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Resistance in Mycobacterium tuberculosis is a major obstacle for effective treatment
of tuberculosis. Multiple studies have shown promising results for predicting drug
resistance in M. tuberculosis based on whole genome sequencing (WGS) data, however,
these tools are often limited to this single species. We have previously developed a
common platform for resistance prediction in multiple species. This platform detects
acquired resistance genes (ResFinder) and species-specific chromosomal mutations
(PointFinder) associated with resistance, all based on WGS data. In this study, we
present a new version of PointFinder together with an updated M. tuberculosis
database. PointFinder now includes predictions based on insertions and deletions, and
it explicitly reports frameshift mutations and premature stop codons. We found that
premature stop codons in four resistance-associated genes (katG, ethA, pncA, and
gidB) were over-represented in resistant strains, and we saw an increased prediction
performance when including premature stop codons in these genes as resistance
markers. Different M. tuberculosis resistance prediction tools vary in performance
mostly due to the mutation library used. We found that a well-established mutation
library included non-predictive linage markers, and through forward feature selection we
eliminated those from the mutation library. Compared to other similar web-based tools,
PointFinder performs equally good. The advantages of PointFinder is that together with
ResFinder it serves as a common web-based and downloadable platform for resistance
detection in multiple species. It is easy to use for clinicians and already widely used in
the research community.
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INTRODUCTION

Next generation sequencing is a rapidly evolving field and it is
in the process of being adopted as the standard in many clinical
and public health settings. Here, it replaces many traditional
typing and phenotyping methods such as those for species
determination and detection of antimicrobial resistance. Rapid
and precise detection of antimicrobial resistance is important for
correct treatment, surveillance and control efforts. Antimicrobial
resistance occurs either through horizontal gene transfer or by
de novo chromosomal mutations (Munita and Arias, 2016). In
Mycobacterium tuberculosis all acquired resistance have been
mediated by chromosomal mutations, and horizontal transfer
have not been described (Smith et al., 2013). In addition to
acquired resistance M. tuberculosis have a number of intrinsic
resistance mechanisms including modification of drug targets,
chemical modification of drugs, enzymatic degradation of drugs,
molecular mimicry of drug targets, and drug deportation
by efflux pumps (Smith et al., 2013). This is a serious
obstacle for effective tuberculosis treatment and prevention of
the disease worldwide (World Health Organization [WHO],
2017). Mutations and other genetic changes may lead to
enzymatic inactivation of antibiotic molecules, overexpression
of novel efflux pumps and porin alterations in the cell wall,
trapping of drugs and overexpression of proteins involved in
neutralizing the effect of drugs. Due to slow growth rates
of M. tuberculosis, determining resistance by conventional
drug susceptibility testing (DST) is highly time-consuming.
Contrarily, next-generation sequencing rapidly yields accurate
whole genome sequencing (WGS) data. Using prior knowledge
on the genomic changes leading to resistance, WGS data can
be used for rapid prediction of antimicrobial resistance (Koser
et al., 2014). In fact, studies have already shown promising
results for predicting resistance in M. tuberculosis based on
WGS for first-line anti-tuberculosis drugs (Feuerriegel et al.,
2015; The CRyPTIC Consortium and the 100,000 Genomes
Project et al., 2018). However, a challenge for applying this
knowledge in a clinical setting is that resistance predictor tools are
often limited to a single species. We have previously developed
ResFinder (Zankari et al., 2012), an in silico method for detection
of acquired genes associated with antimicrobial resistance in
multiple species based on WGS data. ResFinder was recently
expanded with PointFinder (Zankari et al., 2017), a species-
specific tool detecting chromosomal mutations associated with
drug resistance. PointFinder already includes five species. The
rationale of this study is to expand PointFinder also to cover
M. tuberculosis. In addition to point mutations insertions
and deletions may also affect resistance. Especially if the
insertion/deletion length is not a multiple of three they will
cause the rest of the gene to be read out of frame, which
have a high likelihood of introducing a stop codon leading
to a truncated gene. We have therefore set out to do a
thorough analysis of the correlation of premature stop codons
with resistance. In this study we optimized and evaluated
the performance of PointFinder’s prediction of resistance in
a sixth species, M. tuberculosis. M. tuberculosis was chosen
because of its importance for global health. It is also an

organism for which many resistance mutations have been
described. Here, we wanted to investigate is some of these are
in fact non-informative when it comes to predicting resistance,
and study in more detail how the presence of premature
stop codons affects resistance. We used a data set of 3,528
M. tuberculosis isolates in the optimization which consisted
of omitting non-predictive mutations from a well-established
mutation library, and including premature stop codons as
resistance markers. 2,480 isolates were used to validate the
performed optimization.

MATERIALS AND METHODS

PointFinder Database
The PointFinder database contains both a mutation
library listing resistance-associated chromosomal mutation
and a collection of reference sequences in which these
mutations occur. All database files are available at
bitbucket.org/genomicepidemiology/pointfinder_db.

The tuberculosis mutation library was obtained from
pathogenseq.lshtm.ac.uk, under Tuberculosis and Rapid DR
Study and described in Coll et al. (2015). Additional mutations
were achieved from a genome wide association (GWA) study
performed by the same group in Coll et al. (2018). Mutations,
which were observed in the GWA study to be significantly
associated with resistance and observed more than 10 times,
were also included in the mutation library. All genes, RNA genes
and promoter regions of interest for resistance prediction in
M. tuberculosis are shown in Table 1. Reference sequences for
genes and genomic regions listed in Table 1 were obtained from
the H37Rv M. tuberculosis reference strain, NCBI-reference
sequence: NC_000962.3.

PointFinder
PointFinder is both a web service and command line
application for predicting resistance associated with
chromosomal mutations based on WGS data. The web
service is available on cge.cbs.dtu.dk/services/ResFinder/where
users can specify to search “Chromosomal mutations”
in six different species, including M. tuberculosis. The
command line version of PointFinder is available on
bitbucket.org/genomicepi-demiology/pointfinder.

PointFinder is a Python program that accepts both FastQ and
Fasta files for resistance prediction. Initially, the genes of interest
for resistance prediction (Table 1) are identified. KMA (Clausen
et al., 2018) is used for mapping of raw reads, and BLASTN,
RRID:SCR_001598 (Camacho et al., 2009) for aligning assembled
genomes, to the genes of interest.

Mutations are detected by comparing the alignments between
the reference sequences and the sequences found in the input file.
The aligned sequences are compared nucleotide by nucleotide
when the alignment represents a promoter region or an RNA
gene and codon by codon when it represents a coding gene
sequence. Effort has been put into detecting insertions and
deletions and reporting any disruption or restoring of the reading
frame. If a premature stop codon is detected, this will also
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TABLE 1 | Genes and genomic regions of interest for drug resistance in
M. tuberculosis.

Drug Genes RNA genes Promoter regions

Rifampicin rpoB, rpoC

Isoniazid katG, inhA,
kasA, ahpC

katG promoter,
ahpC promoter,
fabGl promoter

Streptomycin rpsL, gidB,
embB, embC,

rrs (16SrRNA)

Ethambutol embA, embR,
ubiA

embA promoter

Amikacin rrs (16SrRNA)

Capreomycin tlyA rrs (16SrRNA) idsA2 promoter

Ethionamide ethR, ethA,
inhA

fabGl promoter,
ethA promoter

Kanamycin rrs (16SrRNA) eis promoter

Pyrazinamide pncA, panD,
rpsA

pncA promoter

Fluoroquinolone gyrA, gyrB

Para-aminosalicylic
acid

ridD, folC, thyA thyX promoter

Linezolid rplC rrl (23S rRNA)

Bedaquiline Rv0678

Clofazimine Rv0678

d-Cycloserine iniA, alr

XDR-TB drrA nuoA promoter

For each drug the genes and genomic regions of interest for resistance are listed.
All gene names refer to a gene sequences in the H37Rv reference genome with
the National Center for Biotechnology Information (NCBI) reference sequence:
NC 000962.3. The loci in bold are novel resistance-associated genomic regions
revealed by a genome wide association study from Coll et al. (2018).

be explicitly reported, and no further search for mutations
will be performed after the detection of a stop codon. The
observed mutations are looked up into the mutation library
which holds information about mutations known to be predictive
for resistance. If a found mutation exists in the mutation library,
the resistance phenotype is returned together with the PubMed
ID of the article linking the observed genotype with the predicted
resistance phenotype.

M. tuberculosis Data Sets
All data sets used in this study exclusively consisted of paired-end
WGS data associated with phenotype data. Phenotype data was
given as Resistant or Susceptible based on laboratory determined
DST results for multiple anti-tuberculosis drugs.

The first data set, called the ReSeq data set, was
obtained from the Relational Sequencing TB Data Platform
(Starks et al., 2015). It consisted of WGS data from 3,528
M. tuberculosis isolates. The second data set was obtained
from the Supplementary Data in Coll et al. (2018) and
was used as a validation data set. The validation data set
contained 2,480 isolates. The ReSeq and validation data set
contained sufficient phenotype data for 10 drugs namely;
Rifampicin, Isoniazid, Streptomycin, Ethambutol, Amikacin,
Capreomycin, Ethionamide, Kanamycin, Pyrazinamide, and
Fluoroquinolones. The number of isolates with determined

phenotype varied with each drug. Fluoroquinolones DSTs were
determined for the specific compounds namely, Ciprofloxacin,
Ofloxacin, Moxifloxacin, and Levofloxacin. However, in
the analysis we considered Fluoroquinolones resistance as
one, since the mutation library did not distinguish between
different compounds. Thus, if an isolate was resistant to
any of the Fluoroquinolone compounds it was considered
Fluoroquinolones resistant. The data sets can be found in
Supplementary Tables S1, S2.

A third data set was used to compare PointFinder to similar
resistance predictor tools developed for M. tuberculosis. From
a scientific report by Schleusener et al. (2017) we obtained
91 isolates that had been used to compare five existing
M. tuberculosis resistance predictor tools. These 91 isolates
were Illumina MiSeq paired end sequenced, and phenotype
data existed for five drugs namely, Rifampicin, Isoniazid,
Streptomycin, Ethambutol, and Pyrazinamide.

Measuring Prediction Performance
PointFinder’s detection of resistance-associated mutations was
used for binary classification of resistance and susceptibility
using the following rules. Isolates were predicted resistant to
a drug if one or more mutations predictive of resistance to
the drug were found. Isolates were predicted susceptible to
a drug if all genes of interest for resistance to the drug
were found with an identity above 90% and a sequence
coverage above 60%, and no resistance-associated mutations
were detected in the genes. We used default options and
parameters when running PointFinder. To assess the quality of
PointFinder’s binary classification we calculated the Matthew’s
Correlation Coefficient (MCC) and the sensitivity and specificity
of the prediction.

Forward Selection of Predictive Mutation
To detect non-predictive mutations, we applied forward feature
selection optimized based the MCC over threefold cross-
validation. We exclusively examined abundant mutations,
defined as mutations found in the ReSeq data set 10 times
or more. Mutations found less than 10 times were included
in the initial state of the prediction model, whereas the
abundant mutations were initially excluded. With each step
of the forward selection one abundant mutation was added
to the model. The mutation added was the one mutation
that benefited the prediction the most based on the MCC.
Mutations were added to the model one by one until
adding any remaining mutations would decrease the quality of
prediction. Examined mutations that were not selected in any
of the threefold of the cross-validation were considered non-
predictive for resistance.

Statistical Analyses
Significant over-representation of premature stop codons in
resistant isolates was assessed with Pearson’s Chi-squared test
on a 2 × 2 matrix using the statistical software R (Version
3.4.0). PointFinder was compared with a similar predictor called
PhyResSE. We assessed if PhyResSE performed significantly
better than PointFinder using bootstrapping.
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FIGURE 1 | Flow chart describing the PointFinder workflow. The input sequences are aligned to a database of reference genes. The genetic differences observed in
the alignments are compared to a mutation library, with annotated phenotypes. Based on this a resistance phenotype prediction is made.

RESULTS

We created an updated method for predicting antimicrobial
resistance from the genomic sequence. An overview of the
method can be seen in Figure 1.

Evaluating and Optimizing the Mutation
Library
We calculated the sensitivity, specificity and MCC for predicting
drug resistance using PointFinder compared to phenotypic
DST results (Table 2). The resistance prediction was based
on mutations from the mutation library detected in the 3,528
M. tuberculosis isolates from the ReSeq data set. The best
prediction performances were obtained for the first-line drugs
Rifampicin, Isoniazid and MDR (MCC of 0.85, 0.82, and
0.86, respectively). PointFinder’s prediction performance varied
dependently on the drug with MCCs ranging from 0.386 to
0.848. Especially, the prediction of resistance to Ethambutol,
Pyrazinamide, Amikacin, and Ethionamide was less successful,
which indicated that the mutation library was not fully developed.

Table 3 shows the occurrence of PointFinder-detected
premature stop codons in the resistance-associated genes found
in resistant and susceptible isolates. Genes shown in bold in
Table 3 were in the mutation library described with position-
specific premature stop codons causing resistance. With the
exception of the panD gene, these genes showed a significantly
higher occurrence of premature stop codons among resistant
strains. However, for many genes the analysis was only based
on a few premature stop codons. Only for four genes, katG,
pncA, ethA, and gidB premature stop codons occurred more
than 10 times, and we used this as a threshold for a considerable
frequency. Moreover, premature stop codons in these genes
were significantly over-represented in strains resistant to the
drug that the genes were associated with (see Table 1). For
katG, pncA, and ethA the representative p-values were below
0.00001 and for gidB it was 0.006. PointFinder’s prediction
performance given in Table 4 shows that considering premature
stop codons in the four genes as resistance markers improved

the MCC of the resistance prediction for drugs in question;
Isoniazid, Streptomycin, Pyrazinamide, and Ethionamide. In the
case of Streptomycin and Ethionamide, the performances were
improved with a compromise of the specificity.

Besides a possible lack of predictive premature stop codons,
the mutation library also seemed to include mutations that
were not predictive for resistance. For example, a low specificity
was observed in the resistance prediction of Ethambutol
and Amikacin, due to many false positive predictions. This
indicated that the mutation library contained mutations, which
should be omitted.

To detect such non-predictive mutations, we used a forward
feature selection approach where the selection of mutations
was optimized based the MCC over threefold cross-validation.
Mutations not selected in any of the threefold of the cross-
validation were considered non-predictive for resistance and
shown in bold in Table 5. For 7 out of the 10 drugs, we

TABLE 2 | PointFinder predicted resistance compared with phenotypic drug
susceptibility testing on the ReSeq data set.

Drug Res Sus Spec. Sens. MCC

RMP 771 2710 0.965 0.887 0.848

INH 1093 2420 0.929 0.903 0.819

STM 728 1239 0.874 0.798 0.670

EMB 466 3040 0.796 0.850 0.484

PZA 325 2993 0.935 0.575 0.475

KAN 76 617 0.989 0.776 0.814

FLQ 240 1175 0.956 0.679 0.664

AMK 107 866 0.785 0.766 0.386

ETH 49 175 0.943 0.469 0.481

CAP 116 1024 0.971 0.474 0.512

Res, number of resistant isolates determined by drug susceptibility testing;
Sus, number of susceptible isolates determined by drug susceptibility testing;
Spec, specificity; Sens, sensitivity; MCC, Mathew Correlation Coefficient;
RMP, Rifampicin; INH, Isoniazid; STM, Streptomycin; EMB, Ethambutol; PZA,
Pyrazinamide; KAN, Kanamycin; FLQ, Fluoroquinolones; AMK, Amikacin; ETH,
Ethionamide; CAP, Capreomycin.
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TABLE 3 | Occurrence of resistance-associated genes with premature stop
codons in resistant or susceptible strains in the ReSeq data set.

DrugRes Sus Gene Prem. stop
codons in res.

strains

Prem. stop
codons in sus.

strains

p-value

RMP 771 2710 rpoC 3 1 0.011

rpoB 2 0 0.008∗

inhA 1 0 0.137

INH 1093 2420 kasA 3 0 0.01∗

ahpC 1 2 0.934

katG 13 0 <1.0e−5∗

STM 728 1239 rpsL 1 0 0.192

gidB 42 40 0.006∗

embA 1 4 0.658

embR 3 4 0.021

EMB 466 3040 embC 1 4 0.658

embB 1 2 0.306

ubiA 1 0 0.011

PZA 325 2993 pncA 372 7 < 1.0e−5∗

panD 6 0.148

ETH 49 175 inhA 1 0 0.058

ethA 21 24 < 1.0e−5∗

CAP 116 1024 tlyA 2 2 0.008∗

Genes annotated with premature stop codons in the mutation library are shown
in bold. It was tested whether genes with premature stop codons were equally
distributed between the two phenotypic groups. This was tested using a χ2 test
on a 2 × 2 matrix, and the p-value is given. ∗p-value below the significance
level 0.01. Res, population of resistant strains; Sus, population of susceptible
strains. RMP, Rifampicin; INH, Isoniazid; STM, Streptomycin; EMB, Ethambutol;
PZA, Pyrazinamide; ETH, Ethionamide; CAP, Capreomycin.

TABLE 4 | PointFinder predicted resistance compared with phenotypic drug
susceptibility testing on the ReSeq data set when considering premature stop
codons in katG, pncA, ethA, and gidB as resistance markers.

Drug Res Sus Spec. Sens. MCC

RMP 771 2710 0.965 0.887 0.848

INH 1093 2420 0.929 0.909 0.823

STM 728 1239 0.847 0.839 0.674

EMB 466 3040 0.796 0.850 0.484

PZA 325 2993 0.935 0.612 0.502

KAN 76 617 0.989 0.776 0.814

FLQ 240 1175 0.956 0.679 0.664

AMK 107 866 0.785 0.766 0.386

ETH 50 175 0.829 0.800 0.564

CAP 116 1024 0.971 0.474 0.512

Green indicates an increase and Red a decrease in performance compared to
the initial prediction in Table 2. Res, number of resistant strains determined by
drug susceptibility testing; Sus, number of susceptible strains determined by drug
susceptibility testing; Spec, specificity; Sens, sensitivity; MCC, Mathew Correlation
Coefficient; RMP, Rifampicin; INH, Isoniazid; STM, Streptomycin; EMB, Ethambutol;
PZA, Pyrazinamide; KAN, Kanamycin; FLQ, Fluoroquinolone; AMK, Amikacin; ETH,
Ethionamide; CAP, Capreomycin.

found one or more mutations that were deselected in every fold
and these mutations were omitted from the mutation library.
The occurrence of the deselected mutations in resistant and
susceptible isolates are shown in Supplementary Table S3.

Table 6 shows the prediction performance when excluding
the mutations from the mutation library. Omitting the non-
predictive mutations from the mutation library did compromises
the sensitivity, yet since the forward feature selection was trained
based on the MCCs, the MCC performance was improved for
all seven drugs.

Validating the Mutation Library
Optimization
To validate the effects of including premature stop codons and
excluding non-predictive mutations from the mutation library,
we performed resistance predictions on a validation data set.
This data set consisted of 2,480 isolates, and was independent of
the ReSeq data set.

First, we examined occurrence of genes with premature stop
codons in resistant and susceptible strains (Table 7). Like in
the ReSeq data set premature stop codons occurred with a
considerably frequency in the genes katG, pncA, ethA, and gibB.
However, here only the katG and pncA premature stop codons
were significantly over-represented in the resistant strains. gidB
was close to the significant level of 0.01 (p-value: 0.015) whereas
ethA premature stop codons seemed to be equally distributed
between resistant and susceptible strains (p-value: 0.642).

Additionally, we looked at the occurrence of the mutations
that were considered non-predictive in the forward feature
selection analysis. Data is shown in Supplementary Table S3.
Most of the mutations that were found to be non-predictive
for resistance in the ReSeq data set were confirmed to
be widely present in susceptible strains in the validation
data set. The mutations, rpoB I491F, inhA V78A, pncA
I6L, gyrA T80A, and rrs 517C > T, were present in none
or in very few samples in the validation data set, and
therefore, the positive effect of removing these mutations could
not be validated.

Table 8 shows prediction performances on the validation
data set using three different mutation libraries; first, the initial
mutation library, secondly, the mutation library where premature
stop codons in katG, pncA, ethA, and gidB were included as
resistance markers, and thirdly, the mutation library containing
both the four premature stop codon markers and excluding the
non-predictive mutations. Table 8 shows an overall improved
prediction performance when including the premature stop
codons as resistance markers and when excluding the non-
predictive mutations.

Comparing PointFinder With Similar
Tools
A scientific report from 2017 by Schleusener et al. PhyResSE
generally showed the best performance, therefor we used
the same data set to compare PointFinder to PhyResSE.
We reran the data set through PhyResSE, to make a direct
comparison. Table 9 show the prediction performance of
PointFinder and PhyResSE based on WGS data and DST
results from the 91 isolates. The mutation library used for
PointFinder included premature stop codons in katG, pncA,
ethA, and gidB and did not contain the non-predictive mutations.
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TABLE 5 | Forward feature selection of resistance mutations on the ReSeq data set.

Drug CV-fold Deselected mutations MCC train MCC test

1 rpoB I491F, rpoB H445N, rpoB L430P, rpoC L527V 0.878 0.860

RMP 2 rpoB 149IF, rpoB H445N, rpoB L430P, rpoC L527V 0.868 0.878

3 rpoB 149 IF, rpoB H445N, rpoB L430P 0.869 0.874

1 kasA G269S, kasA G312S, inhA V78A, fabGl promoter −8T > C 0.880 0.884

INH 2 kasA G269S, kasA G312S, inhA V78A 0.881 0.882

3 kasA G269S, kasA G312S, inhA V78A 0.883 0.877

1 rrs 1401A > G, rrs 492C > T 0.743 0.744

STM 2 rrs 1401A > G, rrs 492C > T, gidB prem. stop codon 0.733 0.762

3 rrs 1401 A > G, rrs 492C > T, gidB prem. stop codon 0.757 0.715

1 embB E378A, embC T270I, embB T1082A, 0.648 0.590

embA promoter −12C > T, embA promoter −16C > T

EMB 2 embB E378A, embC T270I, embB T1082A, embB G406D, embB D1024N, embB N296H 0.643 0.616

3 embB E378A, embC T270I, embB T1082A, embB G406D, embB N296H 0.623 0.660

1 pncA I6L, pncA A146T, pncA W68G 0.589 0.625

PZA 2 pncA I6L, pncA A146T 0.590 0.636

3 pncA I6L 0.638 0.537

1 0.789 0.864

KAN 2 0.829 0.785

3 0.826 0.795

1 gyrA T80A 0.699 0.691

FLQ 2 gyrA T80A 0.686 0.713

3 gyrA T80A 0.702 0.687

1 rrs 517C > T, rrs 514A > C 0.702 0.744

AMK 2 rrs 517C > T, rrs 514A > C 0.722 0.705

3 rrs 517C > T, rrs 514A > C 0.725 0.699

1 0.652 0.393

ETH 2 ethA prem. stop codon 0.514 0.407

3 0.543 0.592

1 0.511 0.514

CAP 2 0.511 0.514

3 0.514 0.509

For all 10 drugs forward feature selection was performed over a threefold cross-validation to assess if the resistance performance could improve by omitting any
mutations. CV-fold indicates for each fold of the cross-validation which mutations were deselected. Mutations shown in bold were deselected in every fold of the cross-
validation and further considered non-predictive for resistance. MCC train, Mathew’s Correlation Coefficient obtained on the training data subset; MCC test, Mathew
Correlation Coefficient obtained on the test data subset; RMP, Rifampicin; INH, Isoniazid; STM, Streptomycin; EMB, Ethambutol; PZA, Pyrazinamide; KAN, Kanamycin;
FLQ, Fluoroquinolone; AMK, Amikacin; ETH, Ethionamide; CAP, Capreomycin.

For Isoniazid, Streptomycin, and Ethambutol PhyResSE showed
better performances. In the case of Streptomycin PheResSE
performed significantly better than PointFinder which had a
few false negative prediction, see Supplementary Table S4. For
the drugs Rifampicin and Pyrazinamide PointFinder showed the
best performance.

DISCUSSION

In this study, we presented an improved version of PointFinder
where the detection of insertion and deletion together with
frameshift mutations were handled properly. As an effect of the
improvements we were able to enhance PointFinder’s resistance
prediction in M. tuberculosis by including premature stop
codons as resistance markers. Additionally, we optimized the
obtained M. tuberculosis mutation library by excluding mutations

that through forward feature selection were considered non-
predictive for resistance.

A scientific report from 2017 by Schleusener et al. compared
five M. tuberculosis resistance prediction tools based on a data set
of 91 isolates. These five tools were, CASTB (Iwai et al., 2015),
PhyResSE (Feuerriegel et al., 2015), TBProfiler (Coll et al., 2015),
KvarQ (Steiner et al., 2014), and Mykrobe Predictor TB (Bradley
et al., 2015). To our knowledge it has not been studied thoroughly
how the occurrence of premature stop codons in resistance-
associated genes affect the resistance phenotype. The mutation
library lists premature stop codons predictive for resistance, yet
these premature stop codons are only considered as predictive
markers if found at the specific position listed. However, the
outcome of a premature stop codon – gene truncation – is, in
most cases, independent of the position in the gene. The first
version of PointFinder described in Zankari et al. (2017) did
not consider insertions and deletions, and as a consequence of
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TABLE 6 | PointFinder predicted resistance compared with phenotypic drug
susceptibility testing on the ReSeq data set after including premature stop codons
and exclusion of non-predictive mutations.

Drug Res Sus Spec. Sens. MCC

RMP 771 2710 0.978 0.878 0.871

INH 1093 2420 0.974 0.895 0.881

STM 728 1239 0.907 0.835 0.743

EMB 466 3040 0.898 0.848 0.631

PZA 325 2993 0.974 0.575 0.604

KAN 76 617 0.992 0.776 0.814

FLQ 240 1175 0.968 0.679 0.695

AMK 107 866 0.992 0.607 0.716

ETH 50 175 0.829 0.800 0.564

CAP 116 1024 0.971 0.474 0.512

Green indicates an increase and red a decrease in performance compared to
the prediction in Table 2. Res, number of resistant strains determined by drug
susceptibility testing; Sus, number of susceptible strains determined by drug
susceptibility testing; Spec, specificity; Sens, sensitivity; MCC, Mathew Correlation
Coefficient; RMP, Rifampicin; INH, Isoniazid; STM, Streptomycin; EMB, Ethambutol;
PZA, Pyrazinamide; KAN, Kanamycin; FLQ Fluoroquinolone. AMK, Amikacin; ETH,
Ethionamide; CAP, Capreomycin.

TABLE 7 | Occurrence of resistance-associated genes with premature stop
codons found in resistant or susceptible strains in the validation data set.

Drug Res Sus Loci Prem. stop
codons in

resistant strains

Prem. stop
codons in

susceptible
strains

p-value

RMP 596 1814 rpoC 1 1 0.407

INH 768 1641 ahpC 0 1 0.566

katG 8 2 0.001∗

STM 379 687 gidB 28 27 0.015

PZA 248 420 pncA 25 0 <1.0e−5∗

ETH 186 245 ethR 0 1 0.383

ethA 24 28 0.642

CAP 191 261 tlyA 0 1 0.392

It was tested whether genes with premature stop codons were equally distributed
between the two phenotypic groups. This was tested using a χ2 test on a
2 × 2 matrix, and the p-value is given. ∗p-value below the significance level of
0.01. Res, number of resistant strains determined by drug susceptibility testing;
Sus, number of susceptible strains determined by drug susceptibility testing;
RMP, Rifampicin; INH, Isoniazid; STM, Streptomycin; PZA, Pyrazinamide; ETH,
Ethionamide; CAP, Capreomycin.

this, frameshift mutations and premature stop codons was not
correctly detected. With this new version of PointFinder, efforts
were put into detecting reading frame disruptions and premature
stop codons caused by insertions and deletions, and the improved
PointFinder version was used to assess the impact of premature
stop codons on resistance emergence.

Among all genes annotated with predictive premature stop
codons in the mutation library we found a significantly higher
occurrence of premature stop codons among resistant strains
in the ReSeq data set, with the exception of the panD gene
(Table 3). A study from 2014, showed a M. tuberculosis
panD deleted mutant still susceptible to Pyrazinamide
(Dillon et al., 2014). The study postulated that panD is not

a target for Pyrazinamide resistance, and our results support
this hypothesis by indicating that loss of function of panD is not
associated with Pyrazinamide resistance.

Our results suggest that katG and pncA premature stop
codons are predictive for resistance, whereas the role of ethA
and gidB premature stop codons was less clear. Isoniazid,
Pyrazinamide, and Ethionamide are pro-drugs, and the proteins
encoded by katG, pncA, and ethA are enzymes catalyzing
the activation of these drugs, respectively (Zhang et al., 1992;
Almeida Da Silva and Palomino, 2011). If the enzymatic activity
is lost (e.g., by the occurrence of a premature stop codon), the
drug cannot be converted to its active form, which can explain
the emergence of drug resistance.

Surprisingly, premature stop codons in ethA also occurred
with a high frequency in susceptible strains, and in the validation
data set premature stop codons in ethA were not over-
represented in resistant strains (Table 7). Since, ethA encodes the
Ethionamide activating enzyme, we speculate whether this is not
the only enzyme able to activate Ethionamide, or if Ethionamide
also has antimicrobial effects as a pro-drug, or maybe premature
stop codons can be neglected and not cause complete depletion
of the ethA-encoded enzyme. Another explanation for the
inconclusive effect of ethA premature stop codons, might be that
the use of Ethionamide constitutes a selective pressure that favors
premature stop codon in ethA leading to low-levels resistance
close to the clinical breakpoint used in DST protocols.

Premature stop codons in gidB were slightly over-represented
among the resistant strains both in the ReSeq (p-value = 0.006)
and the validation data set (p-value = 0.015), yet, premature
stop codons in gidB were also observed in many susceptible
isolates (see Tables 3, 7). Like for ethA, this might reflect that
depletion of the gidB-encoded protein causes resistance levels
close to the clinical breakpoint. In fact, a functional study showed
that knocking out gidB leads to low-level Streptomycin resistance
(Wong et al., 2011). We observed an increased MCC when
treating the mutation as a resistance marker, thereby, our study
also indicates that loss of function of the gidB-encoded protein is
associated with Streptomycin resistance.

The forward feature selection analysis implied that several
mutations included in the obtained mutation library were
misclassified as resistance markers, and the positive effects of
removing these mutations were also seen in the MCC on the
validation data set (Table 8), with the exception of predicting
Amikacin resistance. The two mutation rrs 514A > C and rrs
517C > T that were removed in this case, were however also
found in other studies to play no role in resistance to Amikacin
(Maus et al., 2005; Jugheli et al., 2009).

Further investigation showed that the misclassification of
many of the deselected mutations was also reported in other
studies, for example for kasA G269S and kasA G312S (Sun et al.,
2007), rrs 492C > T (Victor et al., 2001; Villellas et al., 2013),
rrs 1401A > G (for Streptomycin resistance) (Via et al., 2010),
gyrA T80A (Pantel et al., 2016), and embB E378A and embC
T270I (Goude et al., 2009; Campbell et al., 2011; Koser et al.,
2011). In the forward feature selection analysis, we chose to
only include mutations that were observed 10 times or more,
however, with more isolates or a lower threshold for including

Frontiers in Microbiology | www.frontiersin.org 7 October 2019 | Volume 10 | Article 2464

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02464 October 30, 2019 Time: 16:10 # 8

Johnsen et al. Improved Resistance Prediction With PointFinder

TABLE 8 | Validating the effect of including premature stop codons and excluding non-predictive mutations from the mutation library.

Drug Res Sus Initial mutations Including prem. stop codons Excluding non-predictive muts

Spec. Sens. MCC Spec. Sens. MCC Spec. Sens. MCC

RMP 596 1814 0.978 0.896 0.885 0.978 0.896 0.885 0.986 0.886 0.895

INH 768 1641 0.946 0.879 0.826 0.945 0.880 0.826 0.969 0.870 0.854

STM 379 687 0.85 0.744 0.592 0.817 0.805 0.606 0.902 0.778 0.688

EMB 304 880 0.739 0.914 0.576 0.739 0.914 0.576 0.825 0.908 0.666

PZA 239 420 0.971 0.799 0.802 0.971 0.808 0.809 0.971 0.808 0.809

KAN 211 176 0.920 0.896 0.814 0.920 0.896 0.814 0.920 0.896 0.814

FLQ 271 296 0.905 0.878 0.784 0.905 0.878 0.784 0.909 0.878 0.788

AMK 213 278 0.953 0.850 0.814 0.953 0.850 0.814 0.964 0.826 0.807

ETH 184 245 0.624 0.853 0.479 0.539 0.919 0.479 0.539 0.919 0.479

CAP 191 261 0.877 0.864 0.738 0.877 0.864 0.738 0.877 0.864 0.738

PointFinder-predicted resistance was compared to drug susceptibility test results on the validation data set. The quality of the prediction was evaluated with three different
mutation libraries; the initial mutation library (initial mutations). The mutation library including premature stop codons in katG, pncA, ethA, and gidB (including prem. stop
codons), and the mutation library both including those premature stop codons and excluding mutations considered non-predictive for resistance (excluding non-predictive
muts). Green indicates an increase and red a decrease in the performance measurement compared to same measurement from the mutation library to the left. Res,
number of resistant strains determined by drug susceptibility testing; Sus, number of susceptible strains determined by drug susceptibility testing; Spec, specificity; Sens,
sensitivity; MCC, Mathew Correlation Coefficient; RMP, Rifampicin; INH, Isoniazid; STM, Streptomycin; EMB, Ethambutol; PZA, Pyrazinamide; KAN, Kanamycin; FLQ
Fluoroquinolone; AMK, Amikacin; ETH, Ethionamide; CAP, Capreomycin.

TABLE 9 | Comparing PointFinder and PhyResSE prediction performance.

Drug Res Sus PointFinder PhyResSE p-value

Spec. Sens. MCC Spec. Sens. MCC

RMP 14 77 0.961 1.000 0.890 0.935 1.000 0.830 0.751

INH 29 62 0.952 0.897 0.848 0.968 0.931 0.899 0.262

STM 37 54 0.981 0.649 0.693 0.981 0.838 0.843 0.047∗

EMB 14 77 0.961 0.857 0.796 0.974 0.857 0.831 0.395

PZA 8! 83! 0.964 0.750 0.677 0.964 0.625! 0.589 0.666

! Indicates that data varied from the previously published results, since the number of resistance and susceptible samples found in the published Supplementary Data
did not correlate with amount assessed after rerunning the data through PheResSE. Res, number of resistant strains determined by drug susceptibility testing; Sus,
number of susceptible strains determined by drug susceptibility testing; Spec, specificity; Sens, sensitivity; MCC, Mathew Correlation Coefficient; RMP, Rifampicin; INH,
Isoniazid; STM, Streptomycin; EMB, Ethambutol; PZA, Pyrazinamide. It was tested weather PhyResSE was performing significantly better using bootstrapping, and the
p-value is given, and the significance level was set at 0.05 indicated with ∗.

mutations, we might discover even more misclassified mutations.
On the other hand, the mutation rpoB L430P, rpoB H445N,
and rpoB I491F were considered non-predictive for resistance
to Rifampicin based on the forward feature selection. However,
studies have shown that DST performed on liquored-based
mediums fails to detect resistance in strains with rpoB I491F
and other rpoB mutations that were clinically associated with
treatment failure (Rigouts et al., 2013; André et al., 2017). Thus,
with forward feature selection we risk removing mutations that
truly causes resistance but appears not to, due to erroneous
DST results. This underlines a problem regarding using DST
results as the standard for determining resistance. A well-
established mutation library is important to avoid incorrect
mutation interpretations.

When comparing PointFinder to PhyResSE we did see
differences in variant interpretation. This was notable in the
gidB gene associated with Streptomycin resistance. PointFinder
only interpreted resistance based on premature stop codons
in gidB, whereas PhyResSE included several gidB mutations
in the interpretation, e.g., gidB A200E, V88A, and A138V

(see Supplementary Table S4), and with the interpretation
of these mutations as resistance markers PhyResSE showed a
significantly better Streptomycin resistance prediction. A GWA
study from 2018 did detect the same gidB mutations among 6,465
strains, but in this study this gidB mutations were either observed
in less than 10 samples or not identified as being significantly
associated with resistance (Coll et al., 2018). Based on this, we
did not choose to include these gidB mutation in our mutation
library. We have here evaluated the effect of genetic alterations on
resistance. A limitation of this is that it is overlooked if mutations
have an effect of for example fitness. Future studies may seek to
clarify such correlations if large scale datasets with genomes and
fitness estimations become available.

The predicting performance of PointFinder is comparable to
other M. tuberculosis resistance prediction tools, like PhyResSE,
and PointFinder has the advantage of being build into a
larger platform for resistance prediction, that is not limited
to a single species. Additionally, PointFinder is available
on bitbucket.org/genomicepi-demiology/pointfinder, where all
changes in the script are tracked. The databases are also available
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on bitbucket which gives the needed transparency. This creates
a good foundation for future maintenance and improvements of
the variant interpretation methods and the mutation library.

CONCLUSION

We have developed improved version of PointFinder with better
detection of insertions and deletions as well as the possible
associated frameshifts. We find that the accuracy of PointFinder’s
resistance prediction in M. tuberculosis is improved as a result.
We also optimized the M. tuberculosis mutation library by
excluding mutations that through forward feature selection
were found to be non-predictive for resistance. We think that
these methods may also be applied to increase the antibiotic
resistance prediction in other species. The method is flexible
and can be updated if new genetic markers for resistance is
identified. The method is freely available on the web as well as
a stand alone version.
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