by
Lindblad et al. (1987) where coralloid roots of Cycas revoluta
showed no evidence of carbon fixation activities when compared
under light and dark conditions. It was suggested that enzymes
specific for efficient function of the Calvin cycle may be missing
in the cyanobacteria in coralloid roots (Lindblad et al., 1987).
Since cyanobionts have no sufficient light source, they are capable
of heterotrophic metabolism relying on carbon solely supplied
by their hosts (Lindblad, 2009). However, it is noteworthy
that coralloid roots grow apogeotropically as if phototropism
is occurring, and based on personal observations (Figure 1A),
they oftentimes reach the soil surface exposed and thus, may
become capable of receiving substantial amount of light probably
through dermal breaks.

The association of cyanobacteria and cycads was also found
prevalent in an incident in Guam that led to the detection of
neurotoxins contained in cycad seeds. The neurotoxins cause an
amyotrophic lateral sclerosis/parkinsonism-dementia complex
(ALS-PDC) (Brownson et al., 2002; Meneely et al., 2016). ALS-
PDC is a progressive neurodegenerative disease that infected
high number of Chamorro people in Guam (Metcalf et al.,
2017; Zurita et al., 2019). The disease was believed to be
transmitted by flying foxes that consumed cycad seeds. Flying
foxes are eaten by the inhabitants of the island (Cox and Sacks,
2002; Banack and Cox, 2003). A case of “biomagnification”
was said to have occurred wherein the toxin becomes more
potent after being transferred from one organism to the other
(Banack and Cox, 2003; Cox et al., 2003; Banack et al.,
2006). But this premise remains highly debated (Snyder and
Marler, 2011). In contrast, Marler et al. (2010) suggested that
coralloid roots do not synthesize or biomagnify these toxins
but rather, may act as toxin sinks explaining the high amounts
of toxins found in the coralloid root tissues obtained from
previous studies. Cyanobacteria-free cycad seedlings were in
fact, found to increase in these toxins compared to symbiont-
infected coralloid roots therefore refuting the role of endophytic
cyanobacteria causing increase of these toxic substances in the

host plant (Marler et al., 2010; Snyder and Marler, 2011). Free-
living cyanobacteria are known to produce various toxins and
thus it is not surprising that symbiotic cyanobacteria synthesize
toxins as well (Cox et al., 2005). This neurotoxin was claimed
to be β-methylamino-L-alanine (BMAA), a non-proteinogenic
amino acid produced by cyanobacteria. Even though some
studies have showed that cycad host plants contain BMAA (Vega
and Bell, 1967; Polsky et al., 1972; Brownson et al., 2002; Banack
and Cox, 2003; Cox et al., 2003), an accurate detection method
of BMAA is still being perfected until the present (Metcalf et al.,
2017; Zurita et al., 2019) due to various structural isomers (Rosén
and Hellenäs, 2008; Banack et al., 2010; Jiang et al., 2012) making
it difficult to correctly identify the compound as BMAA. And
thus, all previous claims that BMAA was detected still needed
further validation.

Cyanobacterial Diversity and
Development in Cycads
Cyanobionts found in cycads are predominantly species of
Nostoc, but in some studies, species of Calothrix, Scytonema
and Richelia were also identified (Grobbelaar et al., 1987;
Costa and Lindblad, 2002; Gehringer et al., 2010). Most
symbiotic cyanobacteria belong to the orders Nostocales and
Stigonematales (Castenholz et al., 2001). Multiple strains of
cyanobacteria can be housed in a single cycad host (Zheng
et al., 2002; Thajuddin et al., 2010) and a single species of
cyanobacterium can be isolated in multiple cycad hosts as well
(Gehringer et al., 2010). However, in a study by Gehringer
et al. (2010), only a single symbiotic Nostoc strain was found
harboring the coralloid roots of the genus Macrozamia (Yamada
et al., 2012). Reports indicate that other heterotrophic bacteria
reside with cyanobacteria in coralloid roots (Chang et al., 1988),
but only in limited populations. According to Grilli Caiola
(1980), this is due to the ability of cycads to produce secondary
metabolites that inhibit the growth of microorganisms, but
not cyanobacteria. A concerted communication between the
host and a bacterium, probably through production of certain
substances, may also play a role in preventing other bacteria to
overpopulate the cyanobacterial layer inside the coralloid roots
(Obukowicz et al., 1981; Adams et al., 2013).

Cycads form three types of roots: (1) a primary tap root
similar to the root system of most terrestrial plants, (2)
lateral roots and (3) coralloid roots (Figure 1B). The latter
are distinct types of roots that grow laterally and are solely
in cycads that house cyanobacteria (Norstog and Nicholls,
1997; Lindblad, 2009). Prior to coralloid root formation,
young, apogeotropic papillose roots called precoralloid roots
are formed (Ahern and Staff, 1994). During this phase,
cyanobacteria are absent and their presence is not required
in initiating the development of precoralloids. At this
early stage, invasion by cyanobionts happen but note that
cases of uninfected precoralloids also occur (Milindasuta,
1975). This raises the question whether precoralloid roots
are formed by cycads to specifically host cyanobacteria or
also to serve another purpose. Nevertheless, the affinity of
cyanobacteria to enter into a symbiotic relationship with
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FIGURE 1 | Coralloid roots of Cycas fairylakea (A) growing apogeotropically at Shenzhen Fairy Lake Botanical Garden, (B) showing dichotomous branching of
coralloid roots, (C) cross-section of coralloid root showing a distinct green layer – the cyanobacterial zone (the green ring pointed by the red and while arrows) and
(D) microscopic image of filamentous cyanobacteria residing in the cyanobacterial zone. Heterocysts are marked with white arrows.

coralloid roots instead of with the primary and lateral roots
promotes the idea that precoralloid and coralloid roots are
organs developed by cycads to facilitate symbiosis. The tips
of cyanobacteria-free precoralloid roots produce papillose
tissue continuously (Ahern and Staff, 1994). Upon maturity,
the sheath covering the papillose tissues will be replaced
by a thin, external layer that generates scattered lenticels
(Milindasuta, 1975; Ahern and Staff, 1994). These morphological
changes, or other environmental factors, may cause disruptions
in the dermal tissues of mature precoralloid roots. When
cyanobacteria in the surrounding soil come in contact with
the surface of coralloid roots, they gain access through the
dermal breaks (Milindasuta, 1975) to eventually colonize the
internal layers of the roots (Grilli Caiola and Canini, 1993;
Ahern and Staff, 1994; Lindblad, 2009). At this point, the
morphologically distinguishable, engorged and dichotomously-
branching coralloid roots start to form. Following initial
entry, cyanobacteria migrate toward the cortex and form
a distinct, circular, blue-green layer dividing the cortical
layer into two (Ahern and Staff, 1994). This is called the
cyanobacterial zone (Figure 1C) containing filamentous
cyanobionts (Figure 1D). When coralloid roots reached this
stage, the process is irreversible and a permanent symbiotic
relationship between cycads and cyanobacteria has been

successfully established (Grilli Caiola and Canini, 1993; Ahern
and Staff, 1994; Lindblad, 2009).

Associated Structures Required for
Establishment of Symbiosis
Cyanobacteria that can form associations with cycads as
well as with other compatible host plants are capable of cell
differentiation exhibiting various morphologies (Flores, 2012).
All symbiotic cyanobacterial strains from the genus Nostoc
fix nitrogen in cells called heterocysts (Adams and Duggan,
2008). At low levels of nitrogen, cyanobionts form heterocysts to
facilitate nitrogen metabolism (Bergman et al., 1996). Forming
heterocysts was how nitrogen fixers evolved to protect the
enzyme nitrogenase from inactivation due to exposure to
oxygen (Bernhard, 2010). These cells are thick-walled allowing
them to block available oxygen in diffusing inside the cells
making a suitable, low-oxygen microenvironment for efficient
synthesis of nitrogenase for nitrogen metabolism (Tikhonovich
and Provorov, 2007). Heterocysts are specialized elliptical-
shaped cells produced at regularly-spaced intervals along
the cyanobacterial linear cell clusters and are distinguishable
due to their larger size compared to neighboring vegetative
cells (Kumar et al., 2010). Cyanobionts in coralloid roots
form heterocysts at higher frequency compared to free-living
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cyanobacteria but morphological changes are minimal (Adams
et al., 2013). For cyanobacteria living within coralloid roots, a
significant increase (up to 80%) in heterocyst frequency was
observed (Norstog and Nicholls, 1997; Adams and Duggan, 1999;
Zhang et al., 2006). The increase in formation of heterocysts is
said to be triggered by nitrogen starvation (Zhang et al., 2006).
Therefore, an effective partnership with a plant host relies on the
ability of the cyanobacteria to differentiate into heterocysts for a
stable symbiosis (Meeks and Elhai, 2002).

Cyanobacteria can also form filaments called hormogonia.
Hormogonium lacks heterocysts and can be morphologically
distinguished from the latter as the former is capable of
locomotion appearing as short motile filaments (Hernández-
Muñiz and Stevens, 1987). Hormogonia play a role in self-
dispersal and in forming symbiotic association during the early
stages of infection by responding to chemical signals produced by
prospective host plants (Khayatan et al., 2017). Chemoattractants
are said to be involved in stimulating hormogonia formation
and directing the cyanobacteria toward the targeted plant
tissue that will house the cyanobionts (Meeks et al., 2001;
Meeks and Elhai, 2002; Bergman et al., 2007).

Filamentous, heterocyst-forming cyanobacteria are also
capable of differentiating into spores called akinetes (Kaplan-
Levy et al., 2010; Adams et al., 2013). When environmental
conditions become unfavorable (e.g., low salinity, temperature
fluctuations, lack of phosphates, low light, insufficient nutrients),
active cells transform into a resting state that may last for up to
60 years in which they can be restored to their vegetative cell
state when favorable conditions arise (Kaplan-Levy et al., 2010).
Although not resistant to intense heat, akinetes can survive
cold and desiccation (Adams and Duggan, 1999). Akinetes are
rare but were reported to occur in strains of Nostoc isolated
from coralloid roots (Grilli Caiola, 1980; Grobbelaar et al.,
1987) and more are common in Azolla-Anabaena symbioses
(Peters and Perkins, 1993). Additionally, Sukenik et al. (2007)
state that resting cells can still perform minimal metabolic
activities such as photosynthesis, carbon fixation and protein
synthesis. Aside from akinetes, lysing or dying cells called
necridia, which allow excision of cells along the filament,
also occur in cyanobacteria. Characterized by thickened walls
and non-granulated cells, these are commonly referred to
as deteriorating cells that were unable to differentiate into
heterocysts (Grilli Caiola and Pellegrini, 1979).

General Mechanism of Symbiosis
All known plant-cyanobacterial symbioses are acquired from the
environment. The only exception is seen in the fern Azolla, where
the cyanobiont is an integral part of the host throughout its
developmental stages and gets inherited to the next generation
(Bergman et al., 1996). Thus, for most symbioses, efficient
communication between the host and cyanobacterium must
be carried out to ensure successful entry of the symbiont
(Figure 2). This requires signal molecules induced by the host
and/or the symbiont during the initial stages of invasion. The
general mechanism based on other host plant-cyanobacterial
symbioses, as controlled by a set of regulatory genes, is that
the host elicits hormogonium-inducing factors causing the

surrounding cyanobacteria to transform into motile hormogonia
(Adams and Duggan, 2012; Warshan, 2017). Chemotactic signals
permit entry into the partner plant, subsequently demanding
the host to produce hormogonium-repressing factors to allow
the cyanobacteria to develop heterocysts for nitrogen fixation to
occur (Warshan, 2017).

Formation of motile hormogonia is essential for successful
migration of a cyanobiont to the internal tissues of its potential
plant partner. Certain compounds which may be produced by
the host, trigger this phenomenon and initiate cell differentiation
(Khayatan et al., 2017). In plants known to accommodate
symbiotic cyanobacteria, modified structures can be formed
regardless of whether a cyanobiont will be present in its life
cycle (Meeks and Elhai, 2002) such as the case in coralloid roots.
Unlike Rhizobia, which requires specialized symbiosomes to be
formed by its host, cyanobionts of coralloid roots do not need
similar structures to survive within its host. However, particular
spaces are dedicated to symbionts. Cyanobacteria resides in the
cyanobacterial zone in the roots of cycads, in the red stem
glands of Gunnera, in dorsal leaf cavities of Azolla water fern,
in slime cavities within the thallus of hornworts, in auricles
underneath the thallus of liverworts, and in the bladders of
the fungi Geosiphon pyriformis (Adams et al., 2013). Among
these plant-cyanobacterial symbioses, it is only in Gunnera
where the cyanobiont invasion occurs intracellularly (Meeks
and Elhai, 2002; Adams et al., 2013). In the coralloid roots,
an acidic viscous mucilage in the cortex (Grilli Caiola, 1980),
also observed by the authors, is present in the cortex layer
probably involved in attracting motile hormogonia filaments as
this was the case observed in Gunnera (Nilsson et al., 2006).
Mucilage-filled cavities were also observed in hornworts and
liverworts and this heat-labile putative signal inducer is yet
to be characterized, but was estimated to be a low molecular
mass protein around 12 kDa (Adams et al., 2013). In line
with this, root extracts from cycad coralloid roots were found
to significantly initiate hormogonia formation in strains of
Nostoc (Campbell and Meeks, 1989; Bergman et al., 1996;
Meeks, 1998) suggesting hosts produce hormogonia-inducing
factors (Nilsson et al., 2006). In an in vitro study, hormogonia-
inducing factor (HIF) was not released in a culture medium
with excess nitrogen. Thus, HIF production is assumed to be
stimulated when nitrogen levels are depleted (Campbell and
Meeks, 1989; Adams et al., 2013). Aside from the HIF signal,
plant hosts are believed to release various chemoattractants
to entice potential symbionts. These were hypothesized to be
sugar-based molecules, since simple sugars were proven to
be attractants for hormogonia initiation (Nilsson et al., 2006;
Adams et al., 2013). Recently, a bioassay was conducted using
crude methanolic extracts of Cycas revoluta coralloid roots that
transformed symbiotic Nostoc filaments into motile hormogonia.
This led to the successful isolation of a hormogonium-inducing
factor from cycads characterized as diacylglycerol 1-palmitoyl-2-
linoleoyl-sn-glycerol (Hashidoko et al., 2019).

Once a cyanobiont successfully enters its host, the plant
partner must stop releasing hormogonia-inducing factors to halt
hormogonia formation. The reason is to direct the cyanobiont
to the next stage of symbiosis and to start forming heterocysts
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FIGURE 2 | General mechanism of symbiosis based on other host plant-cyanobiont models. (1) HIF is released by host and (2) triggers cyanobacteria in surrounding
soil to (3) transition into motile filaments. (4) Through chemotaxis, host attracts hormogonia following cyanobacterial entry. (5) Host releases HRF and (6) signals
hormogonia that entered the host successfully to (7) transition into heterocysts-forming cells. (8) Symbiosis at this stage becomes irreversible.

for nitrogen fixation to occur – a task that cannot be performed
by hormogonia filaments. Therefore, the release of hormogonia-
repressing factors (HRF) hinders HIF activities. Cohen and
Meeks (1997) observed this phenomenon using aqueous tissue
extracts of Anthoceros wherein activation of two genes blocks
hormogonium formation and the expressions are only induced
by HRF but not HIF.

Besides inducing and repressing factors, high amounts of
phenolic substances are also present in the mucilaginous material
embedded in the cyanobacterial zone of coralloid roots and
surrounding cortical layers (Lobakova et al., 2004). Phenolic
substances are rich sources of antimicrobial compounds and
secondary metabolites (Obukowicz et al., 1981). Interestingly,
phenolics are also known to participate in cell signaling
and might play a role in establishing and maintaining
stable cycad-cyanobacterial symbioses (Grilli Caiola, 1980;
Obukowicz et al., 1981).

An Overview of Genes Involved in
Cycads-Cyanobacteria Symbiosis
Though still limited, sequencing of representative complete
genomes of hosts and cyanobionts led to the identification of
genes involved in plant host-cyanobacterial symbiosis (Ran et al.,
2010; Li et al., 2018). This section aims to list some studied
genes and their functions significant in the establishment of

symbiosis as well as other genes they interact with (Table 1).
Although most of the genes cited here were not studied using
cycad coralloid roots, a similar, if not exact, genetic mechanism
in cycad-cyanobacterial symbiosis seems to be occurring as the
genes discussed in this section were commonly found among
plant-cyanobacterial symbioses.

As mentioned previously, HRF are involved in halting
hormogonium formation after initial migration of the symbiont
into its target organ in the host that varies among plant hosts
as mentioned in the previous section. Using Anthoceros tissue
extracts, hrmU and hrmA genes were discovered that suppresses
hormogonia formation and allow differentiation of cells into
heterocysts (Cohen and Meeks, 1997). The expression of these
two genes appears to be controlled by the host, which hinders
further activities attempted by HIF (Cohen and Meeks, 1997;
Meeks et al., 1999). Other open reading frames (ORFs) – hrmI,
hrmR, hrmK and hrmE – were identified that were similar to
a family coding for transcriptional inhibitor proteins (Campbell
et al., 2003). It was proposed that external repressing signals can
possibly be detected by Nostoc incapacitating Hrm proteins in
successfully binding to hrm operons and this affects transcription
of genes that induce hormogonium formation (Meeks et al., 1999;
Campbell et al., 2003; Adams et al., 2013).

The ability to form heterocysts is a vital feature for
a cyanobiont to establish symbiosis with a host. Without
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TABLE 1 | Symbiosis-related genes from host-symbiont models cited in this manuscript.

GENES ORGANISMS/s GENERAL FUNCTION/S

hrm Nostoc-Anthoceros Suppresses hormogonia formation allowing cell differentiation into heterocysts

het Nostoc-Anthoceros Responsible for heterocyst formation

ntc Nostoc-Anthoceros Regulates nitrogen and has a role in activation of other symbiotic genes

hep Anabaena-Azolla Induces formation of thickened cell envelope in heterocyst cells

nif Nostoc-Anthoceros, Anabaena-Azolla Involves in formation of nitrogenase complexes

sig Nostoc-Anthoceros Plays a role in signaling to promote symbiont entry to host tissue

ctp Nostoc-Anthoceros, Synechocystis-Anthoceros Involves in photosynthetic activities

tpr Nostoc-Anthoceros Regulates cell cycle and functions in protein transport mechanisms

heterocysts, a cyanobiont cannot fix nitrogen for its host.
Mutations in hetR and hetF did not allow one strain of
Nostoc to differentiate into heterocysts and thus, those genes
were determined to be directly responsible for heterocyst
formation (Wong and Meeks, 2001). The main activator for
the development of heterocysts is the hetR gene, which works
simultaneously with hetF gene coding, which gives rise to a
protein that enhances subsequent transcription of hetR (Wolk,
2000; Wong and Meeks, 2002; Zhang et al., 2006). The expression
of ntcA gene is necessary for the production of proteins that
cyanobacteria use to regulate nitrogen and in addition, is involved
in activating the transcription of various genes, including the
hetR gene (Herrero et al., 2001). Studies showed that a mutant
species of Nostoc with a defective ntcA gene failed to infect
its host despite retention of hormogonia-forming capacity and
therefore might be linked with the activation of other genes
required for a successful symbiotic relationship to be established
(Vega-Palas et al., 1992; Herrero et al., 2001; Adams et al.,
2013). A study by Leganes et al. (1994) in Anabaena showed
that an altered hepA gene disrupts proper formation of the
cell envelope in both heterocysts and akinetes. The thickened
walls, made up of a polysaccharide layer, are essential for
nitrogen fixation activities to be concentrated in the heterocyst
cells and prevent oxygen diffusion (Tikhonovich and Provorov,
2007). As a consequence of a non-functional hepA gene, normal
development of the cell envelope is impossible and affects the
ability of the cyanobiont to fix nitrogen in its host (Leganes et al.,
1994). Both free-living and symbiotic bacteria have nif genes
not restricted to cyanobacteria (Corbin et al., 1982; Fay, 1992).
Those genes are responsible for forming nitrogenase complexes
that convert unusable atmospheric dinitrogen to useful forms
like ammonia and in this process, the nifD and nifK genes
encode a dinitrogenase heterotetramer that contains an active
site to reduce dinitrogen atoms (Dos Santos et al., 2012). The
nifDK genes work together with it redox partner, an iron protein
encoded by nifH gene, to complete the structure and function
of nitrogenase complex (Jasniewski et al., 2018). Therefore, these
genes are important for maintaining mutual associations with a
host because defects in the genes may affect the nitrogen-fixing
capacity of the symbiont (Spaink, 1998).

Several genes have been identified, but their significance in
symbioses is still poorly understood. A sigma factor gene, sigH,
which appears to be directed by HIF, might play a role in the
ability of symbionts to increase invasion success in a targeted

host (Campbell et al., 1998). Likewise, the ctpH gene, which is
in close proximity with the sigH gene, is also controlled by HIF in
Nostoc (Adams et al., 2013) and has a function in the photosystem
II mechanisms in Synechocystis (Anbudurai et al., 1994). This
gene is interesting as it may have varying physiological roles
in different symbiotic strains. Another gene, tprN, codes for
proteins known to be necessary in various functions, such as
regulating the cell cycle, suppressing transcription mechanisms
and transporting proteins (Lamb et al., 1995). This gene is also
essential for heterocyst maturation process (Campbell et al.,
1996). In line with this, Meeks et al. (1999) observed that a
silenced tprN gene in N. punctiforme caused no phenotypic
change but the infection rate doubled compared to the wild-type
strain, and its transcription elevated when exposed to both HIF
and HRF exudates of A. punctatus. However, the implications and
its involvement in the infection process are still unknown.

LIMITATIONS IN
CYCAD-CYANOBACTERIA RESEARCH

A substantial number of studies have focused on the growth
and development of coralloid roots and the diversity of the
endosymbiont community within the cyanobacterial zone using
cultures and 16S identification methods (Costa et al., 1999;
Thajuddin et al., 2010; Yamada et al., 2012). The underlying
mechanisms, however, have been left unexplored. Probable
reasons challenging the study of symbiosis compared to other
hosts with a cyanobacterial partner are discussed in this section.

One of the difficulties in this field of research is studying
the in vivo development of cycad – cyanobacterial symbiosis.
To determine the mutualistic interactions exhibited by both
partners, a significant length of time, which may take years of
research, might be needed to confirm and validate hypotheses as
development in cycads takes much time. Tissue culture methods
are also lacking for most cycads to facilitate in vitro experimental
assays that could be used to compare wild-type and symbiont-free
conditions. Another reason is the availability of coralloid roots of
good quantity and quality. According to McLuckie (1922) cited
in Milindasuta (1975) and also based on personal observations,
even when coralloid roots are present, a green layer in the cortex
may be absent (Nilsson et al., 2006). Moreover, the availability
of both root tissue samples and cyanobionts per plant host are
often insufficient for experiments, especially when replicates are
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needed. Thus, samples are usually pooled using a number of
representative hosts. Also, most studies obtain their samples from
botanic gardens and not from the wild. Although promising
results can still be achieved, gathering samples from natural
habitats could add more interesting findings.

Another frustration in this field of research is trying to
separate root tissues from the endosymbiont as well as the
endosymbiont from the sticky mucilaginous material. Various
methods have been proposed (Ferris and Hirsch, 1991; Lindblad
et al., 1991; Gehringer et al., 2010), but completely separating
them from each requires improvement as most requires manually
scraping off the green symbiont from the roots. In determining
the functions of cycads and their cyanobionts during symbiosis,
the gene expression must be analyzed capturing the symbiotic
condition while both partners are together. This eliminates the
need to separate them because it would cause changes in gene
expression, but poses the more difficult task of how to monitor
their association in vivo.

CONCLUSION AND FUTURE
PERSPECTIVES

Research on coralloid roots is not new, but progress has
been quite slow compared to research on Rhizobia and other
host-cyanobiont associations. Due to the limitations mentioned
above, the research field has been confined to studying the
diversity of symbionts obtained from various cycad hosts and
revalidating previous hypotheses on how both partners benefit
from each other. Cruz-Morales et al. (2017) identified novel
biosynthetic gene clusters unique to cycad coralloid roots-
cyanobacteria symbiosis through genome mining, a research area
worth undertaking to understand coevolution and to discover
pathways responsible for the synthesis of natural products.
With the advancements in genomic research that are becoming
more affordable, even for small-scale laboratories, studying
cycad host-cyanobiont symbiosis may now move forward at a
quicker pace. First, whole genome and transcriptomic sequencing
proved to be a valuable source of information regarding
genetic functions and evolution (Ran et al., 2010; Li et al.,
2018; Eily et al., 2019). In line with this, DNA microarray
technology can now be used for analysis of expressed genes of
microbes from multiple genomes simultaneously using probes
to determine up or downregulated genes. Alternatively, RNA
sequencing (RNA-Seq) of cyanobiont genomes approximately
5.4–9.0 Mbp – in obligate cyanobiont Nostoc azollae and
facultative cyanobiont Nostoc punctiforme PCC 73102 of Azolla
filiculoides, respectively (Ran et al., 2010) and 6.7 Mbp in
Nostoc cycadae of Cycas revoluta (Kanesaki et al., 2018) – can be

utilized that could detect new genes and splicing events. Aside
from ruling out the need for manual separation of microbe
from host tissues, Next generation sequencing (NGS) technology
provides high resolution data. Likewise, tissue-specific whole
transcriptome profiling might be applied to coralloid root
tissues with genome size of about 20–30 Gbp (Wang et al.,
2018) for determining expressed genes during symbiosis.
Furthermore, gaining bioinformatics skills is necessary to
maximize the analysis of the outputs obtained from huge
amounts of genomic data.

Cyanobacteria are also valuable sources of metabolites
(Haque et al., 2017). Thus, venturing into cycad and/or
cyanobiont metabolomics research might help to identify
useful products, such biofertilizers, antimicrobials and other
natural products of economic importance. It may also facilitate
studies on cyanotoxins and biomagnification theories. Likewise,
metabolites are also believed to play major roles in cell
signaling and communication and could also assist in providing
insights on symbiotic pathways and identification of enzymes
involved in symbiosis. Many areas of cycad-cyanobacteria
symbiosis are still waiting to be explored. With technology
rapidly advancing simultaneously with the skills of researchers,
restrictions previously deemed overwhelming currently appear
to be promising.
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