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Once bound to the epithelium, pathogenic bacteria have to cross epithelial barriers to invade 
their human host. In order to achieve this goal, they have to destroy the adherens junctions 
insured by cell adhesion molecules (CAM), such as E-cadherin (E-cad). The invasive bacteria 
use more or less sophisticated mechanisms aimed to deregulate CAM genes expression or 
to modulate the cell-surface expression of CAM proteins, which are otherwise rigorously 
regulated by a molecular crosstalk essential for homeostasis. Apart from the repression of 
CAM genes, a drastic decrease in adhesion molecules on human epithelial cells can be obtained 
by induction of eukaryotic endoproteases named sheddases or through synthesis of their 
own (prokaryotic) sheddases. Cleavage of CAM by sheddases results in the release of soluble 
forms of CAM. The overexpression of soluble CAM in body fluids can trigger inflammation 
and pro-carcinogenic programming leading to tumor induction and metastasis. In addition, 
the reduction of the surface expression of E-cad on epithelia could be accompanied by an 
alteration of the anti-bacterial and anti-tumoral immune responses. This immune response 
dysfunction is likely to occur through the deregulation of immune cells homing, which is 
controlled at the level of E-cad interaction by surface molecules αE integrin (CD103) and lectin 
receptor KLRG1. In this review, we highlight the central role of CAM cell-surface expression 
during pathogenic microbial invasion, with a particular focus on bacterial-induced cleavage 
of E-cad. We revisit herein the rapidly growing body of evidence indicating that high levels of 
soluble E-cad (sE-cad) in patients’ sera could serve as biomarker of bacterial-induced diseases.

Keywords: bacterial invasion, bacteria-inducing cancer, pathophysiology, E-cadherin, sheddases

EPITHELIAL CADHERIN IN CELL-TO-CELL ADHESION AND 
CELL ACTIVATION

Cadherins (cad) belong to the superfamily of cell-adhesion molecules (CAMs) (Takeichi, 
1977; Nollet et  al., 2000; Angst et  al., 2001; Hulpiau and van Roy, 2009). Characterized by 
their adhesion properties mediated through repeated extracellular cad domains (ECs) under 
Ca2+ control, cad play a key role in cell-to-cell interactions (Hyafil et  al., 1981). Several 
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subtypes of cad are encoded in the human genome (Oda and 
Takeichi, 2011). These molecules were classified according to 
their tissue distribution: for example, the P prefix is used in 
P-cad (encoded by CDH3) to define placental cad, N-cad 
(encoded by CDH2 and CDH12) for neural cad, VE-cad 
(encoded by CDH5) for vascular endothelial cad, and E-cadherin 
(E-cad) (encoded by CDH1) for epithelial cad. The CDH1 
gene, located on chromosome 16q22.1, comprises 16 exons 
and 15 introns (Berx et  al., 1995), and it is transcribed into 
a 4.5Kb pre-mRNA that is spliced to generate the E-cad mRNA. 
Transcriptional repression of CDH1 gene is achieved by a 
range of transcriptional repressors that bind its promoter, 

including members of the SNAIL and ZEB gene families of 
zinc-finger transcription factors (Cano et al., 2000; Bolós et al., 
2003; Cadigan and  Waterman, 2012). Repression of CDH1 
gene can also be the result of CpG-island hypermethylation 
of its promoter, loss of heterozygosis at 16q22.1, and inactivating 
mutations (Berx et  al., 1998; Lombaerts et  al., 2006).

Initially described as liver cell adhesion molecule (L-CAM) 
and uvomorulin (Gallin et  al., 1983; Schuh et  al., 1986), E-cad 
is a single-pass type I  transmembrane glycoprotein of 120 kDa 
that plays a major role in cell polarity, intercellular adhesion, 
and tissue integrity (Ogou et  al., 1983; Niessen et  al., 2011; 
van Roy, 2014). It possesses five EC repeats with binding sites 

FIGURE 1 | Schematic representation of the E-cadherin (E-cad) interactions and signaling pathway. Newly synthesized E-cad are transported from the Golgi 
apparatus to the cell surface where they are available to engagement in intercellular interactions. The model presented reflects evidence that E-cad homodimers are 
involved in adherens’ junctions. Loss of E-cad expression in epithelia results in loosening of intercellular contacts. E-cad regulates the intracytoplasmic pool of α-cat 
and β-cat acts as a signal transducer molecule in response to upstream Wnt pathway (Fagotto, 2013). Briefly, the Wnt pathway is initiated by the binding of an 
extracellular Wnt ligand to a surface receptor composed of Frizzled, a seven transmembrane (7TM) molecule and low-density lipoprotein receptor-related protein 5 or 
6 (Lrp5/6). As a result of the Wnt pathway activation that mobilizes several intracytoplasmic molecules (including disheveled, adenomatous polyposis coli – APC 
binds axin and β-cat and inhibits glycogen synthase kinase 3β – and ΑΚΤ kinase) (Fang et al., 2007; MacDonald et al., 2009; Wu et al., 2009), free cytoplasmic β-cat 
destruction is inhibited and β-cat translocates to the nucleus. Once in the nucleus, β-cat activates expression of genes such as cyclin D1 or c-MYC, otherwise 
repressed by the T cell factor/lymphoid enhancer factor (TCF/LEF) (Gumbiner, 1995). To achieve trans-activation, β-cat recruits a range of nuclear co-factors 
including CBP/p300, Brg-1, and the adaptor protein BCL9 (Hecht et al., 2000; Barker et al., 2001; Kramps et al., 2002; de la Roche et al., 2008). Cad-free p120ctn 
can also trigger the nuclear translocation of β-cat through its association with the Vav2 small GTPase and activation of JNK kinase (Wu et al., 2009; Valls et al., 
2012). It is worth noting that TCF/LEF-binding sites have been identified in the CDH1 gene promoter, which may permit a feedback control loop where β-cat might 
activate E-cad mRNA production (Huber et al., 1996). E-cad expression can also be regulated by microRNAs (not shown), such as miR200, which favor E-cad 
mRNA expression (Gregory et al., 2008). Cells with greater E-cad abundance can sequester and thereby inhibit the ability of β-catenin to translocate to the cell 
nucleus to derepress the activity of its DNA-binding factor TCF/LEF. When unable to engage in interactions, E-cad enters an endocytic uptake and is directed to early 
sorting endosomes from which they can either be recycled back to the cell surface by recycling endosomes or routed from late endosomes to proteasome where 
they undergo degradation (for details see the reviews by (Niessen et al., 2011; Nava et al., 2013; McCrea et al., 2015). During infection with bacteria, the pathogen 
can either regulate the expression of the CDH1 gene and thereby the cell-surface abundance of E-cad or trigger the catalytic cleavage of E-cad. This can result in the 
release of a cytosolic pool of β-catenin acting as a downstream effector in the Wnt signaling pathway and induction of oncogenic signals. The sE-cad can associate 
with intact E-cad present on other cells to alter Cad-dependent cellular behavior. It can also interact with the EGFR molecule to activate the ERK signaling pathway.
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for Ca2+ (Shapiro et al., 1995). These predominantly homophilic 
E-cad dimerize in cis at the cell’s surface and the homodimer 
can then interact in trans with an adjacent E-cad homodimer 
on a neighboring epithelial cell to form adherens junctions 
(Boggon, 2002). However, E-cad can also exhibit heterophilic 
interactions in trans with the αEβ7 integrin, also called CD103 
antigen of T-lymphocytes, which generally lacks E-cad cell 
surface expression (Cepek et al., 1994; Sheridan and Lefrançois, 
2011) as well as it can bind the killer cell lectin receptor G1 
(KLRG1) expressed on T-lymphocytes and natural killer (NK) 
cells (Kilshaw, 1999; Ito et  al., 2006). Over-expression of E-cad 
can delay the rate of cell migration (Hermiston et  al., 1996). 
Loss of E-cad can reduce CD103+ T-cell antitumor activity 
(Shields et  al., 2019). Under physiological conditions, E-cad 
interacts with p120-ctn and β-catenin (β-cat) via its 
intracytoplasmic tail (Nagafuchi and Takeichi, 1988; McCrea 
and Gumbiner, 1991; Kourtidis et  al., 2013). The cytoplasmic 
tail of E-cad consists of the juxta membrane domain (JMD), 
which allows the clustering of cad and contributes to the 
adhesive strength via p120-ctn, and the cat-binding domain 
(CBD), which interacts with β-cat and γ-cat (Kemler, 1993; 
Yap et  al., 1998). The α-cat links the bound β-cat and the 
actin cytoskeleton. Signaling through E-cad cytoplasmic tail 
is a complex process which involves multiple contacts with 
intracytoplasmic partners, whose diversity is just beginning to 
be  elucidated by the characterization of the E-cad interactome 
(Guo et  al., 2014). E-cad is a tumor suppressor acting through 
intracytoplasmic retention of β-catenin stocks and suppresses 
inflammatory signaling pathways (Figure 1).

E-CADHERIN AND OTHER CADHERIN/
CELL ADHESION MOLECULES USED 
AS TARGET RECEPTORS FOR 
BACTERIA

Fusobacterium nucleatum, a pathogen associated with oral 
plaque formation and colorectal cancers, binds E-cad through 
its FadA adhesin (Rubinstein et  al., 2013). This interaction 
up-regulates the Annexin A1 and activates β-cat signaling 
(Zhou et  al., 2018; Rubinstein et  al., 2019). The F. nucleatum 
was reported to be associated with a specific epigenetic pattern 
of tumor cells characterized by hypermethylation of CpG 
islands, high MSI and MLH1 hypermethylation (epigenetic 
silencing), and up-regulation of microRNA-21 (Tahara et  al., 
2014; Yang et  al., 2017). Listeria monocytogenes, the causative 
agent of severe food poisoning, which sometimes lead to 
meningitis, internalizes when internalin A (InlA) and InlB 
bind to E-cad and the hepatocyte growth factor receptor on 
the basolateral surface of epithelial cells (Cossart and Sansonetti, 
2004; Barbuddhe and Chakraborty, 2009; Ortega et al., 2017). 
Streptococcus pneumoniae can cause pneumonia, meningitis, 
and bacteremia. The flamingo cadherin was reported to serve 
as receptor for the S. pneumoniae fructose bisphosphate aldolase 
(Blau et  al., 2007), and E-cad was found to act as adherence 

receptor for the pneumococcal surface adhesin A (PsaA) of 
S. pneumoniae during the colonization of nasopharyngeal 
epithelial cells (Anderton et  al., 2007). Helicobacter pylori, a 
bacterium responsible for severe gastric disease, adhere to 
target cells through interaction with CEACAM cell-surface 
receptor via its HopQ adhesin (Javaheri et  al., 2016). Then, 
the bacterial HtrA sheddase cleaves the gastric epithelial cell-
to-cell junctions through endoproteolysis of E-cad, occludin, 
and claudin-8 (Tegtmeyer et  al., 2017). After transmigration 
of H. pylori to the basolateral membrane of gastric epithelial 
cells, the T4SS pilus is activated and injects the CagA 
cytotoxin  into the target cell where the release of β-cat is 
stimulated  (Suzuki et  al., 2005; Murata-Kamiya et  al., 2007) 
(Zhao et  al., 2018; Tegtmeyer et  al., 2019).

In the world of bacteria, other cadherin and CAM play a 
role during the phase of attachment and invasion (Table 1). 
The attachment of Leptospira interrogans to host cells was found 
to be  mediated through its interaction with VE-cad, which 
triggers the process leading to different symptoms, including 
liver dysfunction, kidney failure, myocarditis, and sometimes 
the pulmonary hemorrhagic manifestations of leptospirosis 
(Evangelista et  al., 2014). Human host colonization by 
Haemophilus influenzae began with the binding of the bacteria 
to I-CAM1 on the surface of the respiratory tract epithelial 
cells through its Type IV pilus (Tfp), a process leading to 
respiratory diseases such as cystic fibrosis or chronic obstructive 
pulmonary disease (Novotny and Bakaletz, 2016). H. influenzae 
invasion is made even more effective as humans carry adenovirus 
or respiratory syncytial virus, which are known to increase 
cell-surface expression of I-CAM1. H. influenzae can also bind 
CEACAM through outer membrane protein OMP-1 (Tchoupa 
et al., 2015). CEACAM was also reported to serve as a receptor 
for the Opa protein of Neisseria gonorrhoeae during the 
colonization of urogenital mucosal surfaces in humans. It can 
progress toward acute urethritis with purulent urethral discharge 
in men, while the infection can remain asymptomatic in women 
or evolve toward an inflammation of the endocervix or an 
infection of fallopian tubes (Sintsova et  al., 2015).

Besides bacteria, many human pathogens also use E-cad 
and/or other CAM during the human host colonization, 
indicating the ubiquitous nature of this process. For example, 
a fungus, Aspergillus fumigatus, which is responsible for the 
majority of invasive mold infections in patients undergoing 
chemotherapy or organ transplantation, was found to bind 
E-cad and to use it as a receptor for adhesion and endocytosis 
of blastopores in epithelial cells (Xu et  al., 2012; Yan et  al., 
2015), and Candida albicans, the causative agent of 
hematogenously disseminated and oropharyngeal candidiasis, 
internalizes through direct interactions between its surface 
adhesin Als3 and E-cad on the target cell (Egusa et  al., 2005; 
Phan et  al., 2007). Regarding viruses, it has been reported 
that E-cad, together with claudin 1 and occludin, plays a role 
in the hepatitis C virus entry into hepatocytes (Colpitts et  al., 
2016; Li et  al., 2016). Several CAM, such as I-CAM, V-CAM, 
and N-CAM have also been identified as viral receptors for 
viruses, such as coxsackie A virus; rhinovirus, Enterovirus 
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D68, encephalomyocarditis virus, and rabies virus, respectively 
(Thoulouze et  al., 1998; Bhella, 2015; Wei et  al., 2016).

E-CADHERIN DEGRADATION INDUCED 
BY BACTERIA DURING TISSUES 
INVASION AND TRANSMIGRATION

Usually, the commensal microbiota, which supplies the host 
with molecules essential to life and shapes gene expression in 
eukaryotic cells (Devaux and Raoult, 2018), together with 
epithelial cell barriers and appropriate immune responses, 
efficiently protects the internal body against pathogenic microbial 
invasion (Abt and Pamer, 2014). Pathogenic bacteria have 
engineered different strategies to get around these natural 
defenses by the transcellular route, by acting on cell-to-cell 
junctions, or by taking advantage of damaged tissues.

Clostridium perfringens, which is the causative agent of gas 
gangrene and food poisoning, produces a pore-forming delta 
toxin, which was found capable of reducing cell surface expression 
of E-cad by enhancing ADAM-10 sheddase activity (Figure  2; 
Seike et  al., 2018). Similarly, the alpha toxin of Staphylococcus 
aureus binds to and up-regulates ADAM-10 metalloprotease 
activity in alveolar epithelial cells. This activity results in the 

cleavage of E-cad and contributes to the pathogenesis of lethal 
pneumonia (Inoshima et  al., 2011). Clostridium botulinum 
produces the botulinum neurotoxin (BoNT), which provokes 
flaccid paralysis known as botulism, by inhibiting neurotransmitter 
release at the neuro-muscular junctions (Carter and Peck, 2015). 
To allow BoNT complex to pass through the epithelial barrier 
of the intestinal tract and act on the neurotransmission process, 
one compound of the BoNT complex termed hemagglutinin 
(HA), binds E-cad and disrupts the tight junctions (Sugawara 
and Fujinaga, 2011). The prokaryotic high temperature 
requirement A (HtrA) protease-mediated cleavage of E-cad that 
precedes the process of transmigration has been described for 
gastrointestinal pathogens, such as enteropathogenic Escherichia 
coli, Shigella flexneri, and Campylobacter jejuni (Boehm et  al., 
2012; Hoy et  al., 2012; Elmi et  al., 2016). The HtrA sheddase 
of Helicobacter pylori was found to open adherens junctions 
by cleaving E-cad and claudin-8 occludin (Tegtmeyer et  al., 
2017). HtrA sheddase has been found in most of the bacterial 
genomes studied to date and is associated with pathogenicity. 
An opportunistic pathogen like Serratia marcescens produces 
a pore-forming toxin (ShlA) responsible for the tissues damage 
required to cross cellular barriers (Hertle and Schwarz, 2004). 
Another opportunistic bacterium, Pseudomonas aeruginosa, which 
causes aggressive infections in patients compromised by respiratory 
diseases such as cystic fibrosis, also encodes a pore-forming 
toxin (exolysin A) that induces major injuries of tissues (Reboud 
et al., 2017). Both SHlA and ExlA influence ADAM-10 activation 
triggering E-cad and VE-cad cleavage in epithelial and endothelial 
cells, respectively, as well as soluble CAMs shedding, and 
intercellular junction rupture (Reboud et  al., 2017). Leptospira 
interrogans, which crosses host tissue barriers and causes 
leptospirosis, secretes a protein named LIC10831 that binds 
E-cad and VE-cad and plays a role during bacterial invasion 
(Eshghi et  al., 2019). The genome of Porphyromonas gingivalis, 
a bacterium associated with adult periodontitis (Katz et  al., 
2000), encodes three cysteine proteases named Gingipains 
(HRgpA, RgpB, and Kgp). The Kgp protease was found capable 
to disrupt adherens junction by cleavage of E-cad (Katz, 2002). 
P. gingivalis also cleaves N- and VE-cads (Sheets et  al., 2005). 
With the L. monocytogenes, the infectious process starts with 
the interaction between the invasion proteins internalin and 
InlB and their cellular receptor E-cad and hepatocyte growth 
factor receptor (HGF-R)/Met (Seveau et  al., 2004). E-cad also 
constitutes a target for L. monocytogenes in order to disrupt 
the blood brain barrier and facilitate the invasion of the brain 
(Al-Obaidi and Desa, 2018). In Chlamydia trachomatis infections, 
a bacterium responsible for acute salpingitis and cervicitis, which 
can also induce scarring disease of the ocular mucosa, a DNA 
methylation of the CDH1 promoter and downregulation of 
E-cad expression, was reported (Rajić et  al., 2017). It can 
be  hypothesized that the list of pathogenic bacteria shown to 
cleave the E-cad during the invasion process will increase rapidly.

For other pathogens, such a requirement to achieve 
transmigration for colonizing their host can also be  illustrated 
with a few examples. Tissues invasion by C. albicans is associated 
with degradation of E-cad mediated by the fungus aspartyl 
proteinase Sap5p under the control of the transcription factor 

TABLE 1 | Function of E-cad and other CAM molecules in bacteria-mediated 
infectious diseases.

Bacteria Receptor(s) Interaction 
receptor/
pathogen

References

Listeria 
monocytogenes

E-cadherin Entry receptor Bonazzi et al. (2009)

Helicobacter pylori CEA-CAM 
(E-cadherin)

Induce E-cad 
cleavage, β-cat 
signaling

Murata-Kamiya et al. 
(2007); Hoy et al. 
(2010); Tegtmeyer 
et al. (2019)

Fusobacterium 
nucleatum

E-cadherin Bacteria receptor, 
β-cat signaling

Rubinstein et al. 
(2013, 2019); Ma 
et al. (2018)

Bacteroides fragilis E-cadherin Bacteria receptor 
induce E-cad 
cleavage

Chambers et al. 
(1997); Obiso et al. 
(1997)

Campylobacter 
jejuni

E-cadherin Induce E-cad 
cleavage, 
transmigration

Boehm et al. (2015)

Streptococcus 
pneumoniae

E-cadherin, 
flamingo-CAM

Bacteria adhesion Anderton et al. (2007)

Leptospira 
interrogans

VE-cadherin Bacteria adhesion Evangelista et al. 
(2014)

Haemophilus 
influenza

ICAM-1,  
CEA-CAM

Bacteria adhesion Bookwalter et al. 
(2008)

Haemophilus 
influenza

ICAM-1,  
CEA-CAM

Bacteria adhesion Bookwalter et al. 
(2008)

Neisseria 
meningitidis

CEA-CAM Entry receptor Griffiths et al. (2007)

Yersinia 
pseudotuberculosis

β1-integrin Bacteria adhesion 
and internalization

Isberg and Leong 
(1990)

CAM, cell adhesion molecule; V-CAM, vascular cell adhesion molecule; ICAM, 
intercellular adhesion molecule; NCAM, neuronal cell adhesion molecule; CEA-CAM, 
carcinoembryonic antigen-related cell adhesion molecule.
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Rim101p (Villar et  al., 2007). C. albicans was also reported 
capable of reducing E-cad mRNA expression (Rouabhia et  al., 
2012). More recently, it was reported that C. albicans synergized 
with Streptococcus oralis to increase the proteolytic degradation 
of E-cad by μ-calpain, which facilitates fungal invasion (Xu 
et  al., 2016). It illustrates the fact that the modulation of cell-
surface expression of E-cad is not limited to bacteria, but is 
rather a general mechanism used by infectious pathogens for 
invasion and transmigration (Grabowska and Day, 2012).

PROTEOLYTIC CLEAVAGE OF 
E-CADHERIN BY EUKARYOTIC 
SHEDDASES

As described above in this paper, pathogenic bacteria such as 
H. pylori, Pseudomonas aeruginosa, Serratia marcescens, 
Clostridium perfringens, and S. aureus have developed takeover 
stratagems to use eukaryotic sheddases of the human host 
(e.g., ADAM-10) in order to modulate the host cell surface 
expression of E-cad.

The cleavage of adhesion molecules is far from being limited 
to the pathogens' invasion processes. Apart dysbiosis, proteolysis 
is a common physiological mechanism of post-translational 

regulation that affects 2–4% of the proteins expressed on the 
surface of cells (Pandiella et  al., 1992; Arribas and Merlos-
Suárez, 2003). E-cad is one of the molecules that can undergo 
proteolytic cleavage (both intracellular and extracellular), 
providing an alternative regulatory mechanism to reduce its 
cell surface expression (Noë et  al., 2001; Marambaud, 2002; 
van Roy and Berx, 2008). It is essential to regulate the balance 
between adhesion and migration of cells. The human genome 
encodes almost 600 proteases, which control a wide range of 
processes essential to life (Turk et  al., 2012). Proteases can 
be organized into five main classes, including cysteine proteases, 
serine proteases, metalloproteases, threonine proteases, and 
aspartic proteases, with approximately one half being extracellular 
and the other half intracellular. Quantitative cell surface expression 
of E-cad is therefore determined by the balance between 
biosynthesis, trafficking, transfer to cell-surface, intracellular and 
extracellular proteolytic cleavage, and intracellular degradation, 
and these processes are considered crucial determinants for 
cell behavior (Godt and Tepass, 1998). Endoproteases (which 
cleave internal peptides bonds), which are capable of extracellular 
E-cad cleavage, belong to the large family of sheddases (Grabowska 
and Day, 2012). The human sheddases (Figure 3) include zinc-
dependent matrix metalloproteases (matrilysin/MMP-2, 3, 7, 9, 
and 14) (Lee et  al., 2007; Symowicz et  al., 2007; Klein and 
Bischoff, 2011), members of the disintegrin metalloproteases 

FIGURE 2 | Schematic diagram of E-cad and its cleavage sites by proteases after pathogenic bacteria infection. E-cad is a transmembrane protein containing 
five extracellular repeated domains (EC1 to EC5), a transmembrane region, and an intracytoplasmic C-terminal region (CTR). The extracellular portion of E-cad 
forms junction with CAM on proximal cell (see Figure 1), whereas the CTR binds β-catenin and other signaling molecules. Left panel, catalytic enzymes have the 
capacity to cleave E-cad at specific sites indicated by red arrows. Cleavages occur either in the intracellular CTR of the molecule (e.g., caspase 3 or calpain) 
generating polypeptides that are capable of triggering signals, or in the extracellular portion of the molecule (e.g., the eukaryotic sheddases MMP and ADAM or 
the prokaryotic sheddases: BTF or HtrA), leading to soluble extracellular E-cad fragment release. For instance, the eukaryotic ADAM sheddases catalyze a 
cleavage of E-cad that results in the release of the 80-kDa soluble ectodomain form sE-cad and a 38-kDa C-terminal fragment (CTF). The prokaryotic HtrA serine 
protease can also cleave E-cad at different extracellular sites. Right panel bacteria reported to trigger E-cad cleavage (and release of sE-cad) and identification of 
sheddases involved in this process.
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family (adamalysin/ADAM-10 and -15) (Maretzky et  al., 2008; 
Najy et al., 2008; Giebeler and Zigrino, 2016), cysteine cathepsins 
(B, L, S) (Jordans et al., 2009), serine protease kallikrein (KLK-6 
and -7) (Johnson et  al., 2007; Klucky et  al., 2007), plasmin 
serine protease (Ryniers et al., 2002), and the membrane-bound 
aspartic proteinases BACE-1 and BACE-2 (Wakabayashi and 
De Strooper, 2008; Grabowska and Day, 2012). Sheddases are 
secreted as proenzymes and become mature after processing 
of the propeptide; for example, the matrix metalloprotease 3 
is synthesized as a zymogen (proMMP-3) which is converted 
to full activity (two active forms of 45-kDa and 25-kDa) by 

limited proteolysis mediated by elastase and cathepsin G (Okada 
and Nakanishi, 1989; Becker et al., 1995). Similarly, the MMP-9 
is synthesized as a 92-kDa proMMP-9, and then the active 
MMP-3 initially cleaves proMMP-9 to generate a 86-kDa 
intermediate ultimately cleaved to convert the intermediate form 
into a 82-kDa catalytic form (Ogata et  al., 1992). The catalytic 
domains of MMP-9 alone can hydrolyze non-collagenous proteins 
and synthetic substrates, but cannot cleave triple helix collagens 
without the hemopexin domain (Nagase et  al., 2006). Its 
fibronectin type II domains are important to cleave type IV 
collagen, elastin, and gelatins. The hemopexin domain is required 
for collagenolytic activity of the collagenase. The catalytic activity 
of sheddases triggers the extracellular release of a soluble E-cad 
(sE-cad) fragment of about 80-kDa from the cell surface. This 
process is accompanied by the simultaneous delivery of free 
β-cat into the cell cytosol, which then translocates into the 
cell nucleus where it contributes to the modulation of gene 
expression. It is worth noting that sE-cad might also behave 
as a signaling molecule through ErbB receptor activation (Najy 
et  al., 2008). As already mentioned above, some pathogenic 
bacteria can enslave eukaryotic sheddase to get E-cad cleaved.

INACTIVATION OF THE CDH1 GENE BY 
METHYLATION IS ASSOCIATED WITH 
PRE-CARCINOGENIC PROGRAMMING 
DURING PATHOGENIC BACTERIA 
INVASION

Several pathogenic bacteria were found to control the CDH1 
gene expression at the chromatin level through activation of 
signaling cascade leading to modulation of DNA-binding proteins 
or directly in the nucleus through epigenetic modifications 
(Bierne et  al., 2012). Inactivation of the CDH1 gene leads to 
the down-modulates of E-cad protein expression.

It was reported that methylation of the CDH1 gene promoter 
is a frequent event in samples from H. pylori infected patients 
with chronic gastritis, suggesting that CDH1 inactivation is 
an early step toward gastric tumorigenesis (Kague et al., 2010). 
Methylation of the CDH1 gene promoter was also reported 
in about 30–40% of patients with H. pylori-associated gastric 
carcinoma (Bahnassy et  al., 2018). The CDH1 promoter 
methylation was reduced after H. pylori eradication (Perri et al., 
2007). Chlamydia trachomatis infection inducing scarring disease 
of the ocular mucosa was found to be  associated with CDH1 
promoter DNA methylation and down-regulation of E-cad 
(Rajić et al., 2017). Acinetobacter baumannii is an opportunistic 
pathogen causing severe diseases in patients with mechanical 
ventilation. The nuclear targeting of Acinetobacter baumannii 
transposase (Tnp) induces DNA methylation of CpG regions 
in the promoter of the CDH1 gene resulting in down-regulation 
of gene expression (Moon et  al., 2012). To date, the CDH1 
gene inactivation has not been systematically explored for 
pathogenic bacteria and should be  questioned as part of the 
exploration of the molecular mechanisms by which pathogenic 
bacteria deregulate E-cad expression to colonize the human host.

FIGURE 3 | Schematic representation of the structural organization of some 
human ADAM and MMP pro-enzyme sheddases. The ADAM molecules 
(ADAM-10 and ADAM-15) are transmembrane proteins, whereas the MMP 
(MMP-3, MMP-7, and MMP-9) are soluble proteins. It should be noted (not 
shown) that several MMP are anchored at the cell-surface by a 
transmembrane domain (e.g., MMP-14 or MMP-15), by a 
glycosylphosphatidylinositol anchor (e.g., MMP-17 or MMP-25) or by an 
amino-terminal signal anchor (e.g., MMP-23). From the NH2-terminal 
extremity to the COOH-terminal extremity, ADAM-10 (748 a.a. residues) and 
ADAM-15 (772 a.a. to 863 a.a. residues depending the isoform) contain a 
signal peptide, a pro-peptide, a metalloprotease domain with catalytic activity, 
a disintegrin-like domain, a cysteine-rich domain, a transmembrane domain, 
and a cytoplasmic tail. ADAM-15 is characterized by the presence of an EGF-
like domain taking place between the cysteine-rich domain and the 
transmembrane polypeptide. MMP-3 (or stromelysin-1, a 477 a.a. residues 
pro-enzyme protein of 51-kDa which can be activated in the 43-kDa mature 
catalytic form by removal of the pro-domain) has a basic MMP structure with 
a signal peptide, a pro-peptide, a catalytic domain, a hinge region, and an 
hemopexin domain. MMP9 (or gelatinase B, type IV collagenase, a 707 a.a. 
residues pro-enzyme protein of 92-kDa which can be activated as a 83-kDa 
mature enzyme following removal of the pro-domain), contains a signal 
peptide, a pro-peptide, a catalytic domain, a fibronectin type II domain, a 
second catalytic domain, an hinge region, and an hemopexin domain.
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The epigenetic modulation of the CDH1 gene during 
pathogenic bacteria infection mimics processes well-described 
in the studies regarding the embryologic development. Repression 
of the CDH1 gene and cad-switching from E-cad to N-cad 
were considered essential for transitioning away from 
pluripotency (Sauka-Spengler and Bronner-Fraser, 2008; Li 
et  al., 2010; Pieters and van Roy, 2014). Such cad-switching 
(Thiery, 2002) as well as reduced expression of E-cad have 
also been observed in cancer cases (including breast cancer, 
gastric cancer, colorectal cancer, and hepatocellular carcinomas), 
indicating that inhibition of E-cad surface expression can play 
a central role in the progression toward cancer (Jeanes et  al., 
2008; Gall and Frampton, 2013). However, in lung cancer cells, 
E-cad was found induced by WNT7a (Ohira et  al., 2003), and 
E-cad expression is increased in both ovarian cancer malignant 
effusions and solid metastases (Davidson et  al., 2000; Elloul 
et  al., 2006). E-cad is generally considered a tumor suppressor 
through inhibition of β-cat nuclear translocation (Gottardi 
et  al., 2001) and can act as oncogene through binding to 
EGFR/Erb receptor that triggers ERK and AKT signaling 
pathways providing advantage for cancer development and 
metastasis (Wells et  al., 2008; Rodriguez et  al., 2012).

With regard to viruses as examples of other pathogens 
modulating CDH1 gene expression, it has been reported that 
hepatitis B virus (HBV) represses E-cad at the transcriptional 
level by hypermethylation of the CDH1 promoter on CpG Island 
1 with possible consequences on hepatocellular carcinogenesis 
by promoting detachment of surrounding cells and their migration 
to the primary tumor site (Lee et  al., 2005). Alternatively, loss 
of E-cad in HBV infected cells can also be  regulated at a 
post-translational level by proteases and SUMOylation (Ha et al., 
2016). Hypermethylation that triggers CDH-1 gene repression 
was also found with the human papillomavirus (HPV) that 
increases cellular methyltransferase 1 (Dnmt1) activity via its 
viral E7 protein (Laurson et  al., 2010).

ABERRANT SPLICING OF THE 
E-CADHERIN TRANSCRIPT

Among the gene silencing molecular mechanisms underlying 
E-cad loss, one involves the expression of nonfunctional truncated 
CDH1 gene transcript. E-cadherin mRNA with premature 
termination codon mutation was reported in chronic lymphocytic 
leukemia cells (Sharma and Lichtenstein, 2009). This transcript 
(which lacks the exon 11) plays a role in silencing the production 
of E-cad. The amounts of wild-type E-cad mRNA inversely 
correlated with the amounts of aberrant transcript resulting 
in the up-regulation of the Wnt-β catenin pathway. The production 
of E-cad mRNA variant by alternative splicing has also been 
linked to a decrease in cell-cell adhesion and an increase in 
cell migration (Matos et al., 2017). The novel E-cadherin variant, 
a truncated soluble form of E-cad resulting from a deletion 
of the first 34  nt in the exon 14 of the CDH1 mRNA, induces 
changes characteristic of the Epithelial to Mesenchymal Transition 
(EMT) process, a key event in tumor progression (Matos et al., 
2017). Moreover, the over-expression of this novel E-cad truncated 

form in transfected cells resulted in downregulation of wild-
type E-cad expression. This truncated CDH1 gene transcript 
was recently found in breast cancer cells (Rosso et  al., 2019). 
Aberrant splicing of CDH1 gene transcript (exon 8 or exon 
11 skipped aberrant transcripts) was also reported in gastric 
carcinoma (Garziera et  al., 2013; Li et  al., 2015). Although 
this is a possibility, it has not yet been demonstrated that the 
expression of a CDH1 aberrant transcript in gastric cancers 
is controlled by H. pylori. However, it is known that aberrant 
splicing of cellular gene transcripts can occur during bacterial 
invasion (Sun, 2017). Indeed, massive alterations in the pattern 
of cellular mRNA splicing were reported upon infection with 
bacteria such as Anaplasma phagocytophilum, the etiologic agent 
of the human granulocytic anaplasmosis (Dumler et  al., 2018) 
and Mycobacterium tuberculosis the etiologic agent of tuberculosis 
(Kalam et  al., 2018). This may be  consistent with the 
observation that Mycobacterium tuberculosis induced an epithelial 
mesenchymal transition in a pulmonary adenocarcinoma 
epithelial cell line (Gupta et al., 2016), a phenomenon orchestrated 
at the level of E-cad cell-surface expression. It was also reported 
that the EMT of mesothelial cells occurred in Mycobacterium 
tuberculosis-associated pleurisy, together with a reduction in 
E-cad expression (Kim et al., 2011). Moreover, expression level 
of E-cad was reported to differ between pulmonary tuberculosis 
patients and latent tuberculosis individuals (Sun et  al., 2018).

RELEASE OF SOLUBLE E-CADHERIN 
AFTER BACTERIAL INFECTION AS 
AN  EARLY EVENT TOWARD 
CARCINOGENESIS

Aside from the transcriptional repression of the CDH1 gene, 
another interesting mechanism, which could interfere with the 
anti-bacterial defenses of the host, is the release of sE-cad in 
body fluids following a sheddase-mediated cleavage of E-cad. 
The combination of sE-cad release together with other 
pro-inflammatory factors was highlighted as a triggering signal 
that promotes gastric adenocarcinoma or colorectal tumors in 
patients infected with H. pylori, B. fragilis, or Streptococcus 
gallolyticus (Wu et  al., 2003; O’Connor et  al., 2011; Kumar 
et  al., 2017; Chung et  al., 2018).

H. pylori, a bacterium that colonizes the gastric mucosa, is 
known as a risk factor for the development of chronic atrophic 
gastritis, gastroduodenal ulcers, and adenocarcinoma. An in vitro 
experimental model of cell transfection has demonstrated that 
H. pylori triggers β-cat activation through the interaction of 
virulence factor CagA with E-cad (Murata-Kamiya et  al., 2007). 
O’Connor et  al. (2011) reported that H. pylori induced the 
activation of host protease calpain via the toll-like receptor 2 
(TLR2) and disruption of gastric epithelium. Another report 
suggests that ADAM-10 is induced in H. pylori infection and 
contributes to the shedding of E-cad (Schirrmeister et  al., 2009). 
It was also reported that a serine protease HtrA from H. pylori 
mediate direct cleavage of E-cad (Hoy et al., 2010; Schmidt et al., 
2016). Bacterium S. gallolyticus has a strong association with 
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colorectal cancer with increased levels of β-cat and c-Myc (Kumar 
et al., 2017). The genome of another bacterium, Bacteroides fragilis, 
encodes a sheddase, the B. fragilis toxin (BFT) also termed fragilis 
(FRA), which cleaves E-cad and is associated with C-Myc expression 
and cellular proliferation (Wu et  al., 1998, 2003; Remacle et  al., 
2014; Chung et  al., 2018). Chung and co-workers uncovered a 
complex mechanism whereby the B. fragilis toxin (BFT)-mediated 
cleavage of E-cad initiates a multi-step inflammatory cascade 
requiring β-cat, IL-17R, NF-B, and Stat3 signaling in colonic 
epithelial cells. IL-17 dependent NF-κB activation in colic epithelial 
cells induces a mucosal gradient of C-X-C chemokines that 
initiates pro-tumoral myeloid cell infiltration to the distal colon 
and colon cancer. All these cancers are solid tumors. However, 
a role for sE-cad in the initiation of a pro-carcinogenic process 
might also be considered. Over the past 3 years, we have reported 
results suggesting that the bacterium Coxiella burnetii, responsible 
of Q fever, was associated with a higher frequency of Non-Hodgkin 
Lymphoma (NHL) in C. burnetii-infected patients compared to 
the general population (Melenotte et  al., 2016). Recently, 
we investigated the transcriptional signature that could be associated 
with the development of NHL in Q fever patients and found 
an over-expression of genes involved in anti-apoptotic process 
and a repression of pro-apoptotic genes (Melenotte et  al., 2019). 
Since cell surface expression of E-cad and release of sE-cad have 
been associated to various pathogenic bacteria known for inducing 
solid tumors, we  have also investigated the levels of expression 
of these molecules in Q fever patients and observed a significant 
release of sE-cad in their sera and a down-regulation of E-cad 
mRNA expression. The sE-cad levels were found increased in 
the sera of acute and persistent Q fever patients, whereas they 
remained at the baseline in the control groups of healthy donors, 
people cured of Q fever, patients suffering from unrelated 
inflammatory diseases, and past Q fever patients who developed 

NHL (Table  2). Consequently, sE-cad could be  considered a 
new biomarker of C. burnetii infection rather than a marker of 
NHL-associated to Q fever (Mezouar et  al., 2019). We  do not 
yet know which eukaryotic or prokaryotic sheddase could 
be  responsible for the cleavage of E-cad in patients infected with 
C. burnetii. Preliminary studies on peripheral blood mononuclear 
cells exposed to heat-inactivated C. burnetii suggested variations 
in ADAM-10 and MMP-9 expression. Microarray performed on 
samples from macrophages and dendritic cells (DC) infected in 
vitro by C. burnetii revealed an over-expression of MMP-3  in 
C. burnetii-infected DC. Preliminary investigations in search of 
sheddase have also been conducted. We tried to blast the protein 
sequences of more than 20 sheddases known to catalyze the 
cleavage of E-cad against the hypothetical proteins of four strains 
of C. burnetii. We found that three eukaryotic sheddases (MMP-3, 
MMP-9, and ADAM-15) presented sequence similarities with 
bacterial proteins. Experiments are under progress to identify 
whether an ADAM or MMP eukaryotic protease or a prokaryotic 
protease encoded by C. burnetii could be  responsible for sE-cad 
release in Q fever patients.

Care must be  taken not to overinterpret the significance of 
sE-cad increase in body fluids during bacterial infections. It is 
possible that sE-cad release in body fluids corresponds to a 
ubiquitous phenomenon induced during the process of 
colonization of the host by a pathogenic bacterium. We  already 
know that it is not limited to bacteria since there is an apparent 
correlation between the levels of sE-cad in human 
immunodeficiency virus (HIV)-positive patients and their viral 
titers (Streeck et  al., 2011). Moreover, abnormal concentrations 
of sE-cad in patients’ sera has been observed in several metabolic 
and inflammatory diseases (Pittard et  al., 1996; Jiang et  al., 
2009; Shirahata et al., 2018; Sato et al., 2019). High concentration 
of sE-cad has also been found associated with cancer progression 
(Grabowska and Day, 2012; Salama et  al., 2013; Repetto et  al., 
2014). For example, high concentration of sE-cad was described 
in prostate cancer patients and was associated with an over-
expression of MMP-2 and MMP-9 (Kuefer et  al., 2005; Biswas 
et  al., 2010; Tsaur et  al., 2015). Similarly, increased expression 
of sE-cad was reported in gastric cancer that was associated 
with the over-expression of MMP-7 (Lee et  al., 2006, 2007). 
Serum levels of sE-cad were increased in patients with ovarian 
carcinoma the cleavage of E-cad being mediated by MMP-9 
(Gadducci et  al., 1999; Symowicz et  al., 2007). Altogether, these 
data suggest that high sE-cad concentration in body fluids could 
simply behave as a factor that predisposes to inflammation and 
development of cancers, as described for H. pylori-infected patients.

DYSFUNCTION OF THE IMMUNE 
RESPONSE ORCHESTRATED BY 
BACTERIA-INDUCED E-CADHERIN 
CLEAVAGE

The immune system naturally provides an anti-infectious 
surveillance at the epithelium level via cells that express cell-
surface molecules, such as CD103 and KLRG1, able to bind 

TABLE 2 | Soluble Cad molecules released in body fluids during bacteria-
associated infectious diseases.

Pathogens Sample/
Technic

Cadherin Results References

C. burnetii Plasma/Elisa sE-cadherin Increased in 
infected patients 
including acute 
and persistent 
forms of the 
disease

Mezouar 
et al. (2019)

H. pylori Serum/Elisa sE-cadherin Increased in 
positive H. pylori 
patients

O’Connor 
et al. (2011)

E. coli (Shiga 
toxin 2 from)

Plasma/Elisa VE-cadherin Increased in 
infected patients

Doulgere 
et al. (2015)

If the general trend is to increase the soluble forms of cadherin molecules in body fluids 
of patients infected with pathogenic bacteria, caution should be exercised when 
comparing results obtained with different diagnostic kits, in different laboratories and 
with serum or plasma samples. Regarding the results reported in the papers mentioned 
in this table, the concentrations of soluble Cad measured in the samples were two 
times higher in the infected patients than in healthy controls. For example, in the plasma 
of C. burnetii-infected patients, the sE-cad concentration was about 170–450 ng/ml 
in acute Q fever (median 272 ng/ml), 260–530 ng/ml in persistent Q fever (median 
333 ng/ml), while it was 80–320 ng/ml (median 164 ng/ml) in healthy controls.
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the E-cad found at the surface of epithelial cells. These immune 
cells are not heavily engaged, unless the other defenses have 
failed. For example, under normal conditions, the intestinal 
epithelium is protected by a mucus layer that acts as host 
defense against microbial attachment (Kim and Ho, 2010; Desai 
et  al., 2016). Upon infection, the specialized intestinal Paneth 
cells secretes antimicrobial proteins and the commensal intestinal 
microbiota competes with the infectious pathogens, thereby 
acting as first line of innate defense to fight against pathogenic 
bacteria (Cash et al., 2006; Mason and Huffnagle, 2009; Vazeille 
et al., 2011; Bel et al., 2017). The epithelium integrity controlled 
by the homotypic interaction of E-cad in trans represents a 
second barrier protecting the host against intruder transmigration 
(Kim et  al., 2010). When pathogenic bacteria had evaded 
epithelial cell autophagic clearance and dead cells renewal 
(Yoshikawa et  al., 2009; Benjamin et  al., 2013), the host’s 
immune system represents the last rampart before the pathogens 
can breach the epithelium and disseminate deeper.

The intestinal villous microfold cells (M cells) are specialized 
epithelial cells of the gut-associated lymphoid tissues (GALT) 
that deliver luminal antigens to the underlying immune system 
after their transport to the basolateral membrane of M cells 
(Miller et  al., 2007). An efficient immune response against a 
microbial attack requires the migration of cells of the host 
immune system in the microenvironment where infection occurs 
and the sequential detection of stress signals, tissue damages 
and conserved bacterial molecules termed pathogen-associated 
molecular patterns (PAMPs) (Broz and Monack, 2013). PAMPS 
include molecules as diverse as lipopolysaccharide, flagellin, 
peptidoglycan, lipoproteins, and unique bacterial nucleic acid 
structures. Upon detection of bacterial invasion, host cell receptors 

such as toll-like receptors and C-type lectin receptors, activate 
signaling pathways that govern the production of inflammatory 
cytokines including the IL-1β and IL-18 that can restrict bacterial 
replication. Causative agents of infectious diseases are therefore 
characterized by their capacity to elaborate mechanisms aimed 
to damage the protective cellular barriers and/or to modulate 
immune responses of the host to achieve invasion.

We can question the place of the E-cad in this process of 
mobilization of immunity cells via trans homotypic (e.g., E-cad) 
or trans heterotypic (e.g., CD103 and KLRG1) interactions under 
normal and pathological conditions (Figure 4). Although E-cad 
is expressed by immature CD4+CD8+ thymocytes (Munro et  al., 
1996; Müller et  al., 1997), after the thymocytes have left the 
thymus, E-cad is generally absent from most mature lymphocytes 
(Lee et  al., 1994). Yet, under certain pathological conditions, 
cell-surface expression of E-cad was reported on mature 
T-lymphocytes (CD3+) subsets, as well as B cells (CD19+), NK 
cells (DX5+), and monocyte/macrophages (CD11b+) subpopulations 
(Esch et  al., 2000; Sakai et  al., 2008). E-cad expression was also 
confirmed for subpopulations of epithelial γδ T-cells (Lee et  al., 
1994) and memory CD8+ T-cells in intestinal mucosa (Hofmann 
and Pircher, 2011). Moreover, we  have recently observed that 
30% of CD16+ monocytes expressed E-cad after C. burnetii 
infection (Mezouar et  al., 2019). In the intestinal epithelium, it 
is generally accepted that the immune host defense is mainly 
mediated by effector cells that express the αE integrin (CD103), 
an E-cad ligand (Banh and Brossay, 2009; Van den Bossche 
et al., 2012). CD103 is expressed on 40–50% of CD4+ T-lymphocytes 
and 90% of CD8+ T-lymphocytes that reside in the intestinal 
mucosa as well as on the surface of intraepithelial lymphocytes 
(Cerf-Bensussan et  al., 1987; Kilshaw and Murant, 1990; 

FIGURE 4 | Schematic model of interaction between cells that express CD103, KLRG1, and E-cad. E-cad expressed on epithelial cells (as well as dendritic cells, 
Langerhans cells, and macrophages) can potentially interact with CD103, KLRG1 or both molecules expressed on the surface of immune cells. In the absence of 
bacterial infection, the epithelial cells express E-cad at high level, allowing immune cells to ensure the immune surveillance of epithelia (left panel). After pathogenic 
bacteria invasion, the cell-surface expression of E-cad is weak on epithelial cells due to the activation of sheddases and sE-cad is released in the epithelium 
microenvironment. The abnormal expression of E-cad on subpopulations of immune cells, the release of sE-cad, the weak expression of E-cad on epithelial cells 
likely contribute to immune system dysfunction at the bacterial invasion site (right panel).
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Hadley  et  al., 1997; Uchida et  al., 2011). It is also present on 
T cells of the intestinal lamina propria (Agace et  al., 2000) and 
a subset of CD4+CD25+ Foxp3+ Treg-cells (Stephens et al., 2007). 
It was demonstrated that after epithelial damages, the intraepithelial 
CD103+ γδ T-lymphocytes that reside on the surface of epithelium 
promote mucosal repair through antibacterial factors (e.g., Reg3γ) 
and immunomodulatory molecules (e.g., IL1β, CXCL9) (Cepek 
et  al., 1994; Ismail et  al., 2009, 2011). It is worth noting that 
the intestinal CD103+ intraepithelial lymphocytes adherence to 
epithelial cells is inhibited by antibodies against CD103 (Cepek 
et  al., 1993). Another cell-surface receptor named KLRG1 that 
is encountered on subsets of immune cells including mature NK 
cells, memory CD4+T cells, effector CD8+ T cells, and FoxP3+ 
Treg cells, is known to bind E-cad (Schwartzkopff et  al., 2007; 
Tessmer et  al., 2007; Banh and Brossay, 2009; Van den Bossche 
et  al., 2012). It has been reported that high levels of sE-cad 
could be  sufficient to inhibit CD8+ T-cell function in a KLRG1-
dependent manner (Streeck et  al., 2011).

The E-cad induction on subpopulations of immune response 
cells in pathological situations remain to be  elucidated. It can 
be  hypothesized that the aberrant expression of E-cad under 
pathological conditions reflects changes in the transmigration 
and homing capacity of these cells (Reyat et al., 2017). Because 
several pathogenic bacteria reduce the epithelium surface 
expression of E-cad at the site of infection, it might be speculated 
that the decreased expression or the lack of expression of 
E-cad on epithelial cells is likely to trigger the rerouting of 
immune cells far from the infection site. As previously shown 
by Streeck et  al. (2011) for the KLRG1+ CD8+ T-cells 
subpopulation, the release of sE-cad might also serve as a 
decoy for diverting from their function the immune cells 
expressing E-cad, CD103 or KLRG1 after engagement of such 
receptors with sE-cad. Modulation of E-cad expression on the 
host epithelial cells and sE-cad release could therefore 
be considered a very efficient stratagem to prevent the immune 
system from behaving as a line of defense against invaders. 
In addition, for bacteria that induce cancer, reducing the 
expression of E-cad on certain tumor cells as previously reported 
(Shields et al., 2019) and disrupting the migration and attachment 
capabilities of immune survey cells could be a way of promoting 
the development of bacteria-induced cancers.

CONCLUSION AND DISCUSSION

This review highlights how the E-cad can be  diverted from 
its function of maintenance of tissues integrity and prevention 
of cell migration/differentiation during pathogenic bacterial 
infections. Pathogenic bacteria can use E-cad for their attachment 
to epithelial cells. Indeed, they can cleave E-cad to ensure 
their transmigration and can modulate the responsiveness of 
immune cells through modulation of cell-surface expression 
of E-cad and sE-cad release in body fluids. Some bacteria use 
E-cad to enter their target cells (e.g., F. nucleatum, L. 
monocytogenes, S. pneumoniae). Several bacteria act on the 
cell-surface expression of this molecule, either by modulating 
the CDH1 gene transcription (e.g., C. trachomatis, H. pylori) 

or by inducing the cleavage of the E-cad molecule (e.g., C. 
perfringens, S. aureus, C. burnetii) via proteases (sheddases). 
This process can favor achievement of the trans-epithelial host 
invasion or modulate host-pathogen molecular crosstalk. 
Currently, the best studied models are those that refer to 
intestinal infections that can lead to cancer (Figure 5).

Proteases (cysteine proteases, serine proteases, aspartate 
proteases, and metalloproteases) are ubiquitously encountered 
in the microbial world and are essential for their survival and 
replication cycle (Häse and Finkelstein, 1993). Proteases, such 
as collagenase (Bond and Van Wart, 1984), elastase (Bever 
and Iglewski, 1988), or metalloprotease (Schiavo et  al., 1992) 
(Domann et al., 1992) were associated with bacterial pathogenesis. 
Some pathogenic bacteria can activate the production of 
eukaryotic proteases such as ADAM-10 via signaling (e.g., this 
was reported for P. aeruginosa, S. marcescens, C. perfringens, 
S. aureus), whereas others use a portion of their genome to 
encode their own sheddase, including the HtrA protease (encoded 
by H. pylori, C. jejuni, S. flexneri, enteropathogenic E. coli) 
or B. fragilis toxin (encoded by B. fragilis).

As described above in this paper, evidence emphasizing that 
cleavage of E-cad by sheddases and release of sE-cad into the 
body fluids are factors that contribute to the progression of 
cancer (sometimes it was demonstrated). Within the group of 
bacteria that modulate the expression of E-cad, the association 
with carcinogenic processes has been investigated, in particular 
with H. pylori, F. nucleatum, S. gallolyticus, and B. fragilis. H. 
pylori is known to be  a risk factor for the development of 
gastric adenocarcinoma and the progression toward cancer is 
likely related to E-cad cleavage and β-cat activation (Murata-
Kamiya et  al., 2007), F. nucleatum promotes colorectal cancer 
by modulating the E-cad and Wnt/β-cat signaling via its FadA 
adhesin and up-regulating annexin A1 (Rubinstein et  al., 2013, 
2019). S. gallolyticus is also associated with colorectal cancer 
with known increased level of β-cat and c-Myc activation (Kumar 
et  al., 2017). B. fragilis toxin (BFT)-mediated cleavage of E-cad 
initiates a multi-step inflammatory cascade requiring β-cat nuclear 
translocation, activation of NF-κB and Stat3 signaling pathways 
in colonic epithelial cells as early events leading to pro-tumoral 
myeloid cell infiltration to the distal colon and colon cancer 
(Chung et  al., 2018). Our recent data indicate that C. burnetii, 
reported as associated with occurrence of non-Hodgkin lymphoma, 
is also capable of triggering cleavage of E-cad and release of 
sE-cad in the sera of Q fever patients (Figure 6; Mezouar 
et  al., 2019). Yet, further experiments are required to formerly 
demonstrate the association between sE-cad release in sera from 
Q fever patients and the initiation of a pro-carcinogenic 
inflammatory process leading to lymphoma development.

The accumulation of data showing that sE-cad is produced 
in many pathological processes that can lead to cancer development 
raises the question of what value can be attributed to this compound 
as a biomarker of disease severity. At the moment, we  do not 
have enough information to conclude. The presence of sE-cad 
in body fluids was considered a possible biomarker in H. pylori 
(O’Connor et  al., 2011) and C. burnetii (Mezouar et  al., 2019) 
infections, and soluble VE-cad was also regarded as possible 
biomarker in E. coli infections (Doulgere et  al., 2015). We  are 
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FIGURE 5 | This cartoon illustrates how, by simply acting on the E-cad expression, an intestinal pathogenic bacterium can both bypass the physical defense 
system represented by the epithelial barrier and confuse the cells of the immune system intended to defend the host. Step 1: under homeostasis, the epithelium 
(composed of epithelial cells) is protected by a mucus layer synthesized by goblet cells which secrete the mucins (e.g, MUC2 – mucin gel). The mucus layer 
prevents microbial attachment without interference with the transport of nutrients. The commensal intestinal microbiota is limited to the epithelium-distal mucus 
layer, while the epithelium-proximal mucus is largely devoid of bacteria. Step 2: upon infection, the commensal intestinal microbiota competes with the infectious 
pathogens and the Paneth cells produce antimicrobial proteins (e.g., C-type lectin REG3γ, β-defensins, cathelicidins, and lysozyme), to fight the invasion. A 
regulation of infection is also achieved by epithelial cell autophagic clearance and dead cells renewal. At the same time, the villous microfold cells (M cells) 
expressing TLR deliver luminal antigens to the underlying immune system to set up a whole arsenal of anti-bacterial actions. In case this response proves sufficient, 
the invader is destroyed, and the microenvironment returns to homeostasis (Step 1). If not, the conflict is prolonged. Step 3: an efficient immune response against 
the pathogens requires the migration of cells of the host immune system in the microenvironment where the infection occurs and the sequential detection of stress 
signals, tissue damages, and PAMPs (e.g., lipopolysaccharide, flagellin, peptidoglycan, lipoproteins, and unique bacterial nucleic acid structures). KLRG1+ dendritic 
cells and monocytes/macrophages, CD103+ T-cells, KLRG1+ T-cells, and other immune cell subpopulations, colonize the lamina propria. Upon detection of bacterial 
invasion, host cell receptors, such as TLR and C-type lectin receptors, activate signaling pathways that govern the production of inflammatory cytokines, including 
the IL-1β and IL-18 that can restrict bacterial replication. Step 4: the pathogenic bacteria reduce the epithelium surface expression of E-cad at the site of infection, 
resulting in the destruction of adherent’s junctions and allowing transmigration. Moreover, it might be speculated that the induction of E-cad on subpopulation of 
immune response cells (E-cad+ T-cells and CD16+/E-cad+ monocytes) redirects those cells far from the infection site in microenvironments where they have a higher 
probability to interact with E-cad+ epithelial cells. The release of sE-cad might also serve as a decoy for diverting immune cells from their function through interaction 
with E-cad, CD103, or KLRG1 at the surface of immune cells.
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FIGURE 6 | Cellular host E-cad as target during both pulmonary and intestinal bacterial infections. This drawing summarizes the hypothetical models of 
tumorigenesis associated with Coxiella burnetii and enterotoxigenic Bacteroides fragilis. (A) Coxiella burnetii. Although rare, the incidence of NHL B-lymphoma in 
patients infected by C. burnetii in France was significantly higher (25-fold) than within the general population. In Q fever, the overproduction of IL-10 by infected 
monocytes was found critical in both sustaining replication of the C. burnetii and preventing the macrophages microbicidal activity. Moreover, specific genes involved 
in anti-apoptotic process are over-expressed, whereas pro-apoptotic genes are repressed. Recently, we found elevated concentrations of sE-cad in Q fever 
patients, along with an increase in cell-surface expression of E-cad in more than 30% of HLADR+/CD16+ monocytes and a decrease in E-cad expression that 
concerned about 3% of the E-cad+/CD20+ B-cells subpopulation (LB cells). We speculate that the release of sE-cad might participate to the molecular crosstalk, 
which takes place in the microenvironment of the lymph node during persistent Q fever and might possibly trigger a pro-carcinogenic program required for the 
initiation of NHL lymphoma. (B) Enterotoxigenic Bacteroides fragilis. The enterotoxigenic Bacteroides fragilis synthesizes a toxin, BFToxin, which damages the 
protective intestinal epithelial barriers of the host by cleavage of E-cad to achieve invasion. This process leads to epithelial cells activation through nuclear 
translocation of β-cat and NF-κB, inducing the transcription of genes such as IL-17 receptor (IL17R). A pro-inflammatory immune response is initiated against the 
pathogen characterized by the in-situ production of IL-17. IL-17R positive cells are induced to produce STAT3 and a gradient of chemokines in the 
microenvironment favors the recruitment of pro-tumoral myeloid cells that accumulate in the distal colon producing growth factors triggering the proliferation of colic 
epithelial cells. These cells progressively accumulate DNA damages and form a solid tumor in the colon.
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currently implementing a test protocol to assess whether sE-cad 
could be  a biomarker for tuberculosis and severe C. difficile 
infections. CD68+ granuloma macrophages from M.  tuberculosis 
patients were reported to express E-cad (Cronan  et  al., 2016). 
Moreover, using M. marinum as model, Cronan and collaborators 
reported that the mycobacterial granuloma formation is 
accompanied by macrophage reprogramming that parallels 
E-cad-dependent mesenchymal-epithelial transitions and alters 
immune response. E-cadherin induction was found in the 
granuloma of both M. marinum-infected and uninfected 
granuloma macrophages, while macrophages residing outside 
the granuloma remained negative for E-cad. Concerning C. 
difficile, the etiologic agent of pseudomembranous colitis and 
severe diarrhea, it was reported that C. difficile TcdB toxin 
induces the redistribution of occludin and ZO-1without 
influencing the subjacent E-cad (Nusrat  et  al.,  2001).

For the management of H. pylori gastrointestinal disorders 
and H. pylori-associated gastric cancer, it is recommended to 
use a combination of ranitidine bismuth citrate, clarithromycin, 
and amoxicillin (Goderska et  al., 2018). In a near future, it 
will not be  surprising to consider the possibility of proposing 
therapeutic approaches that will combine antibiotics, probiotics, 
and sheddase inhibitors to regulate E-cad as well as β-cat 
inhibitors. Probiotics (e.g., the yeast Saccharomyces boulardii 
CNCMI-745) have been used to restore intestinal barrier integrity 
in patients with inflammatory bowel disease, by regulation of 
E-cad recycling (Terciolo et  al., 2017). Intensive research is 
aimed at developing inhibitors of MMPs (Antczak et  al., 2008; 

Tuccinardi et  al., 2008; Schmidt et  al., 2016; Katoh, 2017) and 
ADAMs (Madoux et al., 2016). MMP-9 inhibitors that abrogate 
E-cad cleavage are considered a promising tool for therapeutic 
of colorectal cancers (Biswas et al., 2010; Marshall et al., 2015). 
This opens up new avenues of research for therapeutic purposes.
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