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Earth’s temperature is rising, and with this increase, fungal communities are responding
and affecting soil carbon processes. At a long-term soil-warming experiment in
a boreal forest in interior Alaska, warming and warming-associated drying alters
the function of microbes, and thus, decomposition of carbon. But what genetic
mechanisms and resource allocation strategies are behind these community shifts and
soil carbon changes? Here, we evaluate fungal resource allocation efforts under long-
term experimental warming (including associated drying) using soil metatranscriptomics.
We profiled resource allocation efforts toward decomposition and cell metabolic
maintenance, and we characterized community composition. We found that under
the warming treatment, fungi allocate resources to cell metabolic maintenance at the
expense of allocating resources to decomposition. In addition, we found that fungal
orders that house taxa with stress-tolerant traits were more abundant under the warmed
treatment compared to control conditions. Our results suggest that the warming
treatment elicits an ecological tradeoff in resource allocation in the fungal communities,
with potential to change ecosystem-scale carbon dynamics. Fungi preferentially invest in
mechanisms that will ensure survival under warming and drying, such as cell metabolic
maintenance, rather than in decomposition. Through metatranscriptomes, we provide
mechanistic insight behind the response of fungi to climate change and consequences
to soil carbon processes.

Keywords: metatranscriptome, tradeoff, fungi, soil carbon, decomposition, global warming, CAZy, COG

INTRODUCTION

Genetic mechanisms and strategies behind fungal resource allocation in response to warming
remain unclear despite being critical to understand ecosystem-scale carbon (C) dynamics
under global climate change. For example, warming-induced soil carbon losses in high-latitude
ecosystems are predicted to provide a positive feedback to global warming (Allison and Treseder,
2011). However, litter mass loss and microbial CO2 emissions seem to decrease after a decade or
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more exposed to warming (Melillo et al., 2017; Romero-Olivares
et al., 2017a,b). Simultaneously, warming changes the community
composition of microbes, and these changes have the potential
to affect ecosystem-scale C losses (e.g., Pold et al., 2015;
Treseder et al., 2016; Morrison et al., 2019). How do these
community changes and ecosystem-scale C losses feedback to
global warming? An intimate look into the energetic investment
of fungi under warming can help elucidate priorities on resource
allocation under global climate change and facilitate predictions
on the fate of soil C.

Microbes are mediators of biogeochemical cycles in soil. In
particular, fungi are decomposition power-houses (Berlemont,
2017). In high-latitude ecosystems, fungi are the major
decomposers of forest litter (Baldrian, 2017). Previous studies
in high-latitudes reported that warming treatments significantly
alter the fungal community, favoring soil saprotrophs and
ectomycorrhizal fungi, while disfavoring yeasts (Treseder et al.,
2016; Solly et al., 2017). In this biome, warming can also
cause soil drying, owing to higher evapotranspiration rates
(Allison and Treseder, 2011). Soil drying can contribute to
these shifts in fungal communities under warming treatments
(Allison and Treseder, 2008; Treseder et al., 2016). But to
understand how fungi respond to warming and drying, and to
better predict ecosystem-scale C dynamics under global climate
change, we must explore beyond community composition
(Crowther et al., 2014).

Laboratory studies on the physiological responses of the
model fungus Neurospora discreta show that under warming,
N. discreta adapts its physiology and invests energy differently
to increase its chances of survival (Romero-Olivares et al.,
2015). More specifically, after 1500 generations exposed to
warm temperature and a labile C substrate, N. discreta invested
more energy toward reproduction rather than growth and
decreased its carbon use efficiency (CUE) (Romero-Olivares
et al., 2015). But when exposed to warm temperature, and
either a labile or recalcitrant C substrate, N. discreta was
less sensitive to temperature shifts and most sensitive to
C substrates (Allison et al., 2018a). Moreover, N. discreta
isolated from different parts of the world—and presumably
adapted to different mean annual temperatures—did not differ
in their response to temperature (Allison et al., 2018b).
Altogether, these studies expose the complexity of evolutionary
forces in soil and the different responses fungi may have.
Temperature, as well as warming-induced biotic and abiotic
environmental changes (e.g., warming-induced drying), may
be strong evolutionary forces (Bennett and Lenski, 2007;
Allison et al., 2018a).

Studies on the metabolic changes of fungi under
environmental stress, warming included, have focused on
short-term responses (i.e., 30–60 min) (e.g., Gasch et al.,
2000; Albright et al., 2018). However, in ecosystem ecology,
“stress” is considered a chronic condition that extends for
long periods of time with physiological expenses for microbes
(Schimel et al., 2007). These expenses are usually associated
with reallocation of resources to ensure survival (i.e., tradeoffs)
(Bennett and Lenski, 2007). The rate-yield tradeoff states
that “extra energy devoted to resource acquisition speeds

metabolic rate but reduces the net yield of energy” (Frank, 2010).
Indeed, in microbes, CUE can decline with warming, because
respiration maintenance processes are more temperature
sensitive than growth processes (Farmer and Jones, 1976;
Mainzer and Hempfling, 1976; Hall and Cotner, 2007; Allison,
2014; Rodríguez-Verdugo et al., 2014). On the long-term,
species that consistently invest in cell metabolic maintenance
mechanisms may be selected for under stressful conditions
brought by global warming.

Certain fungal traits associated with stress-tolerance may be
favorable under warming and drying. For example, the presence
of melanin is known to be associated with drought-tolerance and
is often found in fungi that inhabit ecosystems exposed to high-
radiation, such as deserts (Harutyunyan et al., 2008; Belozerskaya
et al., 2010; Azua-Bustos et al., 2012; Fernandez and Koide, 2013;
Casadevall et al., 2017) Similarly, trehalose protects fungal cell
membranes from desiccation, freezing, and heat shock (Treseder
and Lennon, 2015). This trait is commonly found in arctic fungi
(e.g., Gunde-Cimerman et al., 2003) where water availability
is low, as well as in lichenicolous fungi which are known to
be xerotolerant (Mittermeier et al., 2015). Under warming and
drying, fungal taxa with stress-tolerance traits may thrive over
those without those traits.

Exploring the fungal community composition and its
traits, paired with physiological and metabolic profiles, can
provide an integrative overview of the response of the
fungal community to warming and drying. In addition,
it offers insight into fungal adaptation strategies in the
wake of climate change, and facilitates predictions on the
fate of soil C. In this study, we used metatranscriptomes
to get a mechanistic understanding of the allocation of
resources in fungal communities exposed to a long-term
warming treatment (which includes drying). We tested the
following hypotheses:

Cell Metabolic Maintenance Hypothesis
Under the warming treatment, fungi allocate more resources
into cell metabolic maintenance as a strategy to ensure survival
compared to fungi under control conditions.

Decay Hypothesis
Under the warming treatment, fungi allocate less resources to
decomposition compared to fungi under control conditions as a
tradeoff for investing in cell metabolic maintenance.

Stress-Tolerance Traits Hypothesis
Under the warming treatment, fungal taxonomical orders
that house taxa with stress-tolerant traits are more abundant
compared to control.

Altogether, we hypothesized that under the warming
treatment, there is an ecological tradeoff that favors the allocation
of resources toward cell maintenance and stress-tolerance over
the allocation of resources toward decomposition. This tradeoff
is driven by the increase in abundance of stress-tolerant fungal
taxa in response to warming and associate drying.
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MATERIALS AND METHODS

Field Site
The study area is located in a mature black spruce (Picea
mariana) forest in Delta Junction, Alaska, United States
(63◦55′N, 145◦44′W) on the Fort Greely military base. Here,
the vegetation is dominated by black spruce and an understory
of lichens, shrubs, and mosses. The annual precipitation is
approximately 303 mm−1 and a mean annual temperature of
−2◦C; the growing season starts around mid-May and ends
in mid-September.

The warming experiment started in July 2005 as described
in Allison and Treseder (2008). Greenhouses and neighboring
control plots were established in pairs in a 1 km2 area. Control
plots were left under ambient conditions while greenhouses
warmed passively using closed-top chambers. The top plastic
panels of the greenhouses were removed at the end of the
growing season and re-installed at the beginning of the growing
season the following year to allow snow fall to enter the warmed
plots. Gutters and tubing were installed to minimize drying by
directing precipitation into the greenhouses during the growing
season. On average, the air inside the greenhouses was 1.6◦C
higher than in controls plots and the soil temperature at 5 cm
depth was on average 0.5◦C higher inside the greenhouses
compared to control plots. The warming treatment reduced soil
moisture by 22%—on average—due to higher evapotranspiration
(Allison and Treseder, 2008).

Sample Collection
We collected soil samples in the summer of 2015, after 10 years of
the onset of warming. We used a 10 cm-tall corer to extract soil,
homogenized 332 cm3 of soil inside a plastic sterile Whirl-Pak R©,
collected approximately one gram, and immediately soaked it in
5 ml of LifeGuardTM Soil Preservation Solution (Qiagen, catalog
12868). Samples were kept in a cooler with ice for 24 h and then
transferred to a−80◦C freezer until processed 1 week later.

Soil RNA Extraction and Sequencing
Samples were thawed on ice and centrifuged at 2500 × g
for 5 min to remove LifeGuardTM Soil Preservation Solution.
We proceeded to extract RNA using RNA PowerSoil R©following
the manufacturer’s instructions with modifications by Baldrian
et al. (2012). Samples were cleaned using RNA clean &
concentratorTM-25 kit (Zymo, catalog R1017) and DNAse
treated with Turbo-DNA freeTM kit (Life Technologies, catalog
AM1907). RNA was checked for quality on an Agilent 2100
Bioanalyzer at the University of California Irvine genomics
high-throughput facility. Good quality samples were prepared
for sequencing and sequenced at the Joint Genome Institute
(JGI) (Nordberg et al., 2014). The JGI prepared paired-end
libraries using Illumina RNAseq stranded library preparation
kit following low and ultra-low input RNAseq with rRNA
depletion protocols. Shortly, rRNA was removed from either
100 or 10 ng of RNA using Ribo-zeroTMrRNA removal kit
(Epicentre). Stranded cDNA libraries were generated using
Illumina TruSeq R©RNAseq stranded kit. The rRNA depleted

RNA was fragmented and reversed transcribed using random
hexamers and SSII (Invitrogen) followed by a second strand
synthesis. The fragmented cDNA was treated with end-pair,
A-tailing, adapter ligation, and 10 or 15 cycles of PCR.
Sequencing was carried out in a HiSeq 2500 system. Sequencing
projects are deposited at the JGI with project ids: 1107-496, -499,
-504, -507, -509, -514, -519, and -520.

COG Cell Metabolic Maintenance Genes
For an overview of the investment of fungi in cell metabolic
maintenance in control versus warmed plots, we analyzed
metatranscriptomes using the JGI Integrated Microbial Genomes
and Microbiomes (IMG/M) platform (Markowitz et al., 2005;
Chen et al., 2016), specifically, we used the functional categories
of Clusters of Orthologous Groups (COG) at 90% similarity
with an E value threshold of 10−5. We chose COG categories
because this classification provides information on the functional
characteristics of a community of microbes by using a group of
proteins found to be orthologous across lineages (Tatusov et al.,
2000). We used the COG functional category of “metabolism”
because it is the only category that includes proteins involved
exclusively in cell metabolic maintenance, such as the transport
and metabolism of amino acids, nucleotides, carbohydrates,
coenzymes, lipids, and inorganic ions; energy production and
conversion; and secondary metabolite biosynthesis.

CAZy Genes
Metatranscriptomes were quality trimmed by removing adapters
with Trimmomatic (v 0.35) using ILLUMINA TruSeq3-PE
adapters with sliding window 4:15 and dropping reads below
25 bases long (Bolger et al., 2014). Quality control of trimmed
samples was carried out with FastQC (v 0.11.2) (Andrews, 2010).
Metatranscriptomes were filtered with sortmeRNA (v 2.1) to
remove all rRNA sequences (Kopylova et al., 2012). Filtering was
done against bacteria and archaea 16 s- and 23 s-, as well as
eukaryote 18 s- and 28 s-, and 5 s- and 5.8 s-SILVA databases
(Quast et al., 2013). The rRNA-free metatranscriptomes were
used for downstream analyses.

Four metatranscriptomes from control plots and four
metatranscriptomes from warmed plots were selected to assemble
a de novo reference meta-transcriptome with Trinity (v 2.3.2)
(Haas et al., 2013). We used bowtie2 (v 2.2.7) to map reads to our
reference meta-transcriptome (Langmead and Salzberg, 2013)
and Samtools (v 1.3) for sorting and indexing (Li et al., 2009).
We used Trinity toolkit (i.e., Trinity transcript quantification) to
quantify abundance of transcripts and ran differential expression
analysis with edgeR (v 3.3.2) using a p-value cutoff of 0.01.
We used the Carbohydrate Active Enzyme (CAZy) database
(Lombard et al., 2014) and Transdecoder (v 2.0.1)1 to find coding
regions within transcripts. We created an annotated database
with Trinotate (v 3.0.0)2 and hmmer (v 3.0) (Bryant et al., 2017)
with an E value threshold of 10−5. The CAZy database has six
different classes based on structurally related functional domains
of enzymes that degrade, create, or modify glycosidic bonds. We

1https://github.com/TransDecoder/TransDecoder
2https://github.com/Trinotate/Trinotate.github.io/wiki
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used classes involved in catabolism, and excluded classes involved
in anabolism (i.e., glycosyl transferases). Briefly, auxiliary
activities (AA) is a class that has ligninolytic enzymes and lytic
polysaccharide monooxygenases involved in the breakdown of
lignin. Carbohydrate-binding modules (CBM) has enzymes that
assist in the decomposition of cellulose and other types of
complex carbohydrates. Carbohydrate esterases (CE) includes
enzymes involved in the degradation of hemicellulose and pectin.
Glycoside hydrolases (GH) is a wide group of enzymes that
hydrolyze glycosidic bonds between carbohydrates or other
non-carbohydrate molecules. Finally, polysaccharide lyases (PL)
participate in the decomposition of acidic polysaccharides such
as starch and chitin (Lombard et al., 2014). The full pipeline
and scripts were deposited at https://github.com/adriluromero/
warming_AK.

Taxonomical Composition Analysis
We assessed fungal community composition in control and
warmed plots using metatranscriptomes and M5NR database
within MG-RAST (Meyer et al., 2008). Metatranscriptomes were
deposited in the MG-RAST metagenomics analysis server
with the following ID: mgm4761695.3, mgm4762031.3,
mgm4762032.3, mgm4762033.3, mgm4762030.3,
mgm4762034.3, mgm4762035.3, mgm4762036.3. We filtered
results using an E value threshold of 10−5 and kept only hits for
fungi. We used data at the order level because previous work by
Treseder et al. (2016) showed that variance in warming treatment
response was greatest at this level. In addition (Randle-Boggis
et al., 2016) recommends focusing on order when using M5NR
in MG-RAST, because this taxonomic level yields that highest
numbers of correctly annotated sequences.

Statistical Test
For all statistical tests we used R (R Core Team, 2018) with
ranked data, since the unranked data did not meet assumptions
of normality. We performed a linear mixed-effects model using
the function lmer from the R package lme4 (Bates et al.,
2015). In our model, plot was random effect, treatment was
fixed effect, and transcription (i.e., gene counts for COG and
CAZy) or relative abundance (for taxonomical order) was the
dependent variable. COG metabolic maintenance subcategories,
CAZy categories, or taxonomical order were categorical variables.
We performed a Type III ANOVA in our model, to test for
interactions; we used Satterthwaite’s method within lmerTest
package (Kuznetsova et al., 2017) in R. This method provides
p-values for the F values produced with the lmer function. We
used post hoc t-test to estimate significant differences in gene
counts of each categorical variable between control and warmed
plots. Since we ranked the data, all statistical tests were non-
parametric. All statistical scripts and test results are deposited at
github.com/adriluromero/warming_AK.

RESULTS

Under the warming treatment (which includes drying), fungi
invested more in the transcription of cell metabolic maintenance

genes compared to controls (Figure 1A). We accepted our
first hypothesis, because the overall transcription of COG
metabolic genes was significantly higher in the warmed treatment
compared to control plots (Supplementary Table S1, P < 0.01).
Moreover, there was no significant interaction between COG
metabolic subcategory and warming treatment, indicating that
COG categories responded similarly to the warming treatment
(P = 0.97). Regardless of treatment, certain COG subcategories
(e.g., energy production and conversion, amino acid transport
and metabolism) were transcribed significantly more than others,
as suggested by a significant main effect of COG subcategory
(P < 0.01).

Conversely, under the warming treatment, fungi invested less
in the transcription of genes for enzymes catabolizing glycosidic
bonds (CAZy genes) compared to control temperatures
(Figure 1B). Accordingly, our second hypothesis was supported
(P < 0.01). The various CAZy classes responded similarly to
the warming treatment, based on a non-significant treatment
by CAZy class interaction (Supplementary Table S2, P = 0.36).

FIGURE 1 | Cumulative average of transcripts in controls compared to the
warming treatment for (A) metabolic clusters of orthologous groups (COG)
and (B) carbohydrate-active enzyme classes (CAZy). Fungi in the warming
treatment had on average significantly more transcripts of COG genes and
significantly fewer transcripts of CAZy genes compared to controls. Bars are
cumulative averages of four plots (n = 4) ± 1SE, P < 0.01 for treatment.
Transcript counts of each sample and each COG subcategory and CAZy
category are reported in Supplementary Tables S1, S2, respectively.
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Across treatments, glycoside hydrolases was the most transcribed
CAZy class, and PL was the least (main effect of CAZy
class: P = 0.02).

Finally, fungal orders that house taxa with stress-tolerant traits
(e.g., melanized cell walls and spores, desiccation-tolerance) were
favored under the warming treatment (Figure 2). We found
support for our third hypothesis because taxonomical orders with
higher relative abundance in the warmed treatment compared to
control plots are known for their stress-tolerance traits (P < 0.01
for treatment; and P < 0.01 for taxonomical orders). We found
a significant interaction between treatment and taxonomical
orders (P = 0.05). Post hoc t-test revealed that orders known
to house lichenized, corticioid, melanized, high-sporulating,
endophytic, pathogenic, and xerotolerant fungi were significantly
more abundant in the warmed treatment compared to controls
at P ≤ 0.05 (Supplementary Table S3). Specifically, the orders
Arthoniales, Lichinales, and Pertusariales house lichenized fungi
(DePriest, 2004; Schmitt et al., 2005; Lücking et al., 2017). The
Diaporthales, Magnaporthales, and Malasseziales include mostly
opportunistic pathogenic species (Cafarchia et al., 2007; Roy
and Mulder, 2014; Zhang et al., 2016; Senanayake et al., 2017).
The Eurotiales house high-sporulating, stress-tolerant mold
species (Dijksterhuis et al., 2018). The Jahnulales, Myrangiales,
Patellariales, and Pleosporales have species known to tolerate
stress due to melanized cell walls (Ruibal et al., 2009; Schoch et al.,
2009). The Pezizales and Sordariales house taxa that can thrive
under stressful conditions (e.g., dry and hot post-fire conditions)
(Egger, 1986; Grishkan et al., 2003). Finally, the Xylariales house
many endophytic, stress-tolerant, melanized taxa (Yu et al., 2015;
Soares et al., 2016).

DISCUSSION

In our study, we found that experimental warming treatments
(which include drying) elicits an ecological tradeoff in fungal
resource allocation which favors cell metabolic maintenance over
decay (Figure 1). We also found that warming and drying
causes an increase in abundance of fungal orders with stress-
tolerant traits (Figure 2), which may be drivers of the observed
ecological tradeoff.

Previous studies have shown that cell maintenance costs
increase with temperature (Joergensen et al., 1990), causing
higher energetic demand to maintain cellular function (Steinweg
et al., 2013). This increase in energetic demand results in
increased death rates of microbes (Alvarez et al., 1995; Curtin
et al., 2012). Consequently, increased temperature that leads to
microbial death or resource allocation tradeoffs can potentially
shape fungal communities and ecosystem-scale C processes. In
our study, fungi under warming and drying invested resources
in cell metabolic maintenance potentially to ensure their survival
under global climate change.

Other studies have also documented microbial ecological
tradeoffs. Treseder et al. (2011) found a tradeoff between
recalcitrant C users and nitrogen availability; recalcitrant C users
were more prevalent under environments high in nitrates and
low in organic nitrogen. When two processes are energetically

expensive, an ecological tradeoff will favor acquisition of one
trait that favors survival at the expense of losing another one.
Similarly, Romero-Olivares et al. (2015) found that the model
fungus N. discreta adapted to elevated temperatures by producing
more spores at the expense of biomass. Because producing spores
is energetically expensive, N. discreta could not afford investing in
both, spore and biomass production. Thus, investing in resources
which will secure reproduction was an effective survival strategy.

Treseder et al. (2016) studied community shifts in our field
experiment by high-throughput sequencing of soil DNA. In the
current study, we used a highly sensitive sequencing method
based on soil RNA and found similar results; the Eurotiales,
Pezizales, and Sordariales increased under warming and drying.
Most of the orders we found at higher abundance under warming
were taxa known to house lichenized, free-living, melanized,
stress-tolerant, endophytic, and pathogenic fungi. Although
some taxa displayed decreases in abundance in response to
warming and drying, none of these were significantly different
(e.g., Morteriellales, Cystofilobasidiales) (Supplementary Table
S3). Interestingly, in our dataset, the Mortierellales, Mucorales,
and other high-sporulating taxa were the most abundant taxa
in the warming treatment and controls alike (Supplementary
Table S3). Indeed, in culture isolation efforts carried out in
these same soils by AL Romero-Olivares, Umbelopsis spp.
Ambomucor spp., and Penicillium spp.—all high-sporulating
taxa—were the most commonly isolated species in each treatment
(data not published). This could indicate that the orders that
were equally abundant in control and warming treatments were
the result of spore banks in soils, which can be metabolically
active (Novodvorska et al., 2016). Surprisingly, Basidiomycete
fungi, known to play a key role in decomposition, were not
significantly affected by the warming treatment. Specifically, no
Basidiomycete orders decreased significantly under the warming
treatment. In fact, the only Basidiomycete order that responded
significantly to the warming treatment was the Malasseziales,
which are known to house pathogenic yeasts (Figure 2 and
Supplementary Table S3). Alternatively, Ascomycete orders
were significantly affected by the warming treatment. Similar
trends have been reported under long-term chronic nitrogen
fertilization (Hesse et al., 2015).

Our findings are in line with mass loss litterbag experiments
done in our field site. Here, we reported that resource allocation
toward decomposition was lower in the warming treatment
compared to controls. Romero-Olivares et al. (2017a) reported
that mass loss and extracellular enzyme activity was lower in
the warming treatment compared to controls. In contrast, they
noted that the proportional loss of recalcitrant C in the warming
treatment was greater than in controls. Differential expression
analysis showed that AA genes, which are involved in the
decomposition of recalcitrant C, tended to be transcribed at (non-
significantly) higher rates in the warming treatment compared
to controls (Supplementary Table S2 and Supplementary
Figure S1). In contrast, CE and GH genes tended to be
transcribed (significantly) more in controls than in the warming
treatment. While the area of soil metatranscriptomes continues
to develop, we suggest accompanying metatranscriptomes with
field observations to draw ecologically relevant conclusions.
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FIGURE 2 | Fungal orders that displayed significantly different warming treatment response as percentage increase in relative abundance in response to warming.
Bars are means ± 1SE of n = 4. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. Transcript counts and relative abundance of all orders in this study are reported in
Supplementary Table S3.

As the area of soil metatranscriptomics develops, sampling
efforts should likewise increase. This goal is important, since
fungi communities residing in different ecosystems might vary
in their responses to warming and drying (Wallenstein and Hall,
2012). For example, deserts, savannas, tropical forests, and other
particularly warm ecosystems may already be dominated by stress
tolerant taxa. In those cases, shifts between cell maintenance and
decay might not be as strongly evident. At the moment, sampling
efforts are hampered by insufficient random access memory
(i.e., RAM), even for high-performance computer clusters. The
amount of sequencing data in metatranscriptomes is massive (i.e.,
∼0.5 TB of sequencing data per sample), and analysis platforms
require high RAM in order to successfully process the data. As
such, we limited our sample collections to one sampling time in
the middle of the summer. Thus, our results represent a snapshot
of the time and conditions of that particular day and time
in this specific ecosystem and generalization is impossible. In
the future, transcript abundance should be analyzed throughout
a day, week, months, and years. This is especially important
because similar studies examining temporal changes of microbial
activity have shown that fungal transcription in soil differs among
seasons (Žifčáková et al., 2016). In fact, CAZy GH and AA genes
are transcribed at higher rates in summer compared to winter
(Žifčáková et al., 2017).

Moreover, preservation methods for RNA in soil samples
are also critical. Flash freezing in liquid nitrogen may be
the best preservation method for RNA in soil samples (e.g.,
Žifčáková et al., 2016, 2017). However, this approach was

not feasible in our remote field site. Instead, we used
LifeGuardTM Soil Preservation Solution. We caution that the
preservation liquid may not reach every single cell in the
soil fast enough to capture all RNA. In fact, the effect of
preservation methods in forest soils has not been thoroughly
compared yet (Tatangelo et al., 2014); when flash freezing
in liquid nitrogen is not a feasible option, LifeGuardTM Soil
Preservation Solution seems to be the most widely used
option (e.g., Carvalhais et al., 2012; Che et al., 2017; Jurburg
et al., 2017; Meredith et al., 2018; Rampadarath et al., 2018;
Thompson et al., 2018). In addition, pipelines for processing and
analyzing metatranscriptomes in the context of fungi and soil
C processes are still developing (Baldrian and López-Mondéjar,
2014). Vast efforts are underway to develop pipelines for de
novo metatranscriptomes (e.g., Haas et al., 2013) and improve
fungal annotations (Grigoriev et al., 2014). Our work is the
result of the existing information available in databases and
pipelines for processing and analyzing transcriptomes without
reference genomes.

In conclusion, our data suggest that under long-term warming
and drying, fungal communities allocate resources toward cell
metabolic maintenance at the expense of decomposition. In
addition, fungi with stress-tolerance traits, such as melanized,
xerotolerant, and lichenized fungi, seem to prevail under
warming and drying. The metatranscriptome approach allowed
us to pin-point, at the gene level, the mechanisms behind
ecosystem-scale observations on soil C processes. We present
a pipeline that paired with field observations, provides insight
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into the genetic mechanisms behind resource allocation efforts of
fungi under long-term experimental warming and drying. It can
help in predicting the fate of soil C under global climate change.
In our study, soil metatranscriptomes provide a mechanistic
snapshot of C-related ecological processes happening under
climate change and offer insight into microbial resource
allocation which are in-line with field observations.
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FIGURE S1 | Heatmap with significantly different Log2 differential expression at
P ≤ 0.01 in controls and the warming treatment. Red shows down-regulated
genes (−10 to −1), green shows up-regulated genes (1 to 10), and yellow down-
or up-regulated genes (−0.99 to 0.99). Samples are organized by control and
adjacent warming treatment plot. Control samples are C1, C2, C3, C4, and
warming treatment samples are W1, W2, W3, W4 (n = 4). Y-axes shows CAZy
class: AA, Auxiliary Activities; CBM, Carbohydrate Binding Modules; CE,
Carbohydrate Esterases; GH, Glycoside Hydrolases; PL, Polysaccharide Lyases.
Post hoc p-values for each category are shown underneath Y-axes categories.

TABLE S1 | Total transcripts of predicted metabolic clusters of orthologous
groups (COG) genes in control and warmed samples (n=4).

TABLE S2 | Total transcripts of predicted carbohydrate-active enzyme classes
(CAZy) genes in control and warmed samples (n=4).

TABLE S3 | Total transcripts and relative abundance of fungal orders in control
and warmed samples (n=4).
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