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Ocular toxoplasmosis (OT) is one of the most common causes of posterior uveitis.
The signaling of triggering receptor expressed on myeloid cells (TREM)-1 amplifies
inflammation, whereas TREM-2 signaling is anti-inflammatory. IL-1β is a major driver of
inflammation during infection. Toll-like receptors (TLRs) play important roles in protective
immune response during Toxoplasma gondii infection, and interleukin (IL)-33 receptor
(T1/ST2) signaling prevents toxoplasmic encephalitis in mice. However, the pathogenic
mechanisms of OT are not yet well elucidated. To investigate the role of TREM-1,
TREM-2, IL-1β, IL-33/ST2, and TLRs in OT of susceptible C57BL/6 (B6) and resistant
BALB/c mice, both strains of mice were intravitreally infected with 500 tachyzoites of
the RH strain of T. gondii. Histopathological analysis showed that T. gondii-infected B6
mice had more severe ocular damage observed by light microscopy, higher number of
neutrophil elastase-positive cells in the eyes detected by immunohistochemical staining,
more T. gondii tachyzoites in the eyes observed by transmission electron microscopy,
and higher mRNA expression levels of tachyzoite-specific surface antigen 1 detected
by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) in
comparison of T. gondii-infected BALB/c mice. Detected by using qRT-PCR, the mRNA
expression levels of TREM-1, IL-1β, IL-33, ST2, TLR11, TLR12, and TLR13 were
significantly higher in the eyes of T. gondii-infected B6 mice than those of T. gondii-
infected BALB/c mice, whereas the mRNA expression levels of TLR3 and TLR9 were
significantly higher in the eyes of T. gondii-infected BALB/c mice than those of T. gondii-
infected B6 mice. Correlation analysis showed that significant positive correlations
existed between TREM-1 and IL-1β/IL-33/ST2/TLR9/TLR11 in the eyes of B6 mice and
existed between TREM-1 and IL-33/ST2/TLR3/TLR9/TLR13 in the eyes of BALB/c mice
after ocular T. gondii infection. Our data revealed that, compared with T. gondii-resistant
BALB/c mice, ocular T. gondii infection can stimulate higher production of TREM-1,
IL-33, ST2, TLR11, TLR12, and TLR13 in the eyes of T. gondii-susceptible B6 mice,
however, whether those lead to more severe ocular pathology in the susceptible B6
mice remain to be further studied.
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INTRODUCTION

Ocular toxoplasmosis (OT) is caused by Toxoplasma gondii
infection, with potentially vision-threatening complications
such as retinal detachment, choroidal neovascularization, and
glaucoma (Park and Nam, 2013; Garweg, 2016), which involves
typically the posterior part of eye but results in different
clinical symptoms based on the involved area and level
of inflammation (Ali-Heydari et al., 2013; Laboudi and
Sadak, 2017). Eye injuries caused by T. gondii infection
affect the retina and the choroid with local inflammatory
reactions (Maenz et al., 2014). Acquired infections may account
for a larger portion of OT than congenital toxoplasmosis
(Atmaca et al., 2004).

It has been reported that genetic factors are major
determinants for susceptibility to infection with T. gondii
(Deckert-Schluter et al., 1994). Our previous study found
that compared with both BALB/c and CBA/J mice, ocular
infection of C57BL/6 (B6) mice with T. gondii resulted in
severe inflammatory lesions and high numbers of parasites in
eye tissue, and higher serum levels of gamma interferon and
tumor necrosis factor alpha (TNFα), indicating that genetic
factors of the host are critical in determining susceptibility
to experimental OT in murine models (Lu et al., 2005). Our
recent study demonstrated that B6 mice expressed higher
levels of Gal-9 and its receptors (Tim-3 and CD137) in
the eye tissues than those in BALB/c mice following ocular
T. gondii infection (Chen et al., 2017). However, so far
genetic factors in the pathogenesis and course of OT still
remain unclear.

The triggering receptor expressed on myeloid cells
(TREM) family including TREM-1, TREM-2, TREM-3,
and TREM-4 have been identified, in which TREM-
1 activation amplifies inflammation, whereas TREM-2
activation is anti-inflammatory (Klesney-Tait et al., 2006;
Turnbull et al., 2006; Watarai et al., 2008). TREM-1 can
trigger the release of proinflammatory cytokines such as
interleukin (IL)-1β, IL-6, and TNFα; crucially amplify both
acute inflammatory responses and chronic inflammation
(Bouchon et al., 2000; Bleharski et al., 2003; Schenk et al.,
2007). TREM-1 works synergistically with toll-like receptors
(TLRs) and Nod-like receptors to increase proinflammatory
reactions (Bouchon et al., 2001; Netea et al., 2006). In
addition, TREM-1 plays critical roles in fungal keratitis and
increases with growing keratomycosis severity (Hu et al.,
2014). TREM-2 promotes host resistance to Pseudomonas
aeruginosa infection by suppressing corneal inflammation
(Sun et al., 2013).

IL-1β is an important inflammation mediator and a
proinflammatory cytokine (Zhang et al., 2018), which is
involved in multiple cellular activities such as cell proliferation,
apoptosis, and differentiation (Zhao et al., 2018). IL-33 is
a member of the IL-1 family and has been identified as a
mediator of various inflammatory diseases such as asthma,
cardiovascular diseases, and allergic diseases (Liew et al.,
2016). ST2 is defined as the IL-33 receptor (Carriere et al.,
2007). It has been reported that ST2/IL-33 signaling implicates

in protection from various infections (Griesenauer and
Paczesny, 2017). When IL-33 receptor (T1/ST2)-deficient
BALB/c mice were infected with T. gondii, they showed
increased pathology and increased parasite transcript levels
in the brain, indicating T1/ST2 signaling is necessary
to prevent the development of toxoplasmic encephalitis
(Jones et al., 2010).

Toll-like receptors play an important role in initiating
immune responses against many pathogens, including T. gondii.
TLR/MyD88 signaling pathway is the key pathway in initiating
defense against T. gondii (Denkers, 2010). TLR2 and TLR4
contribute to the recognition and stimulation of immunity to
T. gondii and participate in the host protection to T. gondii
infection (Mukherjee et al., 2016). TLR3 induces type I interferon
responses via parasite RNA (Beiting et al., 2014). TLR4 and TLR9
single nucleotide polymorphisms are involved in protection
against congenital toxoplasmosis (Wujcicka et al., 2015). Mice
lacking TLR9 significantly reduce intestinal pathology, lose
weight, and live longer than wild-type mice (Minns et al.,
2006). A study has proved a role for TLR9 in initiating
proinflammatory responses that cause severe OT in Brazil
(Peixoto-Rangel et al., 2009). TLR11 can interact with T. gondii
profilin-like protein to elicit immune responses (Hatai et al.,
2016). TLR12 can function alone in plasmacytoid dendritic
cells and interact with TLR11 to specifically recognize and
respond to T. gondii profilin (Koblansky et al., 2013). Quadruple
TLR3/TLR7/TLR9/TLR11 deficient mice showed diminished
resistance to T. gondii infection, indicating they play an
essential role in toxoplasmosis (Andrade et al., 2013). So
far, the role of TREMs and TLRs in OT remains poorly
understood. Therefore, this study intended to investigate
the expression and role of TREM-1, TREM-2, IL-1β, IL-
33, ST2, and TLRs in OT in mouse models on different
genetic backgrounds.

MATERIALS AND METHODS

Mice, T. gondii Parasites, and Intravitreal
Infection
Female B6 and BALB/c mice, 8–10 weeks old, were purchased
from the animal facility at Sun Yat-sen University in
Guangzhou, China. T. gondii RH strain tachyzoites were
maintained in Vero or human foreskin fibroblast cells grown in
Dulbecco’s modified Eagle medium (Invitrogen, Carlsbad, CA,
United States) supplemented with 5% fetal bovine serum at 37◦C
with 5% CO2.

Mice were injected into the mid-vitreous with 1 µL parasite
suspension in sterile phosphate-buffered saline (PBS, pH 7.4)
containing 500 tachyzoites or the same volume of PBS using a
10-µL Hamilton microsyringe (Charles et al., 2007). A total of
24 mice of each strain were used in the experiments: 12 mice of
each strain were intraocularly injected with 500 tachyzoites of
T. gondii and 12 mice of each strain were injected with equal
volume of PBS as negative controls. Mice were euthanized at
day 8 post infection (p.i.), and the eyes were enucleated for
further analysis.
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mRNA Expression Analysis by Using
Quantitative Real-Time Reverse
Transcription-Polymerase Chain
Reaction (qRT-PCR)
Total RNA was extracted from the eyes of each mouse using a
RNA Extraction Kit (TaKaRa Bio Inc., Shiga, Japan) according
to the manufacturer’s protocol. The absorbance values at 260
and 280 nm were used to estimate total RNA purity (NanoDrop
Technologies, DE, United States). For cDNA synthesis, a
PrimeScriptTM II 1st Strand cDNA Synthesis Kit (TaKaRa Bio
Inc.) was used; total amount of RNA used in qRT-PCR for
each sample was 1 µg. To determine tissue mRNA levels
of TREM-1, TREM-2, IL-1β, IL-33, ST2, TLR2, TLR3, TLR4,
TLR5, TLR7, TLR9, TLR11, TLR12, and TLR13, qRT-PCR was
performed using SYBR Green qPCR Master Mix (TaKaRa Bio
Inc.) following the manufacturer’s instructions. For eye parasite
burden, mRNA level of tachyzoite-specific surface antigen 1
(SAG1) was measured by qRT-PCR as previously described (Liu
et al., 2018). All qRT-PCR reactions were performed in duplicate.
Primers used for qRT-PCR are listed in Table 1. The results are
expressed as relative mRNA levels whereby the expression in

naive mice was arbitrarily set at 1 (van der Kraan et al., 2001).
Relative mRNA expressions of each target gene were normalized
to that of the housekeeping gene, β-actin, and the results are
expressed as fold change compared with uninfected controls.

Histopathology
Mice were euthanized at day 8 p.i., and the eyes were harvested,
immediately fixed in 10% neutral buffered formalin for 24 h,
then transferred to 70% ethanol, embedded in paraffin. Four-
micrometer-thick sections of the eyes from each mouse were cut,
processed through graded alcohols. The sections were denitrified
by xylene and rehydrated with graded alcohols (100–70%), and
stained with hematoxylin and eosin (H&E) (Sigma-Aldrich, St.
Louis, MO, United States).

Immunohistochemical Staining for
Neutrophils in the Eyes
For immunohistochemical purposes, after the sections (4-µm)
were deparaffinized and rehydrated in distilled water. Heat-
induced antigen retrieval was performed in citrate buffer in
an 800-W microwave oven for 30 min. Sections were treated

TABLE 1 | Primer sequences of mouse target cytokines and housekeeping gene used for quantitative real-time polymerase chain reaction assays.

Genes Primer sequence (5′→3′) Accession

SAG1 Forward primer ATGTCGCTTCTTAGCCGAGT XM_002365028.1

Reverse primer TCACAGGAAGTTGCTTCAGG

β-actin Forward primer TGGAATCCTGTGGCATCCATGAAAC NM_007393.5

Reverse primer TAAAACGCAGCTCAGTAACAGTCCG

TLR2 Forward primer GCAAACGCTGTTCTGCTCAG NM_011905.3

Reverse primer AGGCGTCTCCCTCTATTGTATT

TLR3 Forward primer GTGAGATACAACGTAGCTGACTG NM_126166.5

Reverse primer TCCTGCATCCAAGATAGCAAGT

TLR4 Forward primer ATGGCATGGCTTACACCACC NM_021297.3

Reverse primer GAGGCCAATTTTGTCTCCACA

TLR5 Forward primer TGGGGACCCAGTATGCTAACT NM_016928.3

Reverse primer CCACAGGAAAACAGCCGAAGT

TLR7 Forward primer ATGTGGACACGGAAGAGACAA NM_133211.4

Reverse primer ACCATCGAAACCCAAAGACTC

TLR9 Forward primer ATGGTTCTCCGTCGAAGGACT NM_031178.2

Reverse primer GAGGCTTCAGCTCACAGGG

TLR11 Forward primer TCCCTGATTGCATCATAGCAGA NM_205819.3

Reverse primer GGGCCGAGGTACAGAATGG

TLR12 Forward primer CCTGGTCTCCCGCTATTTCAC NM_205823.2

Reverse primer CCGAGGTACAACTTCCAAGGT

TLR13 Forward primer GTTGTAACCTGGATGCCTAAGAC NM_205820.1

Reverse primer GGCCTCTGTCAAGTTGGTGA

TREM-1 Forward primer CCTGTTGTGCTCTTCCATCCTG NC_000083.6

Reverse primer CGGGTTGTAGTTGTGTCACTGG

TREM-2 Forward primer CTACCAGTGTCAGAGTCTCCGA NC_000083.6

Reverse primer CCTCGAAACTCGATGACTCCTC

ST2 Forward primer CAAGTAGGACCTGTGTGCCC NC_000067.6

Reverse primer CGTGTCCAACAATTGACCTG

IL-33 Forward primer TCCAACTCCAAGATTTCCCCG NC_000085.6

Reverse primer CATGCAGTAGACATGGCAGAA

IL-1β Forward primer CGCAGCAGCACATCAACAAGAGC NC_000068.7

Reverse primer TGTCCTCATCCTGGAAGGTCCACG

Frontiers in Microbiology | www.frontiersin.org 3 October 2019 | Volume 10 | Article 2264

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02264 October 9, 2019 Time: 12:1 # 4

Zhang et al. TREM-1 and TLRs With OT

with 3% hydrogen peroxide in methanol for 10 min at room
temperature to inactivate endogenous peroxidase, and then
incubated in 5% normal goat serum in PBS (pH 7.4) for
60 min at room temperature to block non-specific binding. After
washing with PBS, sections were incubated with polyclonal anti-
elastase (1:100 dilutions) (Boster Biological Technology, Wuhan,
China) overnight at 4◦C. Negative controls were performed
without a primary antibody. Slides were rinsed three times
with PBS and were then incubated with the secondary antibody
(Goat anti-rabbit IgG) conjugated with horseradish peroxidase
for 20 min. The color reaction was revealed by reacting the
specimen with a 3,3′-diaminobenzidine substrate (Zhongshan
Golden Bridge Technology, Beijing, China). Sections used as
isotype controls were incubated with secondary antibodies
alone. The sections were counterstained with hematoxylin and
positive cells were identified by dark-brown staining under a
light microscope.

Transmission Electron Microscopy
Mice were euthanized at day 8 p.i., and the eyes were dissected,
excising the cornea, iris, lens, and vitreous body, and cut into four
pieces. The samples were immediately fixed in 3% glutaraldehyde
and 1% osmium tetroxide (both in 100 mM PBS, pH 7.2)
overnight before being dehydrated through a series of graded
ethanol solutions. The fixed tissues were then embedded in SPI-
Pon 812 Embedding Kit (Structure Probe Inc., West Chester, PA,
United States) following the manufacture’s instruction. Ultrathin
sections (70 nm) were cut from the embedded tissues using the
Leica EM UC6 ultramicrotome (Leica Microsystems, Wetzlar,
Germany) and mounted on formvar-coated grids. The sections
were then stained for 15 min in aqueous 1% uranyl acetate
followed by 0.2% lead citrate, and were then analyzed under
a JEM100CX-II transmission electron microscope (JEOL Ltd.,
Tokyo, Japan) at an accelerating voltage of 100 kV.

Statistical Analysis
Statistical analysis was performed using IBM SPSS Statistics
version 22.0 (IBM Corp., Armonk, NY, United States). All graphs
were generated using GraphPad Prism 7 software (GraphPad
software). Data are presented as mean± standard deviation (SD)
at least three independent biological replicates. Student’s t test
was used to ascertain the differences between groups. Pearson
correlation testing was used for the associations between the
levels of cytokines. A value of P< 0.05 was considered significant.

RESULTS

Ocular Pathology and Parasite Burden in
the Eyes of B6 and BALB/c Mice Infected
With T. gondii
Histopathological studies showed that the intravitreal inoculation
of tachyzoites of T. gondii in both B6 and BALB/c mice caused
a strong influx of inflammatory cells, thereby destroying and
disrupting the normal structures of retina and choroid as
compared with the control groups. In contrast with BALB/c mice,

B6 mice showed great multiplication of T. gondii tachyzoites with
considerable infiltration of numerous migrating cells in the eye
tissues at day 8 p.i. (Figure 1A). As for the parasite burden in
the eyes with T. gondii infection, there was significantly increased
mRNA expression level of T. gondii tachyzoite SAG1 gene in the
eyes of B6 mice than that in BALB/c mice (P< 0.01) (Figure 1B).
The ultrastructural characterization of T. gondii tachyzoites in
the eyes of B6 and BALB/c mice were captured by means of
transmission electron microscopy. More T. gondii tachyzoites
were observed in the eyes of B6 mice than those in BALB/c
mice (Figure 2).

Neutrophils in the Eyes of
T. gondii-Infected B6 and BALB/c Mice
Neutrophils, a kind of inflammatory cell, were observed in the
eyes of T. gondii-infected mice. Neutrophil elastase is a cytotoxic
serine protease, which is stored in the azurophilic granules of
neutrophil granulocytes and is released by activated neutrophils.
Elastase-positive neutrophils were observed in the destroyed
retina and choroid, especially evident in the choroid area of both
T. gondii-infected B6 and BALB/c mice at day 8 p.i., while they
were not observed in those of uninfected B6 and BALB/c mice
(Figure 3A). The quantitative analysis showed that compared
with T. gondii-infected BALB/c mice, the number of neutrophils
was significantly higher in the eyes of T. gondii-infected B6 mice
(P < 0.001) (Figure 3B).

Expressions of TREM-1, TREM-2, IL-1β,
IL-33, and ST2 Genes in the Eyes of
T. gondii-Infected B6 and BALB/c Mice
Compared with naive mice, the mRNA expression levels of
TREM-1 (P< 0.01 and P< 0.001, respectively), IL-33 (P< 0.01),
and ST2 (P < 0.001) were significantly increased in the
eyes of both T. gondii-infected B6 and BALB/c mice, while
IL-1β expression level was significantly increased in that of
T. gondii-infected B6 mice at day 8 p.i. (P < 0.001). There was
insignificant difference in TREM-2 expression levels between
T. gondii-infected mice and naive mice. Compared withT. gondii-
infected BALB/c mice, the levels of TREM-1 (P < 0.001),
IL-1β (P < 0.001), IL-33 (P < 0.01), and ST2 (P < 0.001)
were significantly increased in the eyes of T. gondii-infected B6
mice (Figure 4).

Expressions of TLR Genes in the Eyes of
T. gondii-Infected B6 and BALB/c Mice
Compared with uninfected control mice, the expression levels of
TLR2, TLR4, TLR5, TLR7, TLR9, TLR11, TLR12, and TLR13 in
the eyes of both T. gondii-infected B6 and BALB/c mice were
significantly increased at day 8 p.i. (Figure 5). Compared with
T. gondii-infected BALB/c mice, the levels of TLR9 (P < 0.001),
TLR11 (P < 0.001), TLR12 (P < 0.001), and TLR13 (P < 0.01)
were significantly increased in the eyes of T. gondii-infected B6
mice at day 8 p.i. However, there were significantly elevated levels
of TLR3 and TLR9 in the eyes of T. gondii-infected BALB/c mice
(P < 0.05) compared with T. gondii-infected B6 mice.

Frontiers in Microbiology | www.frontiersin.org 4 October 2019 | Volume 10 | Article 2264

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02264 October 9, 2019 Time: 12:1 # 5

Zhang et al. TREM-1 and TLRs With OT

FIGURE 1 | Histological changes (A) and parasite burden (B) in the eyes of T. gondii-infected B6 and BALB/c mice. No histological change was observed in the
eyes of uninfected B6 mouse (a) and BALB/c mouse (b); at day 8 p.i., severe damage was observed in the eye of T. gondii-infected B6 mouse (c,e,g) and moderate
damage was observed in the eye of T. gondii-infected BALB/c mouse (d,f,h). Black circle indicates the tachyzoites of T. gondii. The original magnification, a–d
100×; e–h 1000×, H&E staining. The SAG1 mRNA expressions in the eyes were measured by using qRT-PCR. Data are presented as means ± SD; there were six
mice in each group and the data shown are representative of those from two different experiments. ∗∗P < 0.01, T. gondii-infected B6 mice vs. T. gondii-infected
BALB/c mice.

Correlations Between TREM-1 and IL-1β,
IL-33, ST2, or TLRs in the Eyes of
T. gondii-Infected B6 and BALB/c Mice
The correlations between mRNA levels of TREM-1 and IL-1β/IL-
33/ST2/TLRs in the eyes of T. gondii–infected B6 and BALB/c
mice were analyzed. Only significant correlations were shown.
In T. gondii-infected B6 mice, there were significant correlations
between the mRNA levels of TREM-1 and IL-1β (r = 0.8913,
P = 0.0014), TREM-1 and IL-33 (r = 0.8534, P = 0.0030),
TREM-1 and ST2 (r = 0.8371, P = 0.0039), TREM-1 and TLR9
(r = 0.7263, P = 0.0149), and TREM-1 and TLR11 (r = 0.8261,
P = 0.0046). In T. gondii-infected BALB/c mice, there were
significant correlations between the mRNA levels of TREM-1 and
TLR3 (r = 0.6610, P = 0.0262), TREM-1 and IL-33 (r = 0.8751,
P = 0.0020), TREM-1 and ST2 (r = 0.7642, P = 0.0101), TREM-1

and TLR9 (r = 0.8389, P = 0.0038), and TREM-1 and TLR13
(r = 0.8019, P = 0.0064) (Figure 6).

DISCUSSION

Our previous study has demonstrated that genetic factors of both
mouse strains and parasite strains are crucial in determining
susceptibility to experimental murine OT (Lu et al., 2005). IL-
10, CD4+, CD8+ T cells, and B cells play important roles
during murine OT (Lu et al., 2003, 2004). Ocular infection
caused by T. gondii may result in inflammation in the retina,
choroid, and uvea (Jasper et al., 2017). In this study, after ocular
T. gondii infection, there were more severe ocular pathology,
more tachyzoites, and higher parasite load in the eyes of B6
mice than those in BALB/c mice. Immunohistochemical staining
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FIGURE 2 | Ultrastructural analysis of eye tissues after T. gondii infection. The images of transmission electron microscopy showed T. gondii in the eyes of B6 mouse
(a,b) and BALB/c mouse (c,d). Tachyzoites were indicated by white arrows and neutrophils were indicated by red arrows. Scale bar: a and d were 2 µm; b and c
were 5 µm.

FIGURE 3 | The expression of neutrophil elastase-positive cells in the eyes by immunohistochemical staining (A). Shown are the eyes of an uninfected B6 mouse (a)
and an uninfected BALB/c mouse (b). At day 8 p.i., there were more neutrophil infiltration in the eyes of T. gondii-infected B6 mice (c,e) than those in
T. gondii-infected BALB/c mice (d,f). The original magnification, a and b 200 ×; c and d 100 ×; e and f 400 ×. Quantitative analysis of elastase-positive neutrophil
(B). The density of positive cells was expressed as the number of cells per square millimeter. Data are presented as means ± SD; there were six mice in each group
and the data represents from two experiments. ###P < 0.001, T. gondii-infected B6 mice vs. T. gondii-infected BALB/c mice.
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FIGURE 4 | The mRNA expressions of TREM-1, IL-1β, IL-33, ST2, and
TREM-2 in the eyes of naive mice and T. gondii-infected mice were measured
by using qRT-PCR. Data are presented as means ± SD; there were six mice
in each group and the data represents from two experiments. ∗∗P < 0.01,
and ∗∗∗P < 0.001, T. gondii-infected mice vs. naive mice. ##P < 0.01,
###P < 0.001, T. gondii-infected B6 mice vs. T. gondii-infected BALB/c mice.

FIGURE 5 | The mRNA expressions of TLRs in the eyes of naive mice and
T. gondii-infected mice were measured by using qRT-PCR. Data are
presented as means ± SD; there were six mice in each group and the data
represents from two experiments. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001,
T. gondii-infected mice vs. naive mice. ##P < 0.01 and ###P < 0.001,
T. gondii-infected B6 mice vs. T. gondii-infected BALB/c mice.

showed that there was greater neutrophil infiltration in the
eyes of B6 mice than those in BALB/c mice following ocular
T. gondii infection. The differences in expression levels of SAG1
gene and the numbers of neutrophils were consistent with
the ocular pathological severity in the two strains of mice.
Therefore, our concern is whether the effects of T. gondii
infection on the expressions of TREM-1, TREM-2, IL-1β, IL-33,
ST2, and TLRs are differently in the eyes of T. gondii-infected B6
and BALB/c mice.

Triggering receptor expressed on myeloid cells (TREM)-1, a
cell surface receptor expressed at high levels on several immune

cells such as polymorphonuclear neutrophils, macrophages, and
monocytes, plays a vital role in innate and adaptive immune
responses (Bouchon et al., 2000). TREM-1 activation increases
the release of IL-6, TNFα, and macrophage inflammatory
protein-2 as well as polymorphonuclear neutrophil infiltration
(Lagler et al., 2009); while TREM-2 may function as a negative
regulator in the inflammatory response (Sun et al., 2013). So far,
the expression of TREMs is an interesting and as yet unexplored
player in OT. In this study, neutrophil infiltration and the
expression levels of TREM-1, IL-33, and ST2 increased in the eyes
of both B6 and BALB/c mice, and the IL-1β level was increased
in B6 mice after ocular T. gondii infection, TREM-1 plays a role
in regulating neutrophil chemotaxis in acute infectious diseases
and is a potential biomarker for the diagnosis of infectious
diseases (Cao et al., 2017). TREM-1 alters neutrophil infiltration
by stimulating AKT activation and NADPH oxidase-2-dependent
superoxide release (Baruah et al., 2019). Blockage of TREM-1
expressed on neutrophils and monocytes/macrophages decreases
the activation of neutrophils and monocytes/macrophages and
mRNA expressions of inflammation-associated genes in alcoholic
liver disease of mouse model (Tornai et al., 2019). IL-1β may play
an important role in regulating the host’s immune defense against
T. gondii infection (Chang et al., 1990). It has been reported
that IL-33 is released by damaged or necrotic cells, leading
to activation of the immune system by ST2/IL-33 signaling
(Moussion et al., 2008; Liew et al., 2010). ST2 increases the
Th2 reaction and resistance to P. aeruginosa keratitis (Huang
et al., 2007). Our previous study found that IL-33/ST2 axis may
involve in the regulation of immunopathology of OT in Kunming
mice (Tong and Lu, 2015). In the present study, our data
demonstrated that both TREM-1 and neutrophil infiltration are
essential to T. gondii-stimulated ocular inflammatory response,
and there were significant positive correlation between the
mRNA expressions of TREM-1 and proinflammatory cytokine
(IL-1β) in the eyes of B6 mice, and between TREM-1 and IL-
33/ST2 in the eyes of both T. gondii-infected B6 and BALB/c
mice. However, there were significantly higher numbers of
neutrophil infiltration and higher levels of TREM-1, IL-1β,
and IL-33/ST2 in the eyes of susceptible B6 mice after ocular
T. gondii infection, which indicate that upregulated TREM-
1 may promote inflammation through increased neutrophil
recruitment and inflammatory cytokine production in the eyes
of susceptible B6 mice.

Multiple TLRs contribute to host innate immunity to T. gondii
infection, and different TLRs can induce distinctive immune
responses to T. gondii (Sturge et al., 2013; Han et al., 2014).
Our data showed that the expression levels of TLRs (including
TLR2, TLR4, TLR5, TLR7, TLR9, TLR11, TLR12, and TLR13)
were significantly elevated in the eyes of both B6 and BALB/c
mice infected with T. gondii through the ocular route. Besides,
the levels of TLR11, TLR12, and TLR13 were significantly higher
in susceptible B6 mice than those in resistant BALB/c mice,
while TLR9 level was significantly higher in resistant BALB/c
mice than that in B6 mice. During acute infection, T. gondii
induces a protective immunity that is mainly Th1 cellular
immune response (Denkers and Gazzinelli, 1998). After oral
T. gondii infection, TLR-9 is crucial for an effective Th1-type
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FIGURE 6 | Correlation analysis between the mRNA expressions of TREM-1 and IL-1β, IL-33, ST2, or TLRs in the eyes of T. gondii-infected B6 and BALB/c mice.
The r value generates the theoretical line of best fit, and the P value indicates the significance of the correlation. There were six mice in each group and the data
represents from two experiments.

immune response in mice (Minns et al., 2006). T. gondii profilin
recognized by TLR11/12 can induce an inflammatory response,
and it can also induce innate and adaptive immune responses
(Hedhli et al., 2016). In the current study, we observed that
the pathological role of TREM-1 in OT may be associated with
the expressions of TLR9/TLR11 in T. gondii-infected B6 mice,
and associated with the expressions of TLR3/TLR9/TLR13 in

T. gondii-infected BALB/c mice, suggesting a possibly correlation
between TREM-1 and TLR genes during acute OT. It has
been reported that after infection with P. aeruginosa, TREM-
1 mRNA expressions were significantly increased in both
human and mouse corneas, which contribute to amplifying
corneal inflammation in P. aeruginosa keratitis by regulating
TLR signaling and immune responses (Wu et al., 2011).
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Our data suggest that TLR3, TLR9, TLR11, TLR12, and TLR13
may play different roles during ocular T. gondii infection.

CONCLUSION

This study has provided evidences that following ocular T. gondii
infection, increased neutrophil infiltration was consistent with
the increase of TREM-1 expression in the eyes of both T. gondii-
infected B6 and BALB/c mice, and significant correlations
existed between TREM-1 and IL-1β/TLR9/TLR11/IL-33/ST2
in the eyes of B6 mice and existed between TREM-1 and
TLR3/TLR9/TLR13/IL-33/ST2 in the eyes of BALB/c mice, which
are possibly related to the ocular immunopathology. However,
the functions of TREM-1 and the aforementioned genes related
to T. gondii-induced immune and inflammatory responses in OT
on different background of mice need to be further investigated.
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