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of studies has been published focusing on DSEs in Asian grasslands, our knowledge
is limited. Especially in Mongolia, where the steppe region represents a significant
area, information is not available on these root colonizers. In this study, we aimed to
characterize DSEs of a common dominant gramineous plant species, Stipa krylovii in a
semiarid grassland of Mongolia. Root samples were collected in a natural steppe and
were processed for isolation of fungal endophytes. For molecular identification of the
isolates, the internal transcribed spacer (ITS) region of the nrDNA was obtained for all
the isolates investigated; furthermore, the partial translation elongation factor 1-a (TEF)
gene and large subunit (LSU) and small subunit (SSU) of rDNA were also amplified and
sequenced in case of representative isolates. In vitro tests were used to examine the
rough symbiotic nature of the fungi, and root colonization was visualized. A majority of
the 135 isolates examined in detail was found to belong to several orders of Ascomycota
(110 isolates) and some to Basidiomycota (25 isolates). A significant number of the
isolates represented presumably novel taxa, and dominant similarities of the lineages
have been found with relatively frequent and known grass root endophytes of semiarid
areas in other geographic regions. These endophytes included Periconia macrospinosa,
Microdochium bolley, and Darksidea, the genus of which comprised one fourth of the
isolates. We found numerous lineages, which have been detected not only from Asian
steppe ecosystems, but also from prairies in North America and sandy grasslands in
Europe. Therefore, our results strengthen the hypothesized worldwide presence of a
common and dominant core group of a DSE community in arid and semiarid grasslands.
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INTRODUCTION

In grasslands, as in other terrestrial ecosystems, plants form
symbioses with diverse fungal endophytes, which colonize the
plant tissues without causing obvious symptoms during at least
one part of their life cycle (Wilson, 1995; Saikkonen et al.,
1998). Endophytic fungi are also present in healthy belowground
tissues (Vandenkoornhuyse et al., 2002; Rodriguez et al., 2009),
albeit knowledge of their general occurrence and their potential
functions is lacking compared with what we know of mycorrhizal
fungi. Apart from behaving as commensalistic symbionts, fungal
endophytes also act as latent pathogens, latent saprotrophs, and
mutualistic partners (Porras-Alfaro and Bayman, 2011; Yakti
et al., 2019a). These form a group of root-colonizing endophytic
fungi, generally called dark septate endophytes (DSEs), which
refer to their mainly melanized and septate hyphae. These
fungi dominate several biomes and climatic regions, including
grasslands, yet their functions in relation to plants and the
greater ecosystem are still elusive (Mandyam and Jumpponen,
2005; Sieber and Griinig, 2013). They might have an important
role as saprobes because comparative genomics, for example,
of DSE fungi revealed an expansion of carbohydrate active
enzyme families (Knapp et al, 2018). Therefore, degrading
complex carbohydrates such as dead plant tissues could be
a key characteristic of the lifestyle of DSE fungi (Knapp
et al,, 2018). The study of enzymes and carbon source use
of DSEs also revealed a diverse enzymatic capacity showing
complementary distribution within DSEs of grass and non-
grass hosts (Knapp and Kovdcs, 2016). The effect of DSE fungi
on the performance of their host plants varies (Newsham,
2011; Mayerhofer et al, 2013; Mandyam and Jumpponen,
2015); in addition to influencing nutrient uptake (Yakti et al.,
2019a,b), they could increase the drought stress resistance as well
(Lietal., 2018).

In arid, semiarid, and temperate grasslands of North America
and Europe, DSE communities and non-mycorrhizal root-
associated fungi have been thoroughly studied, and these fungi
are relatively frequent in these ecosystems (e.g., Kovacs and
Szigetvari, 2002; Mandyam and Jumpponen, 2005; Porras-Alfaro
et al., 2008; Sanchez-Marquez et al., 2008; Knapp et al., 2012).
The results suggest that there are core members of those
communities common to disparate regions, not only in North
America (Khidir et al., 2010) but also worldwide (Knapp et al.,
2012). In the past few years, an increasing number of studies
has been published focusing on fungal root endophytes of
Asian grasslands, mainly in China (e.g., Su et al., 2010; Li
et al, 2015, 2018; Xie et al., 2017). However, information
about DSEs from other sites and countries in the eastern
part of the Steppe belt, including Mongolia, where the steppe
represents a significant part of the area (Ulziikhutag, 1989),
is not available.

In Mongolia, in addition to alpine tundra, mountain taiga
and deserts, three types of grass-dominated ecosystems can
be found: mountain forest-steppe, steppe, and desert steppe.
These are formed because of climate shifts from humid
to arid conditions, and grazing may also affect the water

cycle of the grassland ecosystem (Ulziikhutag, 1989). Areas
of Mongolia are classified as arid and semi-arid regions
(Begzsuren et al, 2004) and about 70-80% of the total
land area in Mongolia is made up of grasslands comprising
the three steppe types (Ulziikhutag, 1989; Liu et al, 2013),
which are freely grazed by livestock year round (Fernandez-
Gimenez and Allen-Diaz, 1999). Similar to the grassland
ecosystems in China, a couple of grass species, including Stipa
krylovii and Stipa grandis, dominate the landscape at certain
areas in Mongolia (Zhao et al, 2006; Kang et al, 2007;
Tuvshintogtokh, 2014). Other dominant gramineous species
of the steppes are Cleistogenes squarrosa, Leymus chinensis,
Agropyron cristatum, Caragana microphylla, and Caragana
stenophylla (Tuvshintogtokh, 2014).

Stipa krylovii is an important perennial tussock grass in the
Mongolian steppe ecosystem and its communities represent a
major grassland type in the moderate temperate zone of Central
Asia (Zhao et al, 2006). This grass is a primary forage in
some Mongolian steppe areas for grazing mammals (e.g., Retzer,
2007) along with A. cristatum, which is widely used in the
restoration of the Mongolian prairie (Otgonsuren and Lee, 2010).
S. krylovii has been widely studied in several works owing to
its outcrossing mating system, and ecological and economic
importance (e.g., Yuan et al., 2005; Wang et al., 2006; Zhan et al.,
2007; Li et al., 2014). Although studies focusing on this grass
were started in the 1950s, with documentation of its distribution,
growth, physiology, life history, and the response to grazing
(Zhao et al., 2006), its root-colonizing endophytic communities
remained unknown. Besides understanding the genetic diversity
of population, onto which several works addressed questions
(e.g., Wang et al, 2006; Zhao et al, 2006), studies on the
relationship of this grass species with its microbiota, including
fungal root endophytes, should be highly important owing to the
hypothesized major impact of DSEs on their host plants in arid
conditions (e.g., Li et al., 2018).

Card et al. (2014), in their study, investigated
Epichloé/Neotyphodium endophytes colonizing shoots of
grasses in several countries, including Mongolia; however, to
date, we are not aware of any studies focusing on root endophytes
of Mongolian grasslands. In the present study, we introduce the
first information on DSEs of a dominant and widespread grass
species from Mongolia. Similar to China (Zhao et al., 2005),
desertification is an important issue in Mongolia, where 90% of
the land is fragile dry land under increasing threat from this kind
of land degradation (Chen et al., 2007). Therefore, information
on the DSE community, which can affect plant survival and
production, and its putative similarity to other grasslands, like
those in European and North American prairies, may help
applied approaches in farming or conservation.

In this study, we examined the root-colonizing fungal
endophytes of a common and dominant gramineous plant
species of semiarid grasslands in Mongolia. Our aims were to
isolate fungal endophytes from the roots of S. krylovii from a
natural Mongolian Steppe, carry out their molecular phylogenetic
identification and to test their endophytic lifestyle in an artificial
in vitro resynthesis experiment.
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FIGURE 1 | Maximum likelihood (RAXML) phylogenetic tree of ITS sequences of isolates belonging to Ascomycota. ML bootstrap support values (>70) are shown at
the branches. The basidiomycete Odoria alborubescens BP106943 served as outgroup. After the isolate names, GenBank accession numbers are shown in
brackets. Leaves indicate the representative isolates tested by inoculation of leek; isolates with negative effect are labeled with red, and green leaves indicate no

visible symptoms caused by the isolate. The scale bar indicates 0.05 expected changes per site per branch.
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MATERIALS AND METHODS
Sampling

The root samples were taken from S. krylovii from a grassland
ecosystem near Kherlenbayan-Ulaan (KBU, Mongolia), where
this is the dominant gramineous species. Samples were collected
in a natural steppe zone located in the Nalaikh district, ~38.6 km
from the capital city of Ulaanbaatar, Mongolia. The region
has semiarid characteristics with warm summers (Bereneva,
1992), the mean annual precipitation is 235 mm, and the
mean temperature in January and July are —22.5°C and 17°C,
respectively (averages for 2009-2018 at Nalaikh; National Agency
for Meteorology and Environmental Monitoring, Mongolia).
Sampling of S. krylovii roots was carried out on the 8th
of October in 2016. The elevation of the collection site (N
47.729611, E 107.225104) is 1400-1450 m. Root samples were

collected from 20 tussocks of S. krylovii with ~1 m distance
from one another along a transect. A bunch of root pieces
and a small amount of moist soil were collected, put into
plastic bags and kept in a cool condition. Samples, containing
approximately 5-50 pieces of root per tussock, were cleaned
from soil, folded into moist paper towels, and the roots were
processed within 8 days.

Isolation of Root Endophytes

Roots of S. krylovii were surface sterilized according to Knapp
etal. (2012), and each sample was sliced into 2- to 3-cm segments
and soaked in 30% H, O, for 2 min, then in 70% alcohol for 1 min,
and washed in sterile tap water two times for 2-3 min each time.
After surface sterilization, each root segment was cut into four
pieces by a scalper and placed onto modified Melin-Norkrans
(MMN) media (Marx, 1969). After 5-7 days, we observed the
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FIGURE 2 | Maximum likelihood (RAXML) phylogenetic tree of ITS sequences of isolates belonging to Basidiomycota. ML bootstrap support values (>70) are shown
at the branches. The ascomycete Darksidea alpha CBS 135650 served as outgroup. After the isolate names, GenBank accession numbers are shown in brackets.
Leaves indicate the representative isolates tested by inoculation of leek; isolates with negative effect are labeled with red, and green leaves indicate no visible
symptoms caused by the isolate. The scale bar indicates 0.05 expected changes per site per branch.
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growing hyphae from the roots and the pure mycelia were
transferred to new agar plates.

In vitro Tests and Microscopy

In vitro tests were performed with representatives of each
clade obtained by the analyses of internal transcribed spacer
(ITS) sequences of the fungal isolates (Figures 1, 2) using leek
(Allium porrum), a generally used host plant in DSE resynthesis
experiments (see Mandyam and Jumpponen, 2008; Knapp et al.,
2012) to test the basic symbiotic nature of the fungi. Five
replicates for each fungal isolate and five control plants were
incubated in each series according to Knapp et al. (2012). The
fungus and isolates of its clade were considered a root endophyte
if it colonized the roots without symptoms.

Root samples from the field and in vitro experiments were
studied microscopically. The cleared roots were stained using
the fluorescence labeled lectin, WGA-AlexaFluor488 (Wheat
Germ Agglutinin, Alexa Fluor 488 conjugate, Molecular Probes
W11261, Thermo Fisher Scientific, Lithuania), a cell-wall-specific
dye used for in planta visualization of fungal endophytes (e.g.,
Andrade-Linares et al., 2011). Root samples were examined
using a light microscope with Nomarski (differential interference
contrast, DIC) optics and a Nikon Eclipse 80i microscope
equipped with a Spot 7.4 Slider camera (Diagnostic Instruments,
Inc.), differential interference contrast (DIC), and a filter wheel
with excitation and emission filters for visualization of Alexa
Fluor 488 probe.

DNA Extraction, Amplification, and
Sequencing

Genomic DNA was extracted from fungal mycelia using a
modified cetyl trimethylammonium bromide (CTAB) method
(Murray and Thompson, 1980; Kovacs et al, 2001) or
the NucleoSpin Plant II DNA Isolation Kit (MACHEREY-
NAGEL, Germany) following the manufacturer’s instructions.
The nuclear rDNA ITS1-5.8S-ITS2 (ITS) region of all isolates
was amplified and sequenced using the primer pair ITSIF
(Gardes and Bruns, 1993) and ITS4 (White et al., 1990).
For representative strains of distinct lineages, the partial
28S rDNA (LSU), partial 18§ rDNA (SSU), and the partial
translation elongation factor lao (TEF) were amplified with
the primers LROR (Rehner and Samuels, 1994) and LR5
(Vilgalys and Hester, 1990), NS1 and NS4 (White et al,
1990), and EF1-983F and EF1-2218R (Rehner and Buckley,
2005), respectively. For polymerase chain reaction, DreamTaq
polymerase (Thermo Fisher Scientific, Vilnius, Lithuania) was
used, and sequencing of the amplicons was carried out with
the amplification primers from LGC GmbH (Berlin, Germany).
The sequences were compiled from electropherograms using
the PREGAP4 and GAP4 tools of the Staden software
package (Staden et al, 2000) and deposited in GenBank
(ITS: MN537585-MN537719; LSU: MN515229-MN515287;
SSU: MN515296-MN515302; TEF: MN535230-MN535285; see
Supplementary Table S1). The sequences obtained were
compared with sequences in public databases using BLASTn
searches (Altschul et al., 1990).

Phylogenetic Analyses

Different data sets were prepared for phylogenetic analyses
including sequences of the isolates collected from S. krylovii
roots studied here and similar sequences obtained from
public databases (Supplementary Table S2). Alignments of the
sequences were assembled using the E-INS-i method in MAFFT
7 (Katoh and Standley, 2013) and were checked and edited with
MEGAG6 (Tamura et al., 2013) and deposited in TreeBASE (study
§25135). For the data sets, multilocus phylogenetic Bayesian
inference (BI) analyses were performed with MrBayes 3.1.2
(Ronquist and Huelsenbeck, 2003) using the GTR + G nucleotide
substitution model. Four Markov chains were run for 10,000,000
generations and sampled every 1000 generations with a burn-
in value set at 6000 sampled trees. Maximum likelihood (ML)
phylogenetic analyses were carried out with the raxmlGUI
1.3 (Silvestro and Michalak, 2012) implementation of RAXML
(Stamatakis, 2014). The GTR + G nucleotide substitution
model was used for the partitions with ML estimation of base
frequencies, and a ML bootstrap analysis with 1000 replicates was
used to test the support for the branches. The phylogenetic trees
were visualized and edited using MEGA6 (Tamura et al., 2013).

RESULTS

During the isolation process, more than 1000 root sections
were surface sterilized and laid onto media, and approximately
350 isolates were obtained from the 20 S. krylovii tussocks
that originated from a Mongolian grassland. In most cases,
isolates collected from the same root of one S. krylovii tussock
showed identical colony morphology. Because endophytes from
the same root with similar colony morphology were considered
to represent the same taxa, 135 isolates were finally used in the
subsequent molecular identification and analysis. Isolates were
obtained from all the tussocks sampled, and each of the field
collected roots showed frequent colonization by DSE fungi.

The collected isolates belonged to the Dikarya group and
represented diverse orders of Ascomycota, Pezizomycotina
(110 isolates), Basidiomycota, and Agaricomycotina (25
isolates). Based on ITS sequences, the isolates represented
34 clades introduced here as clades 1-34, from which 30
comprised ascomycetous and 4 comprised basidiomycetous
fungi (Figures 1, 2). The most numerous clade, possessing
almost one fourth of the collected fungi, consists of 33 isolates
(clade 1), followed by clade 31 and clade 8 with 13 and 9 isolates,
respectively (Figures 1, 2). The majority of the isolates (125)
belonged to non-singleton clades while 10 clades contained
only one isolate.

For the in vitro colonization tests, 39 representative isolates of
the 34 clades were chosen (Figures 1, 2). The healthy A. porrum
plants had generally well-developed root systems and five to six
leaves after 6 weeks. All the fungi used for inoculation colonized
the roots extra- and intraradically, showing typical structures,
such as microsclerotia, chlamydospores, or intracellular septate
hyphae (Figure 3). Altogether, only six isolates, representing five
groups [clades 6, 17, 20, 33 and the MDO06 from clade 1 (Figures 1,
2)], showed negative effects on the hosts; the plants inoculated
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dead root. Bars: 20 um (B-D), 50 pm (A).

FIGURE 3 | Representative isolates of different clades colonizing the roots of leek visualized by WGA-Alexa Fluor® 488. (A) Intra- and extraradical hyphae and a
microsclerotia formed by the isolate MD39 (clade 16). (B) Moniliform hyphae and an extraradical compacted structure of the isolate MFQ9 (clade 2). (C) Intraradical
hyphae and a microsclerotia formed by the isolate MFQ9 (clade 2). (D) Intraradical hyphae and chlamydospore-like structures of the isolate TU56 (clade 17) within the

with these isolates died within 2 weeks. In most cases, the leeks
did not show considerable difference from the control plants.

The isolates showed diverse colony morphology, growing
characteristics, color, and shape on agar plates. The colony of
some isolates covered the whole 5-cm Petri dish, and other
colonies remained only 1.0-1.5 cm in diameter. The presence
of visible/coloring exudates was not common, and sporulation
was observed only in case of a few Aspergillus and Penicillium
isolates. Some isolates stained the media (e.g., isolates of clades
1 and 2). Based on molecular phylogenetic identification, the
majority of the clades could be identified at species or genus level,
whereas others could be identified only at higher taxonomic levels
(Supplementary Table S3). Pleosporales (Dothydeomycetes) was
the most represented order with 81 isolates and 13 clades (81/13),
followed by Hymenochaetales (13/1) and Hypocreales (9/7).
The blast analysis revealed similarities in the isolates with root
endophytes from grasslands of other geographic regions; for
instance, Periconia macrospinosa (clade 3), Microdochium bolley
(clade 30), or the recently described genus, Darksidea (clade
1), from taxa that are relatively frequent and are known root
endophytes of grasses of semiarid areas (Mandyam et al., 2010;
Knapp et al., 2012, 2015; Jumpponen et al.,, 2017). Altogether,
20 lineages (clades 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 15, 19, 22, 25,
26, 27, 29, 30, 33, and 34) comprising more than two thirds of
the isolates gathered (95) showed unambiguous ITS sequence
similarities (at least 99%) with blast hits from different grassland
ecosystems (Supplementary Table S3). Based on the blast
analyses and the multilocus phylogenies, a significant number of
the clades represents presumably novel taxa (Figures 4, 5, 6 and
Supplementary Table S3).

Our isolates represented several families within Pleosporales
(Figure 4). The largest group with the highest number of
isolates was clade 1 representing Darksidea species within
Lentitheciaceae. The isolates in clades 5-7 belong to the genus
Laburnicola representing the Didymosphaeriaceae along with
clade 4, a distant and novel lineage. Clades 2 and 3 represent
Flavomyces fulophazii and P. macrospinosa in Periconiaceae,
while Phaeosphaeriaceae and Pleosporaceae comprise clades 8 and
9, and clades 10-12, respectively. The three isolates of clade 13
represent another novel taxon in Melanommataceae (Figure 4).

Phylogenetic analysis of our representative isolates and
related sequences in Sordariomycetes revealed numerous novel
lineages (Figure 5). Clades 20-24 comprised possibly different
Fusarium species in Nectriaceae, and isolates of clades 25
and 26 represented the family Bionectriaceae. Low numbers of
endophytic isolates in clades 27-29 represented Myrmecridiaceae,
Diaporthaceae, and Magnaporthaceae, respectively. The three
isolates representing clade 30 showed similarities with M. bolley
and belonged to Microdochiaceae (Figure 5).

As mentioned above, clade 1 encompassed a large number of
isolates and represented the diverse genus, Darksidea (Figure 6).
The phylogenetic analysis based on the ITS, TEF, and LSU regions
of the isolates showed that most of the isolates represented
D. alpha and grouped together with the well-described strains,
including the ex-type strain CBS 135650. In addition to the sensu
stricto D. alpha group, MD06 and MDO07 represent a closely
related lineage similarly to MD61, TU57, and TU58, and the
solely branching MD62. These lineages may belong to D. alpha
or represent novel taxa (Figure 6). Eight isolates represented a
diverse lineage as a sister group of the monotypic species D. zeta.
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The isolate TUO5 forms a clade with D. delta isolates, and two
distinct isolates, TU37 and MD12, might represent novel species
within Darksidea (Figure 6).

The multilocus phylogenetic analysis showed that, among
related basidiomycetous sequences from GenBank, our isolates
represented four lineages (Figure 7), which were already shown
by the ITS phylogeny (Figure 2). Each lineage represented
distinct lineages and potential new taxa within Agaricomycotina.
Clades 32, 33, and 34 represented distant families in Agaricales,
but their phylogenetic position is ambiguous. Clade 31,
represented by three isolates, belonged to Hymenochaetaceae and
formed a well-supported new lineage within Hymenochaete.

DISCUSSION

Dark septate endophytes are a widely distributed group of
fungi, and, based on their dominance in belowground tissues
of plants of grasslands worldwide (Jumpponen, 2001; Kovacs
and Szigetvari, 2002; Mandyam and Jumpponen, 2005; Herrera
et al, 2010; Su et al,, 2010; Fracchia et al., 2011; Knapp et al,,
2012; Loro et al., 2012), these endophytes are hypothesized to be
important functional members of fungal communities of harsh,
nutrient-limited environments, such as arid and semiarid areas.
The presence of the DSE hyphae and different structures in
S. krylovii roots seems remarkable, similar to previous findings
both in relatively close and distant grasslands. Hou et al. (2019),
in their study, found extensive colonization in three plant
species, including grasses investigated in semiarid continental
sand lands of northern China. The abundant DSE colonization of
gramineous plants has been reported from grassland ecosystems
in various countries and continents (e.g., Kovacs and Szigetvari,
2002; Mandyam and Jumpponen, 2008; Loro et al., 2012; Li et al.,
2015; Xie et al., 2017).

Although knowledge of root endophytes of gramineous plants
in Mongolian grasslands is poor, important findings have been
published about the root-associated fungal communities in the
so-called Inner Mongolian Steppe located in China (e.g., Su et al.,
20105 Li et al., 2015; Xie et al., 2017). Su et al. (2010) investigated
the endophytic fungi associated with S. grandis in the Inner
Mongolia Steppe and, similar to our results, they found several
lineages such as Darksidea species, Fusarium redolens, M. bolley,
P. macrospinosa, and a basidiomycetous linage representing clade
34 in this study.

Because the isolates were collected from healthy, symptomless
root sections, we consider here these fungi to be root endophytes
according to the loose definition of endophytic fungi (see Wilson,
1995; Saikkonen et al., 1998). Based on the results of the in vitro
tests we performed in this study with representative isolates
and the non-host monocot leek, which was previously used for
artificial tests for DSE fungi (Mandyam et al., 2010; Knapp et al.,
2012), we found that representatives of most lineages showed,
with few exceptions, no obvious negative effects on the leek.
Six isolates caused visible symptoms and represented five clades
belonging to novel basidiomycetous and Laburnicola lineages,
and to the complex Fusarium and Aspergillus genera, none of
which are typical or known DSEs. However, in many cases,
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FIGURE 6 | Maximum likelihood (RAXML) phylogenetic tree of Darksidea
isolates and representative sequences from Sordariomycetes based on the
analysis of three loci (LSU, ITS, and TEF). Bayesian posterior probabilities
(>90) are shown before slashes; ML bootstrap support values (>70) are
shown after slashes. Lentithecium clioninum KT1149A served as outgroup.
The names of isolates collected in this study are bolded. The scale bar
indicates 0.002 expected changes per site per branch.

Fusarium species live within plant tissues without causing visible
symptoms to the host, and can be important members of the
endophytic community of the root and shoot (Knapp et al,
2012; Pereira et al., 2018). They can even be beneficial to the
plant (Redman and Rodriguez, 2010). The negative effect of
the isolate MDO06, which represents a distinct Darksidea lineage
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FIGURE 7 | Maximum likelihood (RAXML) phylogenetic tree of representative
basidiomycetous isolates from Mongolia and representative sequences of the
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(>90) are shown before slashes; ML bootstrap support values (>70) are
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expected changes per site per branch.

together with MDO07 was unexpected. This is the first note on
negative effect in case of Darksidea isolates, which have never
been considered as pathogen using several isolates in the same
experimental setup (Knapp et al., 2012) and other in vitro systems
(e.g., Lietal, 2018).

Only some fungal taxa were represented by most of the
isolates; thus, these groups could be categorized as dominant or
at least common members of the root endophytic community
of the area. Ten clades were represented by only one isolate.
However, isolation frequency does not necessarily mean the level
of abundance in situ and could be the result of the bias of the

isolation technique or the number of samples taken. In this study,
we did not address quantitative questions and abundance of
certain lineages; nevertheless, the dominance of some clades, such
as the Darksidea species complex (clade 1) or Hymenochaete sp.
(clade 31), was obvious.

One fourth of the isolates belongs to several lineages of
the recently described and worldwide distributed diverse genus,
Darksidea (Knapp et al., 2015), which consists mainly of grass
or grassland associated fungi that dominate roots in prairies and
steppes of Europe and North America (Porras-Alfaro et al., 2008;
Knapp etal., 2012, 2015), and also occur in grasses of coastal sand
dunes and marine cliffs (Sinchez-Mdrquez et al., 2008; Pereira
et al., 2018). Species of Darksidea are common and dominant
members of the DSE communities in grassland ecosystems, and
have been reported from several countries (see Knapp et al,
2015). The genus was also found in the eastern region of the
Steppe belt in roots of the grass S. grandis in the semiarid steppe
zone of the Inner Mongolian Plateau (Su et al., 2010). Li et al.
(2018) reported on Darksidea isolates collected from a super-
xerophytic shrub, Gymmnocarpos przewalskii in Anxi Extra-Arid
Desert National Nature Reserve and the Minqin Liangucheng
National Nature Reserve, Gansu Province, northwest China. Hou
et al. (2019) also isolated related fungi from roots of the clonal
semishrub Hedysarum leave and the gramineous Psammochloa
villosa in the Mu Us sandland, also in northwest China. This
genus comprises six described species (Knapp et al, 2015);
however, far more distinct lineages could be revealed within
Darksidea based on the numerous related sequences deposited
in public databases (e.g., Porras-Alfaro et al, 2008; Herrera
et al., 2010; Glynou et al,, 2016). Darksidea isolates are also
diverse in colony morphology and highly vary, which is in
contradiction with the similarity of their ITS or other DNA
regions (Knapp et al., 2015). Here, we present further Darksidea
isolates, representing several novel lineages within the genus, and
within the most frequent and complex species D. alpha. Based on
their presence in S. krylovii roots, Darksidea species might have
a fundamental role in the life and annual growth cycle of the
tussock. They might have a key role as a decomposer of dead roots
owing to the generally expanded carbohydrate active enzymes of
DSE fungi (Knapp et al., 2018). Based on our findings, we can
support the conclusion of Knapp et al. (2015) that Darksidea is
a common member of the core DSE community hypothesized to
be shared by semiarid grassland areas worldwide.

Clade 3 represents another lineage of grass-associated
DSEs, P. macrospinosa, a genomic analysis of which has
been published recently by Knapp et al. (2018). This was
the first comparative genomics of a DSE species of grasses.
P. macrospinosa is distributed worldwide and common in grass-
dominated ecosystems of the North American prairies and
European grasslands (Mandyam et al., 2010, 2012; Knapp et al,,
2012; Mandyam and Jumpponen, 2014; Jumpponen et al., 2017)
and might have an important role at these areas owing to its
frequency. That species, among others, also was isolated by Su
et al. (2010), from roots of another Stipa species, S. grandis, in
Inner Mongolia. Jumpponen et al. (2017) during a field survey
of rhizobiomes, comparing communities of different grassland
sites across the prairies of the United States, found that after
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Gibberella/ Fusarium species (~23%), Periconia was the second
most abundant genus, comprising almost 15% of the isolates
collected. This reinforced the belief that it is of major importance
in these fields. In Periconiaceae, another lineage, the recently
described F. fulophazii (clade 2) was found (Knapp et al., 2015),
which is also a common grass endophyte in sandy grasslands of
the Great Hungarian Plain; however, prior to this study, it was
found only in Hungary.

A significant portion, more than one-fifth of the isolates, were
basidiomycetes, representing four distinct lineages. This is quite
notable compared with root-colonizing endophytes isolated from
grasses in sites of the Eurasian steppe belt (e.g., Sdnchez-Marquez
etal., 2008; Su et al., 2010; Knapp et al., 2012), where the number
of isolates belonging to any basidiomycetous taxa was negligible.
This phenomenon may be the result of the diverse isolation
techniques mentioned in the literature, in which the media used
for isolation of the fungi growing from the root also differs.

Isolates of clades 5-7 grouped with Laburnicola species based
on the analyses of ITS, LSU and SSU sequences, and seem to
represent novel species within the genus, which consists mainly
of saprobes on Laburnum debris (Wanasinghe et al., 2016).

Although clade 25 comprised fungi with 100% ITS similarity
with an isolate (MK808464) from a grassland in the North
American Great Plains, their further closest matches (less
than 92% similarity) were the Ijuhya species. This genus
comprises the newly described I. vitellina (Ashrafi et al,
2017), which destructively parasitizes eggs inside cysts of the
nematode Heterodera filipjevi, similarly to another recently
introduced taxon, Polyphilus sieberi, that also behaves as
common root endophyte but colonizing truffle ascomata, too
(Ashrafi et al., 2018).

More than half (60%) of the isolates collected from
S. krylovii belong to Pleosporales, which is the largest order
of Dothideomycetes (Zhang et al, 2012), and one of the
most represented orders in root-associated communities of
grassland ecosystems (Porras-Alfaro et al., 2008; Knapp et al,
2012; Jumpponen et al., 2017). It is worth noting the absence
of the widely studied helotialean DSE, Phialocephala fortinii
s.l.-Acephala applanata species complex (PAC), the common
and abundant group of endophytes in temperate and boreal
coniferous forested ecosystems, as well as other species in
Helotiales (Dean et al., 2013; Sieber and Griinig, 2013; Vohnik
et al, 2013). Instead of the helotialean dominance in forest
ecosystems, the pleosporalean fungi seem to be the common
dominant root endophytes in grassland ecosystems along the
Holarctic regions (Porras-Alfaro et al., 2008; Mandyam et al,
2010; Knapp et al., 2012, 2015; Jumpponen et al., 2017).

CONCLUSION

In the present work, we investigated root-colonizing fungal
endophytes of a common grass species of the steppes of
Mongolia, which represent extended grasslands suffering from
desertification and damage from anthropogenic activities (Liu
et al, 2013). Here, we gained isolates from the roots of
S. krylovii from the Mongolian grassland ecosystem, and carried

out molecular identification of the isolated fungi. Although
a majority of the isolates could be identified at the genus
or species level, distinct lineages, probably representing novel
taxa, are present among these endophytes. We have identified
numerous fungi, which were detected in steppes not only from
the Asian steppe ecosystems, but also from the prairies of North
America and the sandy grasslands of Europe. Common and
dominant lineages of grassland endophytes were also found
in this study. Therefore, our results indicate the presence of
common and dominant members of the DSE community of
grasslands worldwide and strengthen our previous hypotheses on
that core fungal community of those areas (Knapp et al., 2012).
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