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Vancomycin-resistant enterococci are troublesome pathogens in clinical settings
because of few treatment options. A VanA/VanM-type vancomycin-resistant
Enterococcus faecium clinical isolate was identified in Japan. This strain, named AA708,
harbored five plasmids, one of which migrated during agarose gel electrophoresis
without S1 nuclease treatment, which is indicative of a linear topology. We named
this plasmid pELF1. Whole genome sequencing (WGS) analysis of the AA708 strain
revealed that the complete sequence of pELF1 was 143,316 bp long and harbored
both the vanA and vanM gene clusters. Furthermore, mfold analysis and WGS data
show that the left end of pELF1 presumably forms a hairpin structure, unlike its right end.
The pELF1 plasmid was not digested by lambda exonuclease, indicating that terminal
proteins were bound to the 5′ end of the plasmid, similar to the Streptomyces linear
plasmids. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results were also
consistent with the exonuclease assay results. In retardation assays, DNAs containing
the right end of proteinase K-untreated pELF1 did not appear to move as well as the
proteinase K-treated pELF1, suggesting that terminal proteins might be attached to the
right end of pELF1. Palindromic sequences formed hairpin structures at the right terminal
sequence of pELF1; however, sequence similarity with the well-known linear plasmids
of Streptomyces spp. was not high. pELF1 was unique as it possessed two different
terminal structures. Conjugation experiments revealed that pELF1 could be transferred
to E. faecalis, E. faecium, E. casseliflavus, and E. hirae. These transconjugants exhibited
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not only high resistance levels to vancomycin, but also resistance to streptomycin,
kanamycin, and erythromycin. These results indicate that pELF1 has the ability to
confer multidrug resistance to Enterococcus spp. simultaneously, which might lead to
clinical hazards.

Keywords: enterococci, linear plasmid, conjugation, vancomycin-resistant enterococci, drug resistance

INTRODUCTION

Enterococci, a type of bacteria that are part of the human
intestinal microflora, can cause diseases in certain clinical
settings. Vancomycin-resistant enterococci, which emerged in
the 1980s, have now become important pathogens because of
few treatment options. VanA-type and VanB-type VREs are
predominant among the nine types of vancomycin resistance.
These VanA-type and VanB-type VREs produce a peptidoglycan
precursor ending in D-alanyl-D-lactate, which confers a higher
level of vancomycin resistance to Enterococcus spp. Furthermore,
VanM-type vancomycin-resistant bacteria, which also produce
the peptidoglycan precursor ending in D-alanyl-D-lactate, was
first reported in 2010. In Shanghai, the VanM-type VRE was
more prevalent than VanA-type VRE (Xu et al., 2010; Chen et al.,
2015). Recently, VREs that harbored both vanA and vanM gene
clusters were identified (Sun H.L. et al., 2019). These double-
positive strains exhibited high level resistance to vancomycin.
Until now, VanM-type VREs were only isolated in China and
Singapore (Teo et al., 2011).

Vancomycin resistance genes, usually encoded on mobile
genetic elements, including transposons or plasmids (Werner
et al., 2008), are disseminated via conjugative transfer (Arthur
and Courvalin, 1993). This plays an important role in the
horizontal spread of vancomycin resistance. Among mobile
genetic elements, a “plasmid” is originally considered an
extrachromosomal genetic element with circular topology
(Cornell et al., 2018). In contrast, linear DNA elements have
already been reported in various prokaryotes and eukaryotes
(Hinnebusch and Tilly, 1993; Cornell et al., 2018). Among them,
the first bacterial linear plasmid and linear chromosome was
detected in Streptomyces rochei and Borrelia spp., respectively
(Hayakawa et al., 1979; Saint Girons et al., 1994). Recently, linear
plasmids were described in Streptomyces, Nocardia, Rhodococcus,
Micrococcus, Brevibacterium, and Mycobacterium (Kalkus et al.,
1990; Picardeau and Vincent, 1997; Shimizu et al., 2001;
Dib et al., 2010, 2013). Plasmids are not unusual in clinical
Enterococcus strains, and they harbor virulence factors such as
genes responsible for resistance to antibiotics, cytolysin, and
bacteriocins (Clewell et al., 2014). However, to the best of our
knowledge, these plasmids are circular.

In this study, we characterized a multidrug-resistant 143-
kb plasmid harboring both the vanA and vanM gene clusters.
The topology of this plasmid was linear, and one of the ends
(left end) formed a hairpin-like loop, whereas the other end

Abbreviations: MLST, multilocus sequence typing; ORFs, open reading frames;
PFGE, pulsed-field gel electrophoresis; SDS, sodium dodecyl sulfate; Tap, telomere
associated protein; TPs, terminal proteins; Tpg, terminal protein genes; VRE,
vancomycin-resistant enterococci; WGS, whole genome sequence.

(right end) is presumed to be of the invertron type (Sakaguchi,
1990; Hinnebusch and Barbour, 1991; Hinnebusch and Tilly,
1993; Dib et al., 2015). In addition, it can be potentially
transferred to different enterococcal species and confer high
level of vancomycin resistance. Our study shows that this linear
plasmid pELF1 may become a significant clinical hazard.

MATERIALS AND METHODS

Strains
The bacterial strains used in this study are listed in Table 1.
Enterococcal cultures were grown in Todd-Hewitt broth (THB;
Difco, Detroit, MI, United States) at 37◦C.

Drug Susceptibility Test
Minimum inhibitory concentrations (MICs) of antibiotics were
determined using the agar dilution method. After each strain
was grown overnight in Mueller-Hinton broth (MHB; Nissui,
Tokyo, Japan), the cultures were diluted 1:100 with fresh broth.
Approximately 5 × 105 cells were spotted onto a series of
Mueller-Hinton agar (Eiken, Tokyo, Japan) plate containing the
appropriate test drugs. The plates were incubated at 37◦C. The
results were interpreted per the standards recommended by the
Clinical and Laboratory Standards Institute guidelines1.

Pulsed-Field Gel Electrophoresis (PFGE)
Pulsed-field gel electrophoresis was performed as described
previously (Nomura et al., 2012). Agarose plugs (1%) containing
embedded enterococci were treated with lysozyme (Roche
Diagnostics K.K, Minneapolis, MN, United States) solution
(10 mg/ml) at 37◦C for 6 h, followed by treatment with proteinase
K (Merck Millipore, Darmstadt, Germany) solution (60 mAnson
U/ml) at 50◦C for 48 h. After washing the plugs with wash buffer
(20 mM Tris-HCl, pH 8.0; 50 mM EDTA), proteinase K was
inhibited using phenylmethylsulfonyl fluoride (PMSF) solution
(20 mM Tris-HCl, pH 8.0, 50 mM EDTA, and 1 mM PMSF). The
plugs were digested at 37◦C for 20 min with 5 U of S1 nuclease
(Promega, Madison, WI, United States), and then subjected
to PFGE using a CHEF-MAPPER (Bio-Rad, Richmond, CA,
United States) according to the manufacturer’s instructions. To
prepare non-S1 nuclease-treated plugs, the step for S1 nuclease
treatment was omitted. The running condition was as follows:
pulse from 1.0 to 12 s during 15 h at 6.0 V/cm at 4◦C. After
separation using PFGE, the DNA bands, corresponding to pELF1,
were excised from the PFGE gel. To determine the physical
map of pELF1, the excised plugs containing pELF1 DNAs were

1http://clsi.org/
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separately digested at 37◦C for 24 h with 20 U of SalI-HF (New
England BioLabs, Ipswich, MA, United States), at 25◦C for 24 h
with 100 U of SmaI (New England BioLabs), at 37◦C for 24 h
with 150 U of EagI-HF (New England BioLabs), and at 37◦C for
24 h with 150 U of SacI-HF (New England BioLabs). These DNA
samples were then subjected to PFGE as described above.

Multilocus Sequence Typing (MLST)
Multilocus sequence typing was performed as described
previously (Homan et al., 2002). atpA, ddl, gdh, purK, gyd, pstS,
and adk were sequenced, and the obtained sequence data were
applied to Enterococcus faecium MLST databases2.

Whole Genome Sequence (WGS)
Analysis
AA708 was grown overnight in THB at 37◦C. Bacterial cells
were collected after centrifugation for 5 min at 12,000 × g,
and the total DNA was prepared using Gentra Puregene
yeast/bacteria kit (QIAGEN, Hilden, Germany). The DNA library
for Illumina Miseq was prepared using the Nextera DNA
Flex library preparation kit and Nextera DNA CD indexes
(Illumina, San Diego, CA, United States) according to the
manufacturer’s instructions and then sequenced as paired-end
reads on an Illumina MiSeq platform using a MiSeq reagent
kit v2 (300 cycles). On the other hand, the DNA library for
nanopore MinIon was prepared using the SQK-LSK108 ligation
sequencing kit according to the manufacturer’s protocol and then
sequenced on a MinION Flow Cell (R9.4.1). WGS statistics is
shown in Supplementary Table 1. After trimming the raw data,
reads were assembled de novo using Unicycler (Wick et al., 2017).
Minimap2 was used to visualize the short read alignments (Li,
2018). To obtain functional annotations, the assembled sequences
were submitted to the DFAST Pipeline3 and RAST Server4 (Aziz
et al., 2008; Brettin et al., 2015; Tanizawa et al., 2018).

Sensitivity of pELF1 or pMG2200 to
Exonuclease Treatment
S1 nuclease-untreated DNA bands excised from PFGE gels was
used for exonuclease treatment. After washing the excised plugs
with TE buffer, exonuclease treatment was performed using a
modified procedure described previously (Kinashi and Shimaji-
Murayama, 1991; Kalkus et al., 1993; Overhage et al., 2005;
Rose and Fetzner, 2006; Dib et al., 2010). The DNA bands were
digested with 100 U of exonuclease III (New England BioLabs) at
37◦C for 1, 2, or 3 h. In addition, the DNA bands were digested
with 10 U of lambda exonuclease (New England BioLabs) at
37◦C for 15 h.

To remove the single-stranded DNA, 1 U mung bean nuclease
(New England BioLabs) was used at 30◦C for 0.5 or 1 h. S1
nuclease-treated pMG2200 was used as a control for linearized
circular plasmid (Zheng et al., 2009).

2https://pubmlst.org/efaecium/
3https://dfast.nig.ac.jp/
4http://rast.theseed.org/FIG/rast.cgi
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Sodium Dodecyl Sulfate (SDS)-PFGE and
Retardation Assay
To investigate protein binding, enterococci embedded in
plugs were treated with only lysozyme (non-proteinase K
treatment) and used for SDS-PFGE. SDS-PFGE was performed
as described previously (Stam et al., 1986; Kinashi and Shimaji-
Murayama, 1991; Ravel et al., 1998; Shimizu et al., 2001).
After adding SDS to both PFGE gel and running buffer to a
final concentration of 0.2%, SDS-PFGE was performed using
a CHEF-MAPPER (Bio-Rad) according to the manufacturer’s
instructions. After separation using SDS-PFGE, non-proteinase
K-treated DNA bands, corresponding to pELF1, were excised
from the SDS-PFGE gel. These plugs, in which the intact
proteins might be bound to pELF1, were used for the retardation
assay. After washing thrice with Tris-EDTA (TE) buffer,
restriction enzyme digestion was performed as described above.
PFGE was performed after the plugs were inserted into the
wells of a PFGE gel.

Conjugation Assay and Transfer
Frequency
Conjugation assays were performed as described previously
(Dunny et al., 1978). AA708 was used as the donor strain. FA2-2
(E. faecalis), BM4105RF (E. faecium), KT06RF (E. casseliflavus),
and ATCC9790RF (E. hirae) were used as the recipient strains.
Briefly, donor and recipient strains were grown overnight in
THB at 37◦C. The overnight culture was diluted 50-fold in fresh
THB, and then grown for 4 h at 37◦C. Each 100 µl donor or
recipient culture was mixed with 5 ml THB. The donor and
recipient mixture were pressed through a 0.22 µm nitrocellulose
filter (Merck Millipore, Darmstadt, Germany) using a syringe.
After mating for 5 h on a THB plate, the nitrocellulose filter was
washed with 1 ml THB via vortexing. The mating mixture was
plated on a selective THB plate containing rifampicin (25 mg/L),
fusidic acid (25 mg/L), and VAN (12 mg/L), and then incubated
for 24 h. For the second conjugation assay, ATCC9790RF/pELF1
(E. hirae) and BM4105SS (E. faecium) were used as the donor
and recipient strains, respectively. The selective THB plate for
the second conjugation contained streptomycin (2048 mg/L),
spectinomycin (256 mg/L), and VAN (5 mg/L). The transfer
frequency was calculated as the number of transconjugants per
donor cell. The values shown are the mean of three independent
experiments with standard error.

RESULTS

VanA/VanM-Type Vancomycin-Resistant
E. faecium
During the evaluation of the multiplex PCR assay for VRE in
our previous reports, we had identified a VanA/VanM-type
vancomycin-resistant E. faecium strain from a > 60 year-old
patient in Japan, which was identified as a VanA-type VRE strain
(Nomura et al., 2018). This strain was detected from the stool
sample. Unfortunately, we could not obtain detailed information
regarding this patient. Similar to the results of a previous

report (Sun H.L. et al., 2019), this strain was highly resistant
to VAN (MIC = 256 mg/L) but showed intermediate resistance
to teicoplanin (TEC) (MIC = 8 mg/L). Furthermore, the
strain was also resistant to ampicillin, gentamicin, kanamycin,
streptomycin, erythromycin, ciprofloxacin, cefmetazole,
ceftriaxone, and meropenem (Table 1). MLST analysis revealed
that this strain belonged to a ST78 lineage (allelic profile, 15-1-1-
1-1-1-1) that has been reported to cause the hospital outbreak of
VRE (Homan et al., 2002; Hsieh et al., 2010; Freitas et al., 2016).

PFGE Analysis of the AA708 Strain
S1 nuclease treatment is used to convert a supercoiled plasmid
into linear molecules (Barton et al., 1995). To examine the
plasmid content in AA708, S1 nuclease-treated DNA was
subjected to PFGE. This analysis revealed that this strain harbors
several plasmids (Figure 1). During the PFGE analysis, we
noticed that one of these plasmids could be detected without
linearization (Figure 1A), which was named pELF1 (enterococcal
linear form plasmid). A previous report demonstrated that
there was no difference in the electrophoretic mobility of linear
plasmids treated with or without S1 nuclease (Cornell et al.,
2018). To determine the pELF1 topology, we performed PFGEs
under different running conditions. No difference in relative
mobility is observed using different pulse time if the plasmid is
linear (Shimizu et al., 2001; Dib et al., 2010). As expected, there
was no change in the mobility when compared with the DNA size
marker (Figures 1A–C).

WGS Analysis of the AA708 Strain and
Physical Map of pELF1
To determine the genetic structure, WGS using Illumina Miseq
and Nanopore Minion was performed for the AA708 strain.
Illumina data and Nanopore data were assembled de novo using
Unicycler (Wick et al., 2017). The complete sequences of the
genomic DNA of AA708, four circular plasmids, and one linear
plasmid (pELF1) were obtained (Table 2).

To examine the rep sequence, we applied the sequence of
pELF1 to PlasmidFinder 2.0; however no hit was found although
the threshold for minimum percentage identity was 50% (Jensen
et al., 2010; Carattoli et al., 2014) (Table 2). After annotation
using the DFAST pipeline (Tanizawa et al., 2018), the vanA
and vanM gene clusters were localized on pELF1. The vanA
gene cluster was located on the mobile Tn1546-like element on
pELF1. The nucleotide sequence of each vanA resistance gene was
identical to that of BM4147, which showed high level of VAN
resistance (Brisson-Noel et al., 1990; Arthur et al., 1993). Two
copies of IS1216V and a IS1542 were inserted in the Tn1546-
like element (Figure 2A). This type of Tn1546-like element
was a type II element, that was predominantly disseminated in
hospitals in mainland China (Zheng et al., 2007). In contrast, the
nucleotide sequence of the vanM gene cluster was identical to
that of Efm-HS0661, which was the first VanM-type VRE isolated
in Shanghai (Xu et al., 2010). Two IS1216E elements surrounded
the vanM gene cluster were located in the same direction at both
ends of the cluster (Figure 2A). This structure of the vanM gene
cluster was identical to that of SRR22, which exhibited high level
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FIGURE 1 | PFGE of S1 nuclease-treated or -untreated DNA of the AA708 strain in different running conditions. (A) The pulse time was from 1.0 to 23 s during
18.5 h of electrophoresis. Lanes: Lambda Ladder PFG Marker (NEB); S1 nuclease-untreated DNA; S1 nuclease-treated DNA. (B) The pulse time was from 50 to
90 s during 22 h of electrophoresis. Lanes: Lambda Ladder PFG Marker (NEB); S1 nuclease-untreated DNA; S1 nuclease-treated DNA. (C) The pulse time was from
1.0 to 12 s during 15 h of electrophoresis. Lanes: Lambda Ladder PFG Marker (NEB); S1 nuclease-untreated DNA; S1 nuclease-treated DNA.

resistance to VAN (Sun L. et al., 2019). The aadE-sat4-aphA-3
gene cluster, which encodes streptomycin, streptothricin, and
kanamycin resistance, was also identified in pELF1 (Werner et al.,
2001). This cluster contained ISEfm1 and ISEfa11 transposases,
leading to the interruption of sat4. In addition, ermB, which
encodes erythromycin resistance, was detected downstream of
aphA-3 (Lim et al., 2006) (Figure 2A). With the exception of sat4,
all other genes were intact. Using the RAST annotation pipeline,
the putative transfer-related genes ftsK, parA, and repB of the
Rep_2 superfamily, which encode an initiation protein, were also
identified on pELF1 (Bentley et al., 2004; Aziz et al., 2008; Brettin
et al., 2015) (Figure 2B).

TABLE 2 | Detailed information regarding the plasmid contents of AA708.

Plasmid2

Plasmid1 (pELF1) Plasmid3 Plasmid4 Plasmid5

Size of each plasmid (bp) 193,900 143,316 63,548 6,326 6,173

Topology of plasmida Circular Linear Circular Circular Circular

Results of plasmid finderb repUS15 No hit rep17 No hit rep11

aWGS was performed using Illumina Miseq and Nanopore Minion and the
data were assembled using Unicycler (Wick et al., 2017). b In silico typing was
performed using PlasmidFinder (https://cge.cbs.dtu.dk/services/PlasmidFinder/)
(Jensen et al., 2010).

To investigate the structure of the left end of pELF1, we
carefully visualized the short read alignments to the prototype
sequence at the left end of pELF1 (Figure 3). In the prototype
sequence, approximately 5-kb inverted tandem repeat sequences,
which were interspaced by four nucleotides (5′-TATA-3′),
were detected (Figure 3A). This result was supported by the
existence of several ultra-long reads (using the Nanopore system)
encompassing these two 5-kb inverted repeat sequences. The
coverage of short reads in this area was lower than that in
other areas, and was the lowest at the center of these inverted
tandem repeat sequences (Figure 3A). mfold analysis was used
to investigate whether these inverted tandem repeat sequences
formed a hairpin and double strand (Zuker, 2003). As expected,
the mfold indicated that the left end formed a hairpin structure
(Figure 3B). The sequence of the hairpin loop was 5′-TATA-3′.
However, we could not detect the same hairpin structure
in the right end.

We constructed physical maps of pELF1. Lysozyme and
proteinase K-treated pELF1 was excised from the PFGE gel
and digested with SalI, SmaI, or EagI, followed by PFGE
(Figures 2C, 4). Based on the complete sequence data of pELF1,
the number of cleavage sites for SalI, SmaI, or EagI was one, one,
or two, respectively. As expected, each fragment number and the
estimated sizes of the restriction fragments were consistent with
those obtained from the complete sequence data (Figures 2C, 4).
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FIGURE 2 | Genetic structure of vancomycin resistance, other antimicrobial drug resistance genes, and pELF1. (A) The genetic structure of vancomycin resistance
genes and other antimicrobial drug resistance genes is shown. Elements IS1216V and IS1542 were inserted in the Tn1546-like element harboring vanA gene cluster.
In contrast, two IS1216E elements were located in the same direction at both ends of the vanM gene cluster. aadE, sat4, aphA-3, and ermB were located in pELF1
in this order. sat4 was interrupted by ISEfm1 and ISEfa11. (B) The schematic structure of pLFE1 is shown. The left terminal end formed a hairpin structure. On the
other hand, the right end is presumed to be of the invertron type. Drug resistance genes as well as presumed replication machinery and transfer machinery genes
are shown. The schematic structure was prepared using easyfig (Sullivan et al., 2011). (C) Restriction map of pELF1 (143.3 kb) is shown. A single SacI, SalI, and
SmaI site each and two EagI sites are present in pELF1. The fragments produced by these for restriction enzymes are denoted by letters.

Analysis of Exonuclease Treatment for
pELF1
Contrary to the hairpin structure, the other type of linear plasmid
is of the invertron type, which is characterized by termini
attached to TPs (Sakaguchi, 1990; Hinnebusch and Tilly, 1993;
Dib et al., 2015). Invertron types are more frequent and have
been studied genetically. These TPs are covalently bound to
the 5′-end and are involved in maintaining plasmid integrity
and for telomere replication (Bao and Cohen, 2001; Yang et al.,
2002; Tsai et al., 2008; Dib et al., 2015). As TPs are attached
to the 5′ end of the linear plasmid, the latter are insensitive to
5′–3′ exonuclease (lambda exonuclease), but sensitive to 3′–5′
exonuclease (exonuclease III) (Kinashi and Shimaji-Murayama,
1991; Kalkus et al., 1993; Overhage et al., 2005; Rose and Fetzner,
2006; Dib et al., 2010). According to WGS analysis, the right
end of pELF1 does not form a hairpin structure. We performed
the exonuclease digestion analysis of pELF1 to investigate the
structure of the right end. When both lysozyme and proteinase

K-treated pELF1 was treated with exonuclease III, pELF1 was
completely degraded (Figure 5A). In contrast, pELF1 did not
degrade when treated with lambda exonuclease (Figure 5B). To
remove single-stranded DNA, we used mung bean nuclease for
lambda exonuclease-treated pELF1 (Kalkus et al., 1993; Rose and
Fetzner, 2006); however, mung bean nuclease could not digest the
exonuclease-treated plasmid (Figures 5B,C).

SDS-PFGE and Retardation Gel Assay
for pELF1
Usually, linear plasmids cannot move into a gel without
proteinase K pretreatment as TPs are bound to these linear
plasmids (Stam et al., 1986; Kinashi and Shimaji-Murayama,
1991; Ravel et al., 1998). Stam et al. (1986) reported that intact
protein-linear plasmid complexes can migrate into the SDS-
containing gel and running buffer as SDS unfolds the proteins
(Ravel et al., 1998). In agreement with this, pELF1 without
proteinase K treatment did not migrate, and remained at the
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FIGURE 3 | Visualization of the left-end sequence of pELF1. (A) Minimap2 was used to map short reads to the left-end sequence of pELF1 (Li, 2018). Dark arrows
represented completely identical inverted direct repeats (IDR). These IDRs confronted each other at the region enclosed in a square. The nucleotide sequences in the
square are shown below. (B) The structure of the left end of pELF1 was predicted using M. Zuker’s mfold server (http://unafold.rna.albany.edu/?q = mfold/DNA-
Folding-Form) (Zuker, 2003). ∗1 indicates the sequence of the hairpin structure in the left end of pELF1.

origin of electrophoresis in PFGE (Figure 6). In contrast, pELF1
without proteinase K treatment moved as much as the proteinase
K-treated pELF1 in SDS-PFGE (Figure 7). pELF1 excised from
SDS-PFGE gel was believed to be attached to intact proteins,
which resulted in its retention at the origin of electrophoresis
in PFGE (Supplementary Figure 1). For the retardation assay,

we used the proteinase K-untreated pELF1 excised from the SDS-
PFGE gel. To confirm the retardation of the right end of pELF1,
proteinase K-treated or untreated pELF1 were digested with SacI
and SmaI (Figure 8). In the lane for SacI-digestion, a lower
band (fragment I in Figure 2C) of the proteinase K-untreated
pELF1 did not appear to move and was retained in the well
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FIGURE 4 | PFGE of the restriction fragments of pELF1 with proteinase K
treatment. Lanes: Low Range PFG Marker; proteinase K-treatment only;
proteinase K-treated SalI digests; proteinase K-treated SmaI digests;
proteinase K-treated EagI digests. N. D., not digested.

(Figure 8, lane 4). In the lane for SmaI-digestion, the higher
band (fragment D in Figure 2C) of proteinase K-untreated pELF1
appeared to be partially retained in the well, compared to the

FIGURE 6 | PFGE of the AA708 strain. Lanes: Low Range PFG Marker;
AA708 without proteinase K treatment; AA708 with proteinase K treatment;
AA708 with both proteinase K and S1 nuclease treatment.

proteinase K-treated pELF1 (Figure 8, lane 6). These retained
bands included the right end of pELF1, indicating that proteins
might be attached to these DNAs (Figures 2B,C).

FIGURE 5 | Sensitivity of pELF1 or linearized pMG2200 to exonuclease III or lambda exonuclease and mung bean nuclease treatment. (A) Sensitivity of pELF1 to
exonuclease III treatment. Lanes: Lambder PFG Ladder; pELF1 without exonuclease III treatment; pELF1 with exonuclease III treatment (1 h); pELF1 with
exonuclease III treatment (2 h); pELF1 with exonuclease III treatment (3 h). (B) Sensitivity of pELF1 or (C) linearized pMG2200 to lambda exonuclease and mung
bean nuclease treatment. (B) Lanes: Lambder PFG Ladder; pELF1 without lambda exonuclease and mung bean nuclease treatment; pELF1 with lambda
exonuclease treatment only; pELF1 with both lambda exonuclease and mung bean nuclease treatment. (C) Lanes; linearized pMG2200 without lambda exonuclease
and mung bean nuclease treatment; pMG2200 with lambda exonuclease treatment only; linearized pMG2200 with both lambda exonuclease and mung bean
nuclease treatment.
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FIGURE 7 | SDS-PFGE of the AA708 strain. Lanes: Low Range PFG Marker;
AA708 with proteinase K treatment; AA708 without proteinase K treatment;
AA708 with proteinase K and S1 nuclease treatment.

Secondary Structure of the Right End of
pELF1
In linear plasmids of Streptomyces, the terminal sequences
(telomere) contain abundant palindromic sequences that can
form secondary structures (Huang et al., 1998; Yang et al.,
2017). These plasmids replicate bidirectionally from an internal
origin, resulting in 3′ leading strand overhangs (Chang and
Cohen, 1994). These single-stranded overhangs form hairpin
structures that are involved in protection and replication of the
linear plasmids (Huang et al., 1998; Mingyar et al., 2018). mfold
was used to examine the right terminal sequences of pELF1
(Zuker, 2003). The analysis revealed that the 3′ leading strand
overhangs of the right end of pELF1 harbored some palindromic
sequences; however, this sequence was not consistent with the
highly conserved sequence of Streptomyces (Mingyar et al., 2018)
(Supplementary Figure 2). In contrast to typical Streptomyces
telomeres, most hairpin loops in pELF1 consisted of four
nucleotides. Only one GCGXAGC central motif, which was
the recognition site of TPs, was detected in the palindromic
sequence I of pELF1 (Kalkus et al., 1998; Bao and Cohen, 2003)
(Supplementary Figure 2).

Conjugation Assay
Horizontal transmission of VAN resistance genes via mobile
genetic elements and clonal dissemination is a serious problem

FIGURE 8 | Retardation assay of pELF1 DNAs excised from PFGE or
SDS-PFGE gels. DNA bands of pELF1 were excised from PFGE gel
(proteinase K treatment +) or SDS-PFGE gel (proteinase K treatment –), and
digested with SacI (lanes 3 and 4), and SmaI (lanes 5 and 6). After digestion,
the samples were subjected to PFGE. MM, Low Range PFG Marker; 1, pELF1
excised from PFGE gel; 2, pELF1 excised from SDS-PFGE gel; 3,
SacI-treated pELF1 excised from PFGE gel; 4, SacI-treated pELF1 excised
from SDS-PFGE gel; 5, SmaI-treated pELF1 excised from PFGE gel; 6,
SmaI-treated pELF1 excised from SDS-PFGE gel. N. D.; not digested.

in clinical settings. In addition, conjugative linear plasmids of
Streptomyces have already been reported (Chen et al., 1993;
Hosted et al., 2004). This is a matter of concern as pELF1 harbors
vanA and vanM gene clusters (Figures 2A,B). Conjugation
experiments were performed to confirm the transferability of
pELF1. We identified the transfer of pELF1 to FA2-2 (E. faecalis),
BM4105RF (E. faecium), ATCC9790RF (E. hirae), and KT06RF
(E. casseliflavus). pELF1 transferred at frequencies of 10−5,
10−8, 10−8, and 10−3 per donor cell to FA2-2, BM4105RF,
ATCC9790RF, and KT06RF, respectively (Supplementary
Table 2). pELF1 conferred VAN resistance and other drug
resistances to these laboratory strains (Table 1). In addition,
PFGE revealed that pELF1 of these transconjugants not treated
with S1 nuclease can also migrate in the gel (Supplementary
Figure 3). Moreover, we performed a secondary conjugation
experiment with pELF1. ATCC9790RF/pELF1 and BM4105SS
were used as the donor and recipient strains, respectively. pELF1
was transferred from the donor to the recipient strain, and pELF1
in the secondary transconjugant strain (BM4105SS/pELF1) also
had a linear topology (Supplementary Figure 4A).

DISCUSSION

The transfer of a plasmid containing antimicrobial resistance
genes often occurs in Enterococcus spp. and plays an important
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role in dissemination of drug resistance genes (Zheng et al.,
2009; Yin et al., 2018). Previously, many linear plasmids have
been reported, especially in Streptomyces spp.; however, linear
plasmids have not been reported in Enterococci. In this report,
we describe a linear plasmid harboring the vanA and vanM gene
cluster. pELF1 harbored vanA and vanM gene clusters, showing
high level of vancomycin resistance (Table 1).

Since the first isolation of VanM-type VRE in Shanghai in
2006, the incidence of VanM-type VRE has been increasing
in clinical settings in China (Xu et al., 2010; Chen et al.,
2015; Sun H.L. et al., 2019; Sun L. et al., 2019). The
vanM gene cluster spread among unrelated enterococci via
in vivo plasmid transfer (Sun L. et al., 2019). Recently,
VRE harboring both vanA and vanM gene clusters were
reported (Sun H.L. et al., 2019). The report described that
the ST78 lineage is predominant among VanA/VanM-type
vancomycin-resistant E. faecium in China (Chen et al.,
2015; Sun L. et al., 2019). Our result was consistent with
the observations of these reports. In addition, pELF1 can
be transferred to other Enterococcus spp. in vitro and it
encoded multiple antimicrobial drug resistance genes, including
aadE, aphA-3, and ermB (Figures 2A,B, and Supplementary
Figure 3). The drug-susceptibility test of transconjugants
showed that pELF1 conferred STR, KM, and ERY resistance
along with VAN resistance (Table 1). Taken together, this
indicated that enterococci acquiring pELF1 showed multidrug
resistance simultaneously and could survive under the selective
pressure of these drugs. It also suggested that pELF1 in
transconjugants such as E. faecium, E. faecalis, E. casseliflavus,
and E. hirae had linear topology (Supplementary Figure 3).
To examine the transferability of pELF1 in a transconjugant,
we performed a secondary conjugation experiment between the
ATCC9790RF/pELF1 (E. casseliflavus, donor) and BM4105SS
(E. faecium, recipient) strains. This secondary conjugation was
successful, and S1 PEGE results show that both the primary
and secondary transconjugants did not harbor other plasmids
except pELF1, suggesting that pELF1 was self-transmissible
rather than mobilizable (Supplementary Figure 4). Transfer
to other Enterococcus spp. and maintenance therein indicated
that pELF1 harbored transfer-related and replication-related
genes. In fact, pELF1 harbored regions of homology to the
gene encoding cell division protein FtsK, which is possibly
involved in the transfer of the Streptomyces linear plasmid
pSLV45 (Hosted et al., 2004). parA of the partitioning
protein (ParA) gene family, which is expected to contribute
to low-copy linear plasmid segregation, and repB of the
Rep_2 superfamily, encoding an initiation protein, were also
detected (Bentley et al., 2004) (Figure 2B). In addition,
the plasmid harbored several ORFs encoding hypothetical
proteins (Figure 2B).

Some bacteriophages are known to be in linear form in
extrachromosomes. For example, EF62phi, which was detected in
E. faecalis 62, is linear (Brede et al., 2011). Many bacteriophages
are found among enterococci, and the size of enterococcal
phages can reach several 100 kb (Clewell et al., 2014). It
is therefore extremely difficult to differentiate between linear
plasmids and phage genomes based on genomic structure or size

(Dib et al., 2015). Although we cannot exclude the possibility
that pELF1 is an enterococcal phage, pELF1 did not harbor
phage-related genes.

pELF1 harboring the vanA and vanM gene cluster migrated
into the gel without S1 nuclease treatment, and the mobilities
of the S1 nuclease-treated and untreated pELF1 did not differ
(Figure 1), indicating that pELF1 was linear (Cornell et al., 2018).
WGS analysis also suggested that pELF1 was a linear element, and
the left end of pELF1 formed a hairpin structure. Minimap2 was
used to visualize the short read alignments at the left end of pELF1
(Figure 3). We noticed that the coverage of short reads in the
5-kb inverted tandem repeat sequences was approximately half
of that in the other area (Figure 3A). Minimap2 mapped short
reads to a reference sequence only once (Li, 2018). If the sequence
of the 5-kb inverted tandem repeats is correct, the coverage of
this area did not decrease. Based on the result of mfold, these
findings indicated that the 5-kb inverted tandem repeat sequences
formed a hairpin structure (Figure 3B). In addition, the size
of the complete sequence of pELF1 was consistent with the
result of PFGE analysis and the physical map (Figures 1, 2C, 4
and Table 2).

The result of the exonuclease treatment revealed protein-
binding to the plasmid, especially to the 5′ end of pELF1. Reports
show that small peptides are still bound to the 5′ end of DNA
after proteinase K treatment (Goshi et al., 2002). These peptides
were presumed to prevent digestion by lambda exonuclease.
Without proteinase K treatment, pELF1 could not migrate in
PFGE gel; however, in SDS-PFGE gel, this could move at the
same speed as proteinase K-treated pELF1 (Figure 7). This
also suggested that the proteins were bound to pELF1. As the
left end formed a hairpin structure, we hypothesized that the
protein was bound to the 5′ end of the left end of pELF1. The
results of the retardation gel assay were consistent with this
result (Figure 8).

There are several reports regarding telomere sequences, TPs,
and the replication mechanism of linear chromosomes, and
plasmids, especially of Streptomyces spp. (Huang et al., 1998;
Bao and Cohen, 2001; Yang et al., 2002, 2017; Huang et al.,
2007; Zhang et al., 2009; Mingyar et al., 2018). The 3′ leading
strand overhangs of Streptomyces linear DNA elements had six
palindromic sequences. Telomere associated protein, which is
essential for the replication of Streptomyces linear DNA elements,
binds to palindrome II and III sites, leading to the recruitment
of Tpg (Bao and Cohen, 2003). The Tap-Tpg complexes are
involved in end patching using palindrome I as the template
(Yang et al., 2017). These palindromic sequences, especially
palindrome I, were highly conserved (Mingyar et al., 2018). In the
280 nucleotides of the right terminal sequence of pELF1, mfold
detected 10 palindromic sequences forming hairpin structures;
however, the sequence similarity was not high. We identified
only one TP-binding motif in palindrome I of pELF1 (Kalkus
et al., 1998; Bao and Cohen, 2003). Reports show that telomere
sequence characteristics differ between pFiD188 of Rhodococcus
fascians and Streptomyces linear plasmids (Francis et al., 2012).
Based on the conjugation experiments, we considered that Tap
and Tpg genes are strategically located on pELF1. To identify Tap
and Tpg genes on pELF1, we used the Basic Local Alignment
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Search Tool (BLAST) and InterProScan (Jones et al., 2014). Some
proteins have a helix-turn-helix domain suggesting DNA-binding
functions; however, the size is not consistent with archetypal
Tap/Tpg proteins (Kirby and Chen, 2011). In addition, among
even Streptomyces, sequence similarity of Tap/Tpg might vary
(Suzuki et al., 2008). Hence, it is not surprising that there might
be Tap/Tpg and telomere sequence variation between the linear
plasmid of Enterococcus spp. and other linear plasmids. pELF1 is
therefore unique as it harbors two different terminal structures
(Figure 2B). Further studies are underway to determine the TPs
and telomere structures.

To our knowledge, this is the first report describing a linear
plasmid in enterococci, which may be a clinical hazard because
of its transferability to different enterococcal species carrying
multidrug resistance genes including the vanA and vanM gene
clusters. A limitation of this study is the lack of epidemiological
analysis. Owing to the potential hazard in clinical settings,
further study is required to examine the prevalence of linear
plasmids in clinical enterococcal isolates and the corresponding
transfer mechanism.
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