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This study examined diel shifts in metabolic functions of Microcystis spp. during a 48-h
Lagrangian survey of a toxin-producing cyanobacterial bloom in western Lake Erie in
the aftermath of the 2014 Toledo Water Crisis. Transcripts mapped to the genomes of
recently sequenced lower Great Lakes Microcystis isolates showed distinct patterns
of gene expression between samples collected across day (10:00 h, 16:00 h) and
night (22:00 h, 04:00 h). Daytime transcripts were enriched in functions related to
Photosystem II (e.g., psbA), nitrogen and phosphate acquisition, cell division (ftsHZ),
heat shock response (dnaK, groEL), and uptake of inorganic carbon (rbc, bicA). Genes
transcribed during nighttime included those involved in phycobilisome protein synthesis
and Photosystem I core subunits. Hierarchical clustering and principal component
analysis (PCA) showed a tightly clustered group of nighttime expressed genes, whereas
daytime transcripts were separated from each other over the 48-h duration. Lack
of uniform clustering within the daytime transcripts suggested that the partitioning
of gene expression in Microcystis is dependent on both circadian regulation and
physicochemical changes within the environment.

Keywords: Microcystis, metatranscriptomics, microcystin, cyanobacterial blooms, Lake Erie

INTRODUCTION

Cyanobacterial harmful algal blooms (cHABs), dominated primarily by Microcystis, have recurred
annually in the open waters of western Lake Erie since the mid-1990s (Brittain et al., 2000; Steffen
M.M. et al., 2014) with blooms increasing in severity and duration over the past decade (Michalak
et al., 2013; Bullerjahn et al., 2016). Within a bloom, a subset of strains of Microcystis spp. are
capable of producing microcystins, which are known hepatotoxins and potential tumor promoters
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(Falconer, 1994; Fan et al., 2014). Consequently, within the
western Lake Erie watershed, cHABs result in increased costs
for water treatment and are responsible for economic declines
related to tourism, property values, and recreational fisheries
(Bingham et al., 2015; Wolf and Klaiber, 2017).

Microcystis spp. can dominate late summer phytoplankton
communities due to a variety of adaptive strategies. Cells
over-winter in the sediments where they can be recruited to
surface waters during the summer as light availability and
temperatures increase (Brunberg and Blomqvist, 2003; Rinta-
Kanto et al., 2009; Kitchens et al., 2018). Microcystis can also
promote and tolerate the formation of pH extremes that preclude
the growth of competing eukaryotes (Krausfeldt et al., 2019).
Buoyancy resulting from gas vesicles allows cells to control their
position in the water column, thus shaping light and nutrient
availability (Reynolds et al., 1987; Brookes and Ganf, 2001).
The genomic architecture of Microcystis aeruginosa is thought
to be “plastic” due to horizontal gene transfer as well as the
activity of transposases and restriction modification enzymes
encoded within its genome (Kaneko et al., 2007; Frangeul
et al., 2008; Steffen M. et al., 2014; Meyer et al., 2017). These
functions are presumed to generate genetic diversity within
the cyanobacterial population via deletion, duplication and/or
acquisition of genes from the endemic community into the
genome. Together, these mechanisms offer adaptive strategies
to maintain competitive dominance (Humbert et al., 2013).
Microcystis spp. also possess a variety of genes and pathways
to compete for light and nutrients, including uptake systems
for various nitrogen and carbon species (Valladares et al.,
2002; Badger and Price, 2003). Increasing temperatures are
also favorable for growth of M. aeruginosa, whose optimum
growth temperature (>25◦C) is typically higher than that of
other phytoplankton species (Reynolds, 2006; Jöhnk et al.,
2008). In many lakes, increasing temperatures consistent with
climate change will likely strengthen vertical stratification thereby
reducing mixing and allowing phytoplankton growth at the
surface to remain undisturbed, promoting formation of surface
blooms (Huisman and Hulot, 2005; Paerl and Huisman, 2008).

A critical adaptation of bloom-forming phytoplankton is
the regulation of processes according to diel light availability.
Circadian oscillators are genetic regulators of expression
operating at a period of about 24 h. The circadian “clock”
functions as a regulator that anticipates daily environmental
changes that can shape cell metabolism. Circadian rhythms
function as a constant, entrained by cycles of light/dark,
independent of temperature effects (Bünning, 1973; Pittendrigh,
1981; Johnson and Hastings, 1986; Sweeney, 2013). These
functions were initially observed in eukaryotes and thought to
occur only within Eukarya (Konopka and Benzer, 1971), until
their discovery in cyanobacteria (Kondo et al., 1993; Lorne et al.,
2000). The kaiABC gene cluster and its physiological outputs
within cyanobacteria have been shown to specifically control the
rhythmicity of cell functions (Ishiura et al., 1998; reviewed in
Welkie et al., 2019). The photosynthetic nature of cyanobacteria
presumes the circadian pacemaker will initiate expression of
some genes to anticipate dawn to maximize daytime functions
such as photosynthetic light harvesting. Other physiological

functions have been shown to yield maximum expression at
subjective midday (Kucho et al., 2005). The cyanobacteria clock
controls global gene expression by regulating the activity of all
promoters (Liu et al., 1995; Xu et al., 2003; Labiosa et al., 2006).

Multiple cellular functions within cyanobacteria are coupled
to circadian rhythms, including nutrient acquisition and
assimilation, amino acid uptake, respiration, carbohydrate
synthesis, replication, and cell division (Chen et al., 1991; Kramer
et al., 1996; Golden et al., 1997; Ishiura et al., 1998). While
fluctuating environmental conditions (light, temperature, pH,
nutrient availability) may invoke stress responses, it is important
to understand the mechanisms and range of circadian control
that may mask or overlay expression resulting from transient
stress. Indeed, patterns of gene expression under changing
conditions of light, temperature and nutrient starvation are
distinct from those under global circadian control. With respect
to cHAB events, it is important to differentiate these two patterns
(Labiosa et al., 2006; Penn et al., 2014). Additionally, diel patterns
of expression can exist in cyanobacteria in the absence of a
circadian clock (Holtzendorff et al., 2008). Whereas this study
alone cannot sort out what functions are regulated by KaiABC,
this work, along with future studies, can begin to understand the
interplay of environmental cues and the circadian pacemaker.

This study queried expression of key metabolic functions
to understand the ecophysiology of a Microcystis spp. bloom
over the course of diel cycles. Specifically, a metatranscriptomic
approach was undertaken to study temporal changes in the
metabolic functions of an August 2014 Microcystis spp.-
dominated bloom. Just 3 weeks prior, this event resulted in a
“do not drink” order issued for Toledo, OH due to detection of
microcystins in the finished water supply above the 1 µg L−1

World Health Organization (WHO) drinking water advisory
(Bullerjahn et al., 2016; Steffen et al., 2017). Metatranscriptome
analyses paired with environmental metadata provided insight
into factors related to bloom success and toxicity, along with
a better understanding of bloom metabolism throughout the
day and night, particularly with regard to photosynthesis,
nutrient assimilation and microcystin production. Overall,
this information can help inform the development of new
strategies toward prediction of bloom toxigenicity and mitigation
of bloom events.

MATERIALS AND METHODS

Sample Collection
A 48-h Lagrangian survey of the 2014 Microcystis bloom was
conducted in western Lake Erie in late August 2014. Our study
was designed to track the bloom over diel cycles using a drifter
with GPS capabilities deployed near the Toledo water intake.
Over the course of the survey, the drifter moved roughly 2 km
through water depths varying from 10–15 m (Figure 1). Samples
were collected at 6-h intervals beginning on August 26, at
22:00 h, producing two sets of triplicate samples from 22:00 h
(samples 1S, 5S), one set of triplicates at 04:00 h (2S), and
two sets of triplicates at 10:00 h (3S, 6S), and 16:00 h (4S,
7S). A sample for 04:00 h over the second diel cycle was not
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FIGURE 1 | Map of Maumee Bay, western basin of Lake Erie indicating movements of bloom during 48-h survey. The seven sampling events were mapped to the
four sites indicated on the map.

collected due to adverse weather that precluded sampling. At
each sampling time point, triplicate water samples for chlorophyll
and nutrients were collected adjacent to the drifter by hand
casting a Niskin bottle to a depth of 1 m. Biomass from
each water sample was collected onto Sterivex cartridge filters
(0.22 µm; EMD Millipore, Billerica, MA, United States) using
a peristaltic pump. Filters were immediately stored in liquid
nitrogen upon field collection followed by transfer to −80◦C
until RNA extraction.

Physico-Chemical Measurements
Chlorophyll-a (chl a) biomass was measured by concentrating
lake water on a glass fiber filter (GF/F, 47 mm diameter,
Whatman, Maidstone, United Kingdom) at low vacuum pressure
under low light conditions and stored at −20◦C until extraction.
Samples were extracted with N, N-dimethylformamide and
analyzed by fluorescence with a 10AU fluorometer (Turner
Designs, Sunnyvale, CA, United States; Speziale et al., 1984).

Phycocyanin concentrations were measured by concentrating
lake seston on a glass fiber filter (GF/F, 47 mm diameter,
Whatman). Sodium phosphate buffer (pH 6.8; Ricca Chemical,
Batesville, IN, United States) was added to the filter and
phycocyanin was extracted using two freeze-thaw cycles followed
by sonication. Relative fluorescence was measured using a
Turner AquaFluor (Sunnyvale, CA, United States) and converted
to phycocyanin concentration using a series of dilutions
of a commercial standard (Sigma-Aldrich, St. Louis, MO,
United States; Horváth et al., 2013). For total phosphorus (TP),
duplicate 50 mL aliquots of whole lake water were collected
into acid-washed glass culture tubes and stored at 4◦C until
analysis within 1 week. For dissolved nutrients, duplicate whole
water samples were collected in a triple rinsed (ultrapure water)

20 mL syringe and filtered through 0.22 µm nominal pore-
size nylon filters into 15 mL collection tubes that were stored
at −20◦C until analysis. Dissolved inorganic nitrogen (DIN)
and phosphate concentrations were determined using standard
automated colorimetric procedures as modified by Davis and
Simmons (1979) on a QuAAtro Continuous Flow Analyzer
(SEAL Analytical, Inc., Mequon, WI, United States) according
to methods detailed by the manufacturer and in compliance
with United States. EPA Methods 365.4, 350.1, and 353.1. TP
and total dissolved phosphorus (TDP) used the same analysis
following a persulfate digestion adapted from Menzel and Corwin
(1965). Particulate microcystins were measured by filtering whole
lake water onto a 3-µm pore-size polycarbonate membrane
and kept at −20◦C until analysis. Particulate microcystins were
extracted from samples using a combination of physical and
chemical lysis techniques. All samples were resuspended in 1 mL
molecular grade water (pH 7; Sigma-Aldrich) and subjected to
three freeze-thaw cycles before the addition of the QuikLyse
reagents (Abraxis LLC, Warminster, PA, United States) per the
manufacturer’s instructions. The samples were then centrifuged
for 5 min at 2 × 103 g to pellet cellular debris. The concentrations
of microcystins (reported as microcystin-LR equivalents) were
measured using a microcystin enzyme-linked immunosorbent
assay (Abraxis LLC) following methods standardized by the
manufacturer (Fischer et al., 2001). This assay is congener-
independent and detects the ADDA moiety, a shared moiety
among microcystins. The detection limit of the assay was
0.04 µg L−1.

Nucleic Acid Extraction and Sequencing
RNA was extracted from a single Sterivex cartridge from
each sampling time using the PowerWater DNA Isolation Kit
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for Sterivex (Qiagen, Carlsbad, CA, United States), modified
for RNA using manufacturer’s protocols. To improve RNA
yield, Sterivex R©cartridges were vortexed for 5 min longer than
recommended each time and all wash buffers were allowed to
sit for 1 min before vacuum extraction through the binding
column. DNase treatment was performed as recommended in
the protocol using the On-Spin Column DNase kit (QIAGEN).
This protocol was optimized by allowing the DNase solution to
sit for an extra 15 min than recommended. RNA was checked
for DNA contamination by PCR with universal 16S primers (27F
and 1522R). Any additional DNase treatments required were
performed using the Turbo DNase kit (Ambion, Austin, TX,
United States). rRNA was removed from 1 µg of total RNA
using Ribo-Zero rRNA Removal Kit (Epicenter, Madison, WI,
United States). Stranded cDNA libraries were generated using the
TruSeq Stranded Total RNA LT kit (Illumina, Inc., San Diego,
CA, United States). The rRNA depleted RNA was fragmented and
reversed transcribed using random hexamers and Superscript II
reverse transcriptase (Invitrogen, Carlsbad, CA, United States)
followed by second strand synthesis. The fragmented cDNA
was treated with end-pair, A-tailing, adapter ligation, and eight
cycles of PCR. The prepared libraries were quantified using a
KAPA Library Quantification kit (Kapa Biosystems, Wilmington,
MA, United States) and run on a LightCycler 480 real-time
PCR instrument (Roche Diagnostics Corp., Indianapolis, IN,
United States). The quantified libraries were then multiplexed
with other libraries, and the pool of libraries was then prepared
for sequencing on the Illumina HiSeq sequencing platform
utilizing a HiSeq Cluster kit, v4 (IlluminaTM), and Illumina’s
cBot instrument to generate a clustered flow cell for sequencing.
Sequencing of the flow cell was performed on the Illumina
HiSeq2500 sequencer using a TruSeq SBS sequencing kit, v4,
following a 2 × 150 indexed run recipe (Mavromatis et al., 2009).
Metatranscriptomes obtained were accessed and downloaded
through the Integrated Microbial Genomes platform (IMG)
developed by U.S. DOE Joint Genome Institute (JGI) (Markowitz
et al., 2012, 2014) and the JGI genome portals (Nordberg
et al., 2014). Raw unassembled metagenomic sequence data were
uploaded to the online server MG-RAST (Meyer et al., 2008) for
assembly attribute data, phylogenetic, and functional analysis.

Bioinformatics and Statistical Analysis
Analyses and visualization of data were performed using CLC
Genomics Workbench v 12.0.2 (Qiagen CLC Bio). Sequences
were imported utilizing the Illumina High-Throughput
Sequencing Import function. Low-quality reads and failed reads
were automatically removed. The reads were trimmed with a
quality limit of 0.05 and an ambiguous base limit of 2. Automatic
read-through adapter trimming was performed. RNA-Seq
Analysis was performed using the raw reads of the seven diel
transcriptomes against the following genomes: M. aeruginosa
LE3 from Lake Erie (Brittain et al., 2000; Meyer et al., 2017),
Synechococcus elongatus PCC 6301, Sulfurimonas denitrificans
DSM 1251, Desulfovibrio magneticus RS-1, Anabaena cylindrica
PCC 7122, Aphanizomenon flos-aquae NIES-81, Klebsiella
pneumoniae 1158, and Burkholderia pseudomallei K96243,
and an annotated genome of Planktothrix agardhii from

Lake Erie obtained from Greg Dick at the University of
Michigan. RNASeq parameters were: one reference sequence
per transcript, mismatch cost of 2, insertion cost of 3, deletion
cost of 3, length fraction of 0.8, similarity fraction of 0.8. Data
output of expression values were calculated as Transcripts
Per Million mapped reads (TPM) through RNA-Seq function
to normalize within each sample and manually normalized
across all samples with a ratio to the housekeeping gene
gyrB TPM.

Principal Component Analysis (PCA) was performed using
the CLC Genomics Workbench (Qiagen CLC Bio) to assess
relationships between diel samples with regards to expression.
TPM gene expression plots were created in R 3.5.1 (R Core
Team, 2018) using the packages tidyr 0.8.2 (Wickham and Henry,
2018) and ggplot2 v3.1.0 (Wickham, 2016). Raw sequences are
available from the NCBI sequence read archive under SRP117911,
SRP117914, SRP117915, SRP117922, SRP128942, SRP128945,
and SRP128954.

RESULTS

Survey Physico-Chemical Properties
The bloom tracked a southwesterly course traveling nearly
2 km over the 48-h survey in late August (Figure 1).
Whereas winds originated from S/SW leading up to buoy
deployment and initial bloom tracking, wind direction
switched in the early morning of August 27 and remained
E/NE with daily averages of 5–6 knots for the remainder
of the survey (weather data from KPCW: Erie-Ottawa
International Airport; KTDZ: Toledo Executive Airport).
Western Lake Erie is shallow (Zmean = 7.4 m) and characterized
as polymictic. Whereas buoyancy afforded by gas vesicles
helped to maintain Microcystis colonies near the surface,
wind gusts up to nine knots over the course of the survey
likely promoted mixing as was predicted using a Lagrangian
particle tracking model (Rowe et al., 2016) applied to the
same geographic area preceding the early August 2014 cHAB
at the Toledo water intake (Steffen et al., 2017). Increases
in chl a biomass of 75% and more than a doubling of
phycocyanin (PC) indicated that cyanobacterial biomass
was increasing over the survey (Figure 2). Molar ratios of
dissolved inorganic nitrogen to dissolved inorganic phosphorus
(DIN:DIP) showed only minor variation around Redfield
stoichiometry (N:P = 16:1; dashed line) during the first
18 h of sampling (Figure 2). The system then shifted to
P-deficiency (N:P ∼ 40–60) during day 2 of the survey.
Particulate microcystins, were initially between 1 and 2 µg
L−1, but reached as high as 5 µg L−1 toward the end of the
survey (Figure 2). Archived weather reports from KPCW
and KTDZ confirmed skies to be clear leading up to the
start of the survey and switching to variable cloud cover
during the morning hours of day 21. Irradiance both days
were similar (Supplementary Figure S1), yielding maximum
PAR at the nearby Toledo intake crib of 1542 µmol quanta

1https://flightaware.com/live/airport/KPCW/weather
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FIGURE 2 | Physico-chemical water data over the course of the 48-h Lagrangian study. (A) Photopigment and microcystin toxin concentrations; (B) dissolved
inorganic nitrogen and phosphorus ratios.

m−2s−1 on August 27 and 1573 µmol quanta m−2s−1

on August 282.

Phylogenetic Classification of
Transcripts
Seven metatranscriptomes were produced from the Western
Lake Erie water samples (1.97 Gbp assembled) with read counts
ranging from 109,124 to 570,660 per sample. rRNA accounted for
∼1% of the assembled metatranscriptomes. Fifty seven percent
of the mRNA was annotated as encoding known proteins, the

2http://lees.geo.msu.edu/research/sensor_net.html

remaining ∼40% encoded unknown proteins. Of the predicted
proteins, ∼70% were assigned to functional categories. Less than
5% of reads (per transcriptome) failed quality control tests.

Taxonomic analysis derived from MG-RAST showed reads
dominated by Bacteria (∼70% of all reads) and Eukaryota
(∼30%). Archaea and viral reads represented <1% of all
transcripts. Of the Bacteria reads, Cyanobacteria (22–35%),
Proteobacteria (16–37%), and Bacteroidetes (17–40%) were
prominently represented in each metatranscriptome (Figure 3).
The Bacteroidetes were dominated by the classes Cytophagia
(∼30% of Bacteroidetes reads), Flavobacteria (∼30%), and
Sphingobacteria (∼25%), whereas β-Proteobacteria were the
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FIGURE 3 | Phylogenetic breakdown of transcripts over the course of the 48-h sampling period – community composition by phyla. “Other” refers to bacterial reads
that could not be unambiguously assigned to a phylum.

most abundant proteobacterial reads (∼40%) followed by
α-Proteobacteria (∼30%), γ-Proteobacteria (∼15%), and δ-
Proteobacteria (Figure 4). Of the Cyanobacteria, ∼65% were
order Chroococcales. Microcystis was the dominant genus,
contributing half of the Chroococcales population. Classes
Nostocales and Oscillatoriales contributed one-third of the
Cyanobacteria, namely genera Nostoc and Dolichospermum
within the Nostocales.

Differential Relative Abundance of
Microcystis spp. Transcripts
The microcystin toxin-producing Microcystis LE3 genome
isolated from Lake Erie was recruited to annotate
metatranscriptomes to increase transcript coverage compared

to publicly available Microcystis genomes currently available
in the National Center for Biotechnology Information
(GenBank assembly accession numbers GCA_000010625.1,
GCA_000981785.2, GCA_001704955.2, GCA_002095975.1).
PCA of differential expression and transcript abundance
partitioned the seven transcriptomes into two general day
and night groups (Figure 5). Variability within the day and
night sample groups likely reflect day-to-day and hour-by-hour
changes in nutrient and light availability, resulting in changes in
gene expression patterns.

Highly Transcribed Genes
Supplementary Table S1 summarizes the most transcripts at each
time point. In all samples, tmRNA transcripts were uniformly
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FIGURE 4 | Abundances of Proteobacteria (A) and Cyanobacteria (B) reads
by order and Bacteroidetes reads (C) by class.

the most abundant, indicating active mechanisms were in place
ensuring translational fidelity (Takada et al., 2002). Whereas
many of the highly transcribed genes encoded gene products
of unknown function, gas vesicle genes (gvp) were highly
transcribed at all time points, and high light inducible (hli)
and psbA transcripts were abundant by day, reflecting their
role in Photoprotection, turnover and repair of Photosystem II
(Kulkarni and Golden, 1994; Hutin et al., 2003). Genes encoding
Hsp20 were highly transcribed by day and phycobilisome
transcripts (cpcAB) were abundant in night samples.

Photosynthesis – Light Reactions
Gene transcripts associated with antenna function, Photosystems
I and II (PSI, PSII) and the cytochrome b6/f complex were
assessed and revealed that relative abundance of phycobilisome
(cpc, apc) and PSI (psaA-L) transcripts compared to gyrB

increased primarily at night (Figures 6A,B,E). Conversely,
PSII (psb), b6/f complex (petA-D), ferredoxin and plastocyanin
(petEFH) transcript abundance increased by day, yielding
maximum relative abundance at 10:00 h (Figures 6C,D,F).
psbA, encoding the PSII D1 protein, was analyzed separately
due to its very high relative daytime expression due to high
rates of DI protein turnover (Supplementary Table S1), and
psbA expression matched the daytime pattern of other PSII-
associated genes.

Photosynthesis – Ci Assimilation
Genes associated with Rubisco (rbcLSX) showed higher relative
transcript abundance at night (04:00 h) during the first day of
sampling and a pronounced minimum by the next afternoon
(16:00 h), but during Day 2, the pattern was less distinct, as
relative transcript abundance proceeded throughout the daytime
hours (Figure 7). bicA transcripts were detected at low levels
during the day, but with an inconsistent pattern from Day 1 to
Day 2 that may reflect variation in bicarbonate availability.

Nutrient Acquisition
In general, transcription of nutrient acquisition functions
was more active during the daytime hours. Genes encoding
functions associated with N acquisition and N-responsive gene
regulation yielded different patterns of transcript abundance.
Whereas transcripts associated with the GS-GOGAT pathway
and ammonium uptake (amt, glnAN, glsE, gltBD, icd) had
a peak relative abundance in the afternoon (16:00 h), urea
transporters and urease showed a more variable pattern and
comparatively low relative expression throughout the two day
period (Figures 8A,C,E). Relative transcript abundance for genes
encoding nitrate and nitrite reduction also followed a daytime
pattern, peaking at 16:00 h on Day 1 (Figure 8B). By contrast,
transcripts detected associated with phosphorus acquisition and
uptake (pho, pst) exhibited no clear diel pattern (Figure 8D).

Cell Division
Relative abundance of transcripts encoding the septation ring
protein FtsZ and cell division function FtsH peak during
the day on both days, indicating that cell division likely
followed later during the daytime hours (Figure 9). Proxy
measurements for bloom biomass suggested that the bloom was
expanding at the time of the sampling (Figure 2), and the
pattern of fts transcription reflects active growth of Microcystis
during this time.

Microcystin Synthesis and Stress
Responses
Relative expression of the mcy genes was very low and was
elevated only during the afternoon of Day 2. Microcystin
measured during the course of the sampling show a pattern of
increased toxin, trending toward highest concentrations during
morning of the second day (Figure 10).

Stress response genes examined included those involved in
heat shock (groEL, dnaK), phycobilisome stability (nblA) and
high light stress (hliA). Unsurprisingly, given increased daytime
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FIGURE 5 | Principal Component Analysis (PCA) of transcripts obtained from each time point during the study.

temperature, photosynthetic oxygen production and daytime
irradiance, all genes showed increased relative transcription at
10:00 h and 16:00 h (Figure 11).

DISCUSSION

Metatranscriptomes spanning two diel cycles were produced
from a toxic cyanobacterial bloom in western Lake Erie during
late August 2014. The survey described here coincided with a
mid-bloom phase with the bloom persisting through October
(Steffen et al., 2017). A Lagrangian approach was adopted to
ensure that a common patch of biomass was sampled over the
48-h experiment. In this way, changes in relative abundance
of transcripts could be attributed to either diel patterns or
changing physico-chemical conditions but not to sampling of
different bloom populations. Taxonomic analysis of recruited
transcripts showed Microcystis spp. to dominate cyanobacterial
reads during the survey consistent with independent surveys of
the western basin conducted during August 2014 (Berry et al.,
2017; Steffen et al., 2017).

Cyanobacteria are known to regulate gene expression under
circadian influences (Golden et al., 1997). The intent of this
study was to identify cellular processes within a Microcystis

bloom that show diel patterns of expression. PCA of Microcystis
transcriptomes revealed grouping of samples based upon time
of collection (i.e., “day” and “night”). Variability amongst day
samples as shown by PCA (Figure 5) suggested circadian rhythms
were not the sole determiner of expression, rather transient
environmental changes may have contributed to differing
transcript accumulation. A summary of transcriptional activity
throughout the diel cycle is presented in Figure 12.

Reflecting the demands of a phototrophic lifestyle,
photosynthesis-related functions for the dark and light reactions
were detected at all time points. Photosynthesis functions
appear to partition so that PSII-dependent O2 evolution peaks
in mid-afternoon, as has been observed in laboratory studies
(Garczarek et al., 2001; Mackenzie and Morse, 2011). Expression
of genes involved in the cyt b6/f complex follow this same
pattern. However, PSI genes were preferentially expressed at
night, peaking at 22:00 h. Given the variability of the timing
of PSI gene expression in N-fixing cyanobacteria (del Carmen
Muñoz-Marin et al., 2019), and that degradation of PSI occurs
during the night in Crocosphaera watsonii WH8501 (Masuda
et al., 2018), nighttime expression of psa genes in Microcystis may
be a genus-specific trait.

Consistent with modest nitrogen depletion during the first
18 h as revealed by nutrient stoichiometry, expression of
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FIGURE 6 | Diel transcriptional patterns of Microcystis photosynthesis genes. (A,B) Phycobilisome subunits; (C) Photosystem II; (D) cytochrome b6/f ; (E),
Photosystem I; (F), ferredoxin and plastocyanin. Gray shading indicates time periods between sunset and sunrise.

FIGURE 7 | Diel transcriptional patterns of Microcystis inorganic carbon acquisition genes. Gray shading indicates time periods between sunset and sunrise.

nitrogen assimilation genes was detected, as has been reported
previously for western Lake Erie (Harke and Gobler, 2013,
2015; Steffen M. et al., 2014; Steffen et al., 2017). In the
present survey, expression of nitrogen metabolism genes may

reflect both transient nitrogen availability as well as circadian
control. Indeed, elevated transcript abundance for glnA at
the conclusion of sampling on Day 2 (16:00 h) may suggest
environmental stresses resulting in reduced N bioavailability
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FIGURE 8 | Transcriptional patterns of Microcystis nutrient assimilation genes. (A) GS-GOGAT pathway; (B) nitrite reductase; (C) N regulation genes; (D)
phosphorus assimilation; (E) urea assimilation. Gray shading indicates time periods between sunset and sunrise.

FIGURE 9 | Transcriptional patterns of Microcystis cell division genes ftsH and ftsZ. Gray shading indicates time periods between sunset and sunrise.

(Figure 8). However, the increasing DIN/DIP ratio over the
course of the survey indicated a greater demand for P. Transcripts
related to nitrogen assimilation that accumulated during the day
included narB and nirA (encoding nitrate and nitrite reductase)

and glnA (encoding glutamine synthetase), indicating active
mechanisms of nitrogen assimilation and synthesis of amino
acids in daylight (Mérida et al., 1991; Kramer et al., 1996;
Marzluf, 1997; Wyman, 1999; Flores and Herrero, 2005). Overall,
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FIGURE 10 | Transcriptional patterns of Microcystis microcystin biosynthesis genes. Gray shading indicates time periods between sunset and sunrise.

FIGURE 11 | Transcriptional patterns of Microcystis stress response genes (heat shock, high light, phycobilisome stability). Gray shading indicates time periods
between sunset and sunrise.

nitrogen metabolism transcripts exhibited increases in relative
abundances during the light period. Since nitrate reduction is an
ATP-dependent process, nitrate assimilation may be regulated by
day so that it is temporally aligned with daytime photosynthetic
energy generation.

Regarding phosphate uptake, Penn et al. (2014) described
highest transcription of alkaline phosphatase (pho) and
phosphate transported (pst) genes during the day in a Microcystis
bloom event, in this study, no such pattern is seen. Such
differences may also be due to transient changes in P availability
during the course of each survey. Indeed, analysis of dissolved
nutrients over the course of the survey revealed a pronounced
shift in dissolved N:P ratio (Figure 2).

Cyanobacteria are known to contain multiple inorganic
carbon uptake genes and pathways, facilitating variable responses
to availability of carbon for photoautotrophic growth (Sandrini
et al., 2014, 2015). A growing concern in bloom formation
and mitigation is the response of cHAB species to increasing
atmospheric CO2 (Verspagen et al., 2014; Visser et al., 2016).
Whereas C fixation genes were preferentially expressed at
night, carbon concentrating mechanism transcripts did not
appear to express distinct diel patterns (data not shown). The
relative transcript abundance of Rubisco genes in the predawn
hours of Day 1 and elevated expression throughout Day 2
is in partial agreement with Wyman (1999) examining rbcL
expression in natural populations of marine Synechococcus, and
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FIGURE 12 | Summary of significant Microcystis functions expressed during the 24 h cycle in the Toledo, 2014 bloom event. Lines of the clock indicate sunrise at
0654 h and sunset at 2016 h on August 26, 2014.

Straub et al. (2011), who documented a decline in rbc expression
during daytime in culture experiments with M. aeruginosa PCC
7806. The data in this study are in some agreement with the
findings of Sandrini et al. (2016) who demonstrated similar
variable diel responses during a bloom event, in which bicA
transcription was also correlated to bicarbonate concentration.

As expected, given environmental changes through the day,
a diel pattern exists regarding transcript abundance for genes
encoding stress and cell division proteins. Synechococcus cells
have shown a specific gating of cell division independent of
the circadian clock in avoidance of peak irradiance exposure
(Mori et al., 1996). In agreement with this observation, relative
transcript abundance for the ATP-binding ftsH and septation
gene ftsZ increased during the morning, suggesting cell division
at midday or in the afternoon (Figure 9). Relative abundance of
the heat shock chaperones dnaK, groEL and high-light inducible
gene hliA all peak during the day (Figure 11), similar to previous
reports (Aoki et al., 1995).

Microcystin biosynthesis gene (mcy) transcript levels were
very low (Figure 10), although transcripts were modestly
higher during Day 2. Other studies have indicated toxin
production to occur early in the night in a tropical bloom
event (Penn et al., 2014) or as a daytime function in a culture

experiment (Straub et al., 2011). Further complicating the issue
is the observation that microcystin production is elevated at
lower temperatures (Peng et al., 2018). Furthermore, previous
studies that have examined the western Lake Erie Microcystis
blooms have shown that toxin concentrations increase and
mcy genes are significantly upregulated when the ambient
communities are experimentally exposed to elevated nitrogen
concentrations and high light, especially during August and
September (Chaffin et al., 2018). Due to the low level of
expression, it remains impossible within our data set to separate
diel and light-driven effects on toxin production from the
subtle effects of minor temperature fluctuations on both toxin
gene transcription and toxin biosynthesis (Peng et al., 2018).
However, what is known is that changes in toxic to non-
toxic Microcystis strain ratios can be significantly influenced by
physiochemical parameters such as nutrients and temperature
(Davis et al., 2009, 2010) and that the shift in the toxic:
non-toxic ratio will likely lead to changes in bloom toxin
concentrations (O’Neil et al., 2012; Gobler et al., 2016). As such,
both changes in gene expression and Microcystis community
composition need to be taken into account when determining the
relationship between the toxin concentration and the molecular
underpinnings of production.

Frontiers in Microbiology | www.frontiersin.org 12 September 2019 | Volume 10 | Article 2081

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02081 September 7, 2019 Time: 15:50 # 13

Davenport et al. Diel Gene Expression in a Microcystis Bloom

Examining the relative transcript abundance for the genes
analyzed in the study reveals a marked increase in relative
transcript abundance for a few genes (e.g., rbcS, rbcX, glnA, mcyA-
J) at the final time point (16:00 h on Day 2). This increase
likely indicated a change in environmental conditions on the
second day. The nutrient profile shifted toward P deficiency on
the 28th (Figure 2), suggesting the onset of modest nutrient
stress, but light stress was likely not a factor given the similar
peak irradiances measured at the Toledo water intake crib
during both days (Supplementary Figure S1). This documented
change in gene expression remains unexplained, but since the
sample passed QA/QC at JGI it was not due to changes in
transcript composition due to rRNA contamination or RNA
degradation (data not shown). High abundance of viral reads
were also not detected.

CONCLUSION

Lake Erie experiences annual cHAB events, and these events
will continue as eutrophication intensifies (Watson et al., 1997;
Michalak et al., 2013). In light of concerns over the safety
of water resources and human health, there is an urgent
need to elucidate the factors influencing cHAB formation,
proliferation, and maintenance, to better inform prevention and
mitigation strategies. Toward this goal, the present study used a
metatranscriptomic approach to investigate metabolic function
of a Lake Erie Microcystis bloom over diel cycles. Lab studies
have found the genomes of Microcystis to be highly plastic and
adaptable to the environment, increasing their competitive ability
(Meyer et al., 2017). Previous investigations report the presence
of circadian regulation of gene expression in cyanobacteria
(Kondo et al., 1993; Golden et al., 1997). The circadian clock
has been shown to enhance the fitness of the species within the
microbial community. Paired with a highly adaptive genome,
Microcystis has the potential to be very successful. Our analysis
indicates that Lake Erie Microcystis likely utilizes efficient
organization of gene expression to maintain productivity, such
as utilization of a variety of nutrient species throughout a diel
cycle (CO2, bicarbonate, nitrate, ammonium), cell division and,
if a toxic genotype, the production of microcystins. Our results
suggest that although diel patterns are detectable, environmental
cues also influence regulation, as supported by PCA analysis.
The next step of this analysis is to study the metabolism of the
global microbial community. In doing so, those results paired
with this analysis of Microcystis spp. will provide insights into
factors leading to the natural mitigation of a bloom, and how
the surrounding consortium of heterotrophs and phages interact
and influence both cHAB success and decline. Indeed, a role
for Microcystis phage infection was suggested in constraining
this same bloom 3 weeks earlier in Lake Erie, yielding shifts in
microcystin toxin from an intracellular particulate fraction to
the soluble phase (Steffen et al., 2017). Conversely, recent work
invokes the Black Queen Hypothesis (Morris et al., 2012) in
demonstrating a role for catalase produced by bloom-associated
heterotrophs in protecting Microcystis from oxidative stress thus
promoting bloom success (Greg Dick, personal communication).
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