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West Nile virus (WNV), a neurotropic flavivirus, is the leading cause of viral encephalitis in 
the United States. Recently, Zika virus (ZIKV) infections have caused serious neurological 
diseases and birth defects, specifically Guillain-Barrè syndrome and microcephaly. Z-DNA 
binding protein 1 (ZBP1) is a cytoplasmic sensor that that has been shown to play a 
significant role in initiating a robust immune response. We previously reported that WNV 
and ZIKV infections induce dramatic up-regulation of ZBP1 in mouse brains as well as in 
infected primary mouse cells. Herein, we show the critical role of ZBP1 in restricting the 
pathogenesis of WNV and ZIKV infections. Deletion of ZBP1 resulted in significantly higher 
morbidity and mortality after infection with a pathogenic WNV NY99 strain in mice. No 
mortality was observed in wild-type (WT) mice infected with the non-pathogenic WNV 
strain, Eg101. Interestingly, infection of ZBP1−/− mice with WNV Eg101 was lethal resulting 
in 100% mortality, suggesting that ZBP1 is required for survival after WNV infection. Viremia 
and brain viral load were significantly higher in ZBP1−/− mice compared to WT mice. In 
addition, protein levels of interferon (IFN)-α, and inflammatory cytokines and chemokines 
were significantly higher in the serum and brains of infected ZBP1−/− mice compared to 
the WT mice. Primary mouse cortical neurons and mouse embryonic fibroblasts (MEFs) 
derived from ZBP1−/− mice produced higher virus titers compared to WT cells after infection 
with WNV NY99 and WNV Eg101. Similarly, neurons and MEFs lacking ZBP1 exhibited 
significantly enhanced replication of PRVABC59 (Asian) and MR766 (African) ZIKV 
compared to WT cells. The knockout of ZBP1 function in MEFs inhibited ZBP1-dependent 
virus-induced cell death. In conclusion, these data reveal that ZBP1 restricts WNV and 
ZIKV production in mouse cells and is required for survival of a peripheral WNV infection 
in mice.

Keywords: West Nile virus, flavivirus, Zika virus, Z-DNA-binding protein 1, DNA-dependent activator of 
IFN-regulatory factors, host-pathogen interaction, virus replication

INTRODUCTION

Members of the genus flavivirus are the most important arthropod-borne viruses causing 
disease in humans. West Nile virus (WNV) is a neurotropic flavivirus that infects humans, 
birds, and horses resulting in complex neurological sequelae (Brinton, 2013). WNV infection 
in humans is usually asymptomatic, but can cause severe neurological disease including meningitis, 
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encephalitis, paralysis, and death (Brinton, 2013; Donadieu 
et  al., 2013). Zika virus (ZIKV) infection can cause fever, 
headache, fatigue, and neurological symptoms. ZIKV infection 
is also associated with microcephaly in newborns and Guillain-
Barré syndrome in adults (Coyne and Lazear, 2016; Costa and 
Ko, 2018; Hygino da Cruz et  al., 2018; Mehta et  al., 2018; 
Rothan et  al., 2018a,b). No anti-viral drugs currently exist for 
treating patients infected with WNV or ZIKV infection.

Z-DNA binding protein 1 (ZBP1), also called DAI, is one 
of the cytoplasmic DNA sensors that has been shown to play 
a significant role in initiating a robust immune response (Schwartz 
et  al., 2001; Ha et  al., 2006; Takaoka et  al., 2007; Wang et  al., 
2008). Recent reports demonstrate that ZBP1 senses accumulation 
of RNA rather than DNA to initiate receptor-interacting protein 
homotypic interaction motif (RHIM)-dependent activation of 
receptor-interacting kinase-3 (RIPK3)-dependent necroptosis 
during HSV-1, murine cytomegalovirus virus (MCMV), influenza 
virus, and vaccinia virus infections (Kim et  al., 2003; Upton 
et  al., 2012; Pham et  al., 2013; Wang et  al., 2014; Kuriakose 
et  al., 2016; Thapa et  al., 2016; Kesavardhana et  al., 2017; 
Koehler et al., 2017). Necroptosis is a form of cell death triggered 
by RIPK3 phosphorylation that activates the pseudo-kinase 
MLKL, which upon oligomerization ruptures the plasma 
membrane, leading to cell death (Wallach et  al., 2016). Thus, 
necroptosis represents a host defense mechanism that combats 
virus replication in host tissues (Orozco and Oberst, 2017). In 
addition, recent work has implicated additional roles for ZBP1 
and RIPK3  in promoting inflammation, independent of cell 
death (Daniels et  al., 2017, 2019). ZBP1 also regulates NLRP3 
inflammasome-mediated production of IL-1β in response to 
influenza virus infection (Kuriakose et  al., 2016). In addition, 
ZBP1 has been shown to be  involved in interferon (IFN) 
induction in response to HSV-1 (Wang et al., 2008) and human 
CMV infection (DeFilippis et  al., 2010).

We previously reported that WNV and ZIKV infections 
induce dramatic up-regulation of ZBP1  in mouse brains as 
well as in infected primary mouse cells (Kumar et  al., 2016; 
Azouz et  al., 2019). In the present study, we  show the critical 
role of ZBP1 in restricting the pathogenesis of WNV and ZIKV 
infections. The ZBP1−/− mice exhibited higher morbidity and 
mortality after infection with lethal and non-lethal WNV strains 
compared to wild-type (WT) mice. Primary neuronal cultures 
and mouse embryonic fibroblasts (MEFs) lacking ZBP1 produced 
higher virus titers after infection with WNV and ZIKV compared 
to cells derived from WT mice. Collectively, these data provide 
the first evidence of the requirement for ZBP1 to restrict WNV 
and ZIKV production and demonstrate that ZBP1-dependent 
signaling is required to effectively control WNV infection in mice.

MATERIALS AND METHODS

Animals
Wild-type (WT) C57BL/6J mice were purchased from the Jackson 
Laboratory (Bar Harbor, ME), and ZBP1−/− mice (nbio155) were 
obtained from the JCRB Laboratory Animal Resource Bank of 
the National Institutes of Biomedical Innovation, Health and 

Nutrition (Osaka, Japan). All mice were bred and genotyped in 
the animal facility at Georgia State University. The WNV infection 
experiments were conducted in the animal biosafety level-3 
laboratory. This study was carried out following the guidelines 
of the National Institutes of Health and the Institutional Animal 
Care and Use Committee (IACUC). The protocol was approved 
by the Georgia State University IACUC (Protocol number A19006).

Animal Infection Experiments and  
Plaque Assay
Eight-week-old WT and ZBP1−/− mice were inoculated 
subcutaneously with 100 plaque-forming units (PFU) of WNV 
NY99, or 1,000 PFU of WNV Eg101, and the disease symptoms  
were observed twice daily (Kumar et al., 2013, 2014a,b; Krause 
et  al., 2019). On specific days after inoculation, blood was 
collected from the tail vein, and serum was separated. In 
independent experiments, mice were inoculated with PBS (Mock) 
or WNV NY99 or WNV Eg101 subcutaneously, and on day 
8 after inoculation, mice were anesthetized, extensively perfused 
with PBS, and the brains were harvested. WNV titers in the 
serum and brain homogenates were measured by plaque assay 
as described previously (Krause et  al., 2019).

West Nile Virus and Zika Virus Infection of 
Neuronal Cultures and Mouse Embryonic 
Fibroblast
Mouse cortical neuron cultures and mouse embryonic fibroblasts 
(MEFs) were prepared from 1-day-old pups obtained from 
established colonies of C57/B6J WT and ZBP1−/− mice as 
described previously (Durkin et  al., 2013; Forest et  al., 2018; 
Azouz et  al., 2019). The neurons were plated onto poly-D-
lysine-coated 6-well or 24-well plates in serum Neurobasal-A 
medium (Gibco). The cultures were maintained in serum-free 
Neurobasal A medium supplemented with B27 (Gibco) for 
7 days prior to infection. MEFs were grown in DMEM (Gibco) 
supplemented with 10% heat-inactivated fetal bovine serum 
and 10  μg/ml gentamicin (Gibco).

Primary neuronal cultures were infected with WNV NY99 
at a multiplicity of infection (MOI) of 0.01 and MEFs were 
infected at a MOI of 1. Both primary neuronal cultures and 
MEFs were infected with WNV Eg101 at a MOI of 1. For 
ZIKV infection experiments, neuronal cultures and MEFs were 
infected at a MOI of 1 with a ZIKV strain, PRVABC59 (Asian 
strain) or MR766 (prototype African strain). After infection, 
supernatants and cell lysates were harvested at 24, 48, and 
72  h after infection. Virus titers were measured in cell 
supernatants by plaque assay (Kumar et  al., 2013; Kim et  al., 
2018; Azouz et  al., 2019).

Enzyme-Linked Immunosorbent Assay and 
Multiplex Immunoassay
Protein levels of IFN-α were measured in the serum and brain 
homogenates using the VeriKine™ Mouse Interferon-α enzyme-
linked immunosorbent assay (ELISA) Kit (PBL Interferon 
Source) as described previously (Kumar et al., 2012). Multiplex 
immunoassay kit (MILLIPLEX MAP Mouse Cytokine/Chemokine 
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Kit, Millipore) was used to measure protein levels of inflammatory 
cytokines and chemokines in the serum (Kumar et  al., 2012).

Quantitative Reverse Transcription-
Polymerase Chain Reaction
Virus RNA levels were analyzed in the mouse brains and 
primary mouse cultures by quantitative reverse transcription-
polymerase chain reaction (qRT-PCR). Briefly, total RNA was 
extracted from homogenized mice brains or cell lysates using 
a RNeasy Mini Kit (Qiagen) and a iScript™ cDNA Synthesis 
Kit (Bio-Rad) was used to prepare cDNA samples. Quantitative 
RT-PCR was used to measure viral RNA levels using primers 
and probes specific for the WNV or ZIKV as described previously 
(Kumar et  al., 2013, 2017).

Cell Viability Assay
Neuronal cultures and MEFs seeded in 96-well plates (1  ×  104 
cells/well) were mock-infected with PBS or infected with WNV 
NY99. Neuronal cultures were infected at a MOI of 0.01, while 
MEFs were infected at a MOI of 1. Cell viability was assessed 
at days 1–3 after infection using a CellTiter 96AQueous One 
Solution Cell Proliferation Assay (Promega) as described 
previously (Kumar et  al., 2010).

Statistical Analysis
GraphPad Prism 7.0 was used to perform a Kaplan Meier 
log-rank test to compare survival curves. Unpaired Student’s 

t-test using GraphPad was used to calculate values of p for the 
clinical scores and plaque assay titers in mouse brains and serum. 
For plaque assay titers in cell culture supernatants and intracellular 
viral RNA copies in the cell lysates, two-way analysis of variance 
(ANOVA) with the post hoc Bonferroni test was used to calculate 
values of p. Differences with p’s of <0.05 were considered significant.

RESULTS

Z-DNA-Binding Protein 1 Signaling 
Controls West Nile Virus Pathogenesis in 
Mice Following Peripheral Infection
To determine the role of ZBP1  in WNV pathogenesis, 
we  evaluated morbidity of WT and ZBP1−/− mice after WNV 
infection. Mice were inoculated subcutaneously with either the 
lethal WNV, strain NY99 (100 PFU) or the non-lethal WNV, 
strain Eg101 (1,000 PFU). While the infectious dose of 100 
PFU of WNV NY99 (Figure  1A) resulted in 40% mortality 
in WT mice, mortality in ZBP1−/− mice was 100%. The median 
survival time of infected ZBP1−/− mice was also shorter than 
in the WT mice. As expected, no mortality was observed in 
WT mice infected with 1,000 PFU of WNV Eg101 (Figure 1B). 
Interestingly, infection of ZBP1−/− mice with WNV Eg101 was 
highly lethal and resulted in 100% mortality. The median 
survival times observed in WNV Eg101-infected ZBP1−/− mice 
was similar to the WNV NY99-infected ZBP1−/− mice.

A

C

B

D

FIGURE 1 | Analysis of survival and clinical score in WT and ZBP1−/− mice following WNV infection. WT and ZBP1−/− mice were inoculated subcutaneously via 
footpad with (A) WNV NY99 (100 PFU) or (B) WNV Eg101 (1,000 PFU). The difference in the survival of WT and ZBP−/− mice was statistically significant for both WNV 
NY99 and WNV Eg101 (n = 12–22 mice per group). (C,D) Animals were monitored twice daily for clinical signs. The designation for the clinical scores is as follows: 1, 
ruffled fur/hunched back; 2, paresis/difficulty walking; 3, paralysis; 4, moribund/euthanized; and 5, dead. Error bars represent SEM, *p < 0.05, **p < 0.001.
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All ZBP1−/− mice developed severe neurological signs after 
inoculation with WNV NY99 or WNV Eg101 (Figures 1C,D). 
These clinical signs include ruffled fur, hunchbacked posture, 
paralysis, tremors, and ataxic gait. WT mice infected with 
WNV NY99 developed moderate clinical signs while the WT 
mice infected with Eg101 demonstrated no significant clinical 
signs. The observation of high morbidity and mortality in 
ZBP1−/− mice inoculated with WNV Eg101 suggested that ZBP1 
is required for survival after WNV infection in mice.

Z-DNA-Binding Protein 1 Is Required for 
Control of West Nile Virus Load in the 
Periphery and Brain
We next measured the viral titers in the serum of WT and 
ZBP1−/− mice at different time-points after subcutaneous WNV 
NY99 or WNV Eg101 infection. The WNV replication kinetics 
in the serum of WT and ZBP1−/− mice as measured by plaque 
assay demonstrated higher viremia in ZBP1−/− mice. WNV 
titers were significantly higher in ZBP1−/− mice as compared 
to WT mice at day 3 after WNV NY99 (Figure  2A) or WNV 
Eg101 infection (Figure  2B). At day 6 post-infection, WNV 
levels decreased in WT mice, while they remained significantly 
high in ZBP1−/− mice infected with WNV NY99.

In separate experiments, mice were inoculated with WNV 
NY99 or WNV Eg101 subcutaneously, and brains were harvested 
at day 8 after inoculation. It is known that WNV is first 
detected in the mouse brain around day 6 after subcutaneous 

inoculation and peak virus load is observed at day 8 after 
infection. Therefore, we  examined viral load in the brains at 
day 8 after infection. WNV titers in the brain homogenates 
were measured by plaque assay. WNV load in the brains of 
ZBP1−/− mice was significantly higher than the WT mice infected 
with WNV NY99 or WNV Eg101 (Figure 2C). We  next 
measured the WNV RNA copies in the brains of WT and 
ZBP1−/− mice infected subcutaneously with WNV NY99 or 
WNV Eg101. WNV RNA copies in the brains of ZBP1−/− mice 
were significantly higher than the WT mice at day 8 after 
infection with WNV NY99 (Figure  2D). Very low levels of 
WNV RNA were detected in the brains of the WT mice 
infected with WNV Eg101. Nonetheless, significantly higher 
WNV RNA levels were detected in the brains of ZBP1−/− mice 
at day 8 after infection (Figure  2D). These data suggest that 
ZBP1-dependent signaling plays a significant role in controlling 
WNV load in both the periphery and in the brain.

Anti-Viral Immune Responses in Wild-Type 
and ZBP1−/− Mice
IFN-α is essential for the WNV clearance from the periphery 
and in the brain (Suthar et  al., 2013). ZBP1 has also been 
shown to be  involved in IFN induction after virus infection 
(Wang et  al., 2008; DeFilippis et  al., 2010). Therefore, 
we  measured the protein levels of IFN-α in the serum (day 
3 after infection) and brain homogenates (day 8 after infection) 
of WT and ZBP1−/− mice using ELISA. Our data demonstrate 

A B

C D

FIGURE 2 | Analysis of virus titers in WT and ZBP1−/− mice. Virus titers were measured in the serum at days 3 and 6 after (A) WNV NY99 or (B) WNV Eg101 
infection by plaque assay and expressed as PFU/mL. (C) Virus titers were measured in brain homogenates (day 8 after infection with WNV NY99 or WNV Eg101) 
and expressed as PFU/g of tissue. (D) The WNV RNA copy number in the brain was determined by qRT-PCR and expressed as genome copies/μg of RNA (day 8 
after infection with WNV NY99 or WNV Eg101). Each data point represents an individual mouse. The solid horizontal lines signify the median (n = 6–7 mice per 
group). *p < 0.05, **p < 0.001.
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that protein levels of IFN-α in the serum and brain homogenates 
were significantly higher in ZBP1−/− mice compared to the 
WT mice (Figure  3).

Recent work has implicated a role for ZBP1  in promoting 
protective inflammation (Daniels et  al., 2019). It is known 
that WNV infection induces a strong up-regulation of multiple 
cytokines and chemokines. WNV-induced pro-inflammatory 
mediators are also known to protect mice from lethal WNV 

disease (Suthar et  al., 2013). Therefore, we  next assessed the 
protein levels of key cytokines and chemokines in the serum 
using a multiplex immunoassay. Protein levels of key anti-
viral cytokines and chemokines were significantly higher in 
the serum of ZBP1−/− mice compared to the WT mice. The 
protein levels of interleukin (IL)-1α, TNFα, MIG (CXCL9), 
and IP-10 (CXCL10) were significantly higher in ZBP1−/− mice 
compared to the WT mice at day 2 after infection (Figure 4). 

A B

FIGURE 3 | IFN-α levels in the serum and brains of WT and ZBP1−/− mice after infection with WNV NY99 or WNV Eg101. The protein levels of IFN-α were measured in the 
(A) serum and (B) brain homogenates using ELISA. Data represent the mean concentration (pg/ml) ± SEM or (pg/g of tissue) ± SEM (n = 6–7 mice per group). *p < 0.05.

FIGURE 4 | Protein levels of cytokines and chemokines in the serum of WT and ZBP1−/− mice after infection with WNV NY99. Levels of cytokines and chemokines 
were measured in the serum of WNV NY99-infected WT and ZBP1−/− at days 2 and 4 after infection. Data represent the mean concentration (pg/ml) ± SEM (n = 6–7 
mice per group). *p < 0.05.
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The protein levels of IL-5, IL-6, IFNγ, G-CSF, and MCP-1 
(CXCL2) were significantly higher in ZBP1−/− mice compared 
to the WT mice at day 4 after infection (Figure  4). It is 
possible that high virus replication in ZBP1−/− mice resulted 
in a higher inflammatory response. Collectively, these data 
indicate that ZBP1-mediated restriction of peripheral WNV 
infection is independent of IFN-α, and anti-viral cytokines 
and chemokines.

Z-DNA-Binding Protein 1 Restricts West 
Nile Virus and Zika Virus Replication in 
Mouse Cells
To further define the role of ZBP1 during WNV infection, 
we  performed a multistep virus growth analysis in cortical 
neurons and MEFs isolated from WT and ZBP1−/− mice. Cells 
were infected with WNV NY99 or WNV Eg101, and supernatants 
and cell lysates were harvested at 24, 48, and 72 h after infection. 
Virus titers were measured in cell supernatants by plaque assay. 
WNV infection of MEFs and neuronal cultures from ZBP1−/− 
mice resulted in significantly higher virus titers compared to 
those from WT mice (Figure  5). Total RNA was extracted 
from the cell lysates and WNV RNA copies were measured 
using qRT-PCR. Intracellular WNV RNA levels were also 
significantly higher in cell cultures from ZBP1−/− mice compared 
to those from WT mice (Figure  6).

We next examined the role of ZBP1  in ZIKV replication. 
Similar to WNV, MEFs and neuronal cultures from ZBP1−/− 
mice produced significantly enhanced virus yields compared 
to those from WT mice after infection with the Asian or 
African strains of ZIKV (Figure  7). ZIKV RNA levels were 
also significantly higher in cell cultures from ZBP1−/− mice 
compared to those from WT mice (Figure  8). The difference 
in both WNV and ZIKV titers between WT and ZBP1−/− cells 
was consistently more dramatic in MEFs (2–3 logs) compared 
to cortical neurons (1 log). These results correlate with the 
increased virus titers observed in the serum and brains of 
ZBP1−/− mice compared to the WT mice after WNV infection.

Z-DNA-Binding Protein 1-Dependent Cell 
Death in Primary Mouse Cells Following 
Infection With West Nile Virus NY99
MEF and neuronal cultures from WT and ZBP1−/− mice were 
infected with WNV NY99 and cell viability was measured at 
24, 48, and 72  h after infection. Our data demonstrate that 
the cell viability of infected ZBP1−/− MEFs was significantly 
higher than that of the WT MEFs at both 48 and 72  h after 
infection (Figure  9A). However, we  did not observe this trend 
in neuronal cultures as the decrease in WNV-induced cell 
death was similar in both WT and ZBP1−/− neuronal cultures 
(Figure  9B).

A B

C D

FIGURE 5 | Analysis of virus titers produced by primary cells isolated from WT and ZBP1−/− mice. (A–D) MEFs and neuronal cultures were infected with WNV NY99 
or WNV Eg101 (as described in Materials and Methods) and virus titers in the cell culture supernatants were measured by plaque assay. Results are expressed as 
PFU/ml ± SEM from at least three independent experiments conducted in duplicate. *p < 0.05, **p < 0.001.
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A B

C D

FIGURE 6 | Analysis of viral RNA levels in the primary cells isolated from WT and ZBP1−/− mice. (A–D) Cells were infected with WNV NY99 or Eg101 and total RNA 
extracted from cell lysates was used to conduct qRT-PCR to measure WNV RNA (expressed as genome copies/μg of RNA). Error bars represent SEM (three 
independent experiments conducted in duplicate), *p < 0.05, **p < 0.001.

A B

C D

FIGURE 7 | Analysis of ZIKV yields produced by primary mouse cells. (A–D) MEFs and neuronal cultures derived from WT and ZBP1−/− were infected with ZIKV 
MR766 or ZIKV PRVABC59 at a MOI of 1 and virus titers in the cell culture supernatants were measured by plaque assay. Results are expressed as PFU/mL ± SEM 
from at least three independent experiments conducted in duplicate. *p < 0.05, **p < 0.001.
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DISCUSSION

Our data for the first time demonstrate the critical role of 
ZBP1  in restricting WNV-induced pathogenesis in mice. ZBP1 
reduces WNV and ZIKV production in primary mouse cells 
and is crucial for survival in the mouse model of WNV disease.

It is known that WNV Eg101 is largely non-pathogenic in 
adult mice after subcutaneous inoculation (Shirato et  al., 2004; 

Kumar et  al., 2014a). However, adult ZBP1−/− mice exhibited 
100% mortality after subcutaneous inoculation of WNV Eg101. 
These data suggest a critical role for ZBP1  in controlling the 
pathogenic effects of a WNV infection. Viral loads were also 
significantly higher in the serum and brains of WNV-infected 
ZBP1−/− mice compared to those of the WT mice. Several 
previous studies have reported increased virus titers and disease 
severity in ZBP1−/− mice after infection with influenza virus 

A B

C D

FIGURE 8 | ZIKV RNA levels in the MEFs and neurons isolated from WT and ZBP1−/− mice. (A–D) Cells were infected with ZIKV MR766 or ZIKV PRVABC59 at a 
MOI of 1. Total RNA was extracted from cell lysates and ZIKV RNA was measured by qRT-PCR (expressed as genome copies/μg of RNA). Error bars represent SEM 
(three independent experiments conducted in duplicate), *p < 0.05, **p < 0.001.

A B

FIGURE 9 | Assay of primary mouse cell viability following WNV infection. (A) MEFs and (B) neuronal cultures from WT and ZBP1−/− mice were infected with WNV 
NY99. Cell toxicity on days 1, 2, and 3 after infection was evaluated by cell proliferation assay and the percentage of cell viability was calculated by comparing 
values to those from mock-infected cells at the corresponding time points. The data are expressed as the mean ± SEM for two independent experiments conducted 
in triplicate. Error bars represent SEM, *p < 0.05.
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(Kuriakose et  al., 2016; Thapa et  al., 2016), HSV-1 (Guo et  al., 
2018), and MCMV (Upton et  al., 2012; Sridharan et  al., 2017). 
One recent study published while this manuscript was in 
preparation suggests that ZBP1 senses ZIKV infection and 
restricts disease pathogenesis after intracranial inoculation of 
ZIKV in mice (Daniels et  al., 2019). Another study from the 
same group previously reported that neuronal RIPK3 signaling 
is required for survival after subcutaneous WNV infection in 
mice (Daniels et  al., 2017). Our data are in agreement with 
these observations demonstrating that ZBP1 reduces ZIKV 
production in primary mouse cells. However, our data for the 
first time also demonstrate that ZBP1 restricts replication of 
WNV in mouse cells and is required for survival of a peripheral 
WNV infection in mice.

Recent work has implicated a role for ZBP1  in promoting 
protective inflammation. Daniels et  al. reported that ZBP1-
mediated protective neuroinflammation is required for the 
protection against intracranial ZIKV infection (Daniels et  al., 
2019). In the present study, we  showed that high virus titers 
in the serum of ZBP1−/− mice were associated with elevated 
levels of anti-viral cytokines and chemokines after subcutaneous 
infection with WNV. Our results are in agreement with previous 
studies demonstrating high levels of pro-inflammatory cytokines 
and chemokines in ZBP1−/− mice after infection with Toxoplasma 
gondii and influenza virus (Kuriakose et  al., 2016; Pittman 
et  al., 2016). It is known that IFN-α is essential for the WNV 
clearance from the periphery and in the brain (Suthar et  al., 
2013). ZBP1 has also been shown to be  involved in IFN 
induction after virus infection (DeFilippis et  al., 2010). Our 
data demonstrate that protein levels of IFN-α in the serum 
and brain homogenates were significantly higher in ZBP1−/− 
mice compared to the WT mice. Collectively, these data indicate 
that ZBP1-mediated restriction of peripheral WNV infection 
is independent of IFN-α, and anti-viral cytokines 
and chemokines.

One interesting finding of our study was that we  observed 
a dramatic difference in WNV or ZIKV virus replication in 
MEFs in the absence of ZBP1. In contrast, deletion of ZBP1 
resulted in a modest increase in virus replication in neurons. 
In addition, we  found that the viability of ZBP1−/− MEFs 
infected with WNV was significantly higher than that of 
infected WT MEFs. However, the viability of ZBP1−/− neurons 
was similar to that of WT neurons after WNV infection. 
These data are in agreement with previous observations 
demonstrating that ZIKV did not induce ZBP1-dependent 
cell death in primary neuronal cultures (Daniels et  al., 2017, 

2019). However, ZBP1-dependent cell death in virus-infected 
MEFs had never been examined. It is known that activation 
of the ZBP1-RIPK3 pathway requires high levels of ZBP1 
expression and therefore a cell-specific difference in the levels 
of ZBP1 expression may determine the outcome (Guo et  al., 
2018). Interestingly, it has been reported that the expression 
level of ZBP1 is strongly up-regulated in MEFs when stimulated 
with a synthetic DNA and therefore evokes a stronger innate 
immune response (Ishii et  al., 2006). It could be  possible 
that the ZBP1 and RIPK3 activation is more effective in MEFs 
compared to neurons. However, more studies are warranted 
to further understand the cell-specific role of ZBP1  in 
virus replication.

To our knowledge, our study for the first time revealed a 
critical role of ZBP1 during peripheral WNV infection in mice. 
There is need for further mechanistic studies to understand 
how ZBP1 restricts peripheral WNV and ZIKV infection.
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