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Microbial communities in the coastal Arctic Ocean experience extreme variability in organic 
matter and inorganic nutrients driven by seasonal shifts in sea ice extent and freshwater 
inputs. Lagoons border more than half of the Beaufort Sea coast and provide important 
habitats for migratory fish and seabirds; yet, little is known about the planktonic food 
webs supporting these higher trophic levels. To investigate seasonal changes in bacterial 
and protistan planktonic communities, amplicon sequences of 16S and 18S rRNA genes 
were generated from samples collected during periods of ice-cover (April), ice break-up 
(June), and open water (August) from shallow lagoons along the eastern Alaska Beaufort 
Sea coast from 2011 through 2013. Protist communities shifted from heterotrophic to 
photosynthetic taxa (mainly diatoms) during the winter–spring transition, and then back 
to a heterotroph-dominated summer community that included dinoflagellates and 
mixotrophic picophytoplankton such as Micromonas and Bathycoccus. Planktonic 
parasites belonging to Syndiniales were abundant under ice in winter at a time when 
allochthonous carbon inputs were low. Bacterial communities shifted from coastal marine 
taxa (Oceanospirillaceae, Alteromonadales) to estuarine taxa (Polaromonas, Bacteroidetes) 
during the winter-spring transition, and then to oligotrophic marine taxa (SAR86, SAR92) 
in summer. Chemolithoautotrophic taxa were abundant under ice, including iron-oxidizing 
Zetaproteobacteria. These results suggest that wintertime Arctic bacterial communities 
capitalize on the unique biogeochemical gradients that develop below ice near shore, 
potentially using chemoautotrophic metabolisms at a time when carbon inputs to the 
system are low. Co-occurrence networks constructed for each season showed that 
under-ice networks were dominated by relationships between parasitic protists and other 
microbial taxa, while spring networks were by far the largest and dominated by bacteria-
bacteria co-occurrences. Summer networks were the smallest and least connected, 
suggesting a more detritus-based food web less reliant on interactions among microbial 
taxa. Eukaryotic and bacterial community compositions were significantly related to trends 
in concentrations of stable isotopes of particulate organic carbon and nitrogen, among 
other physiochemical variables such as dissolved oxygen, salinity, and temperature. This 
suggests the importance of sea ice cover and terrestrial carbon subsidies in contributing 
to seasonal trends in microbial communities in the coastal Beaufort Sea.
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INTRODUCTION

Aquatic microorganisms drive global cycling of carbon, nitrogen, 
and many other elements by carrying out key ecosystem 
functions including primary production, organic matter 
remineralization, and transformations of inorganic compounds 
(Falkowski et  al., 2008; Ferrera et  al., 2015; Worden et  al., 
2015). The efficiency with which microbes perform these 
functions is undoubtedly influenced by their physical and 
chemical environment (Gilbert et  al., 2012), but also by 
interactions with each other within microbial communities 
(Azam and Malfatti, 2007; Fuhrman et  al., 2015; Guidi et  al., 
2016). The composition and function of microbial communities 
varies strongly with seasonal changes in coastal ecosystems 
including day length, solar radiation, temperature, and salinity 
(Gilbert et  al., 2012; Cram et  al., 2015; Bunse and Pinhassi, 
2017), and in polar regions these seasonal changes are particularly 
extreme, with additional complexities including ice cover and 
wide variations in river runoff (Holmes et  al., 2012). Climate 
change is warming the Arctic approximately two times faster 
than lower latitudes (Serreze and Barry, 2011), and is amplifying 
seasonal variations in temperature (Serreze and Barry, 2011), 
ice extent (Stroeve et  al., 2012), and river flow (McClelland 
et  al., 2006; Morison et  al., 2012). Moreover, increased river 
runoff in spring is accelerating coastal ice melt (Whitefield 
et al., 2015), particularly along the extensive Arctic continental 
shelf, where the interplay between these variables influences 
the timing and magnitude of biological production (Arrigo 
and van Dijken, 2015; Marchese et  al., 2017), the species 
composition of primary producers (Li et  al., 2009; Ardyna 
et  al., 2014), and, in turn, higher and lower trophic levels 
(Wassmann et  al., 2011; Vernet et  al., 2017). Establishing the 
baseline relationship between microbial communities in Arctic 
coastal waters and their physical and chemical environment 
is key to understanding and predicting how they will respond 
to continued climate-induced changes to the Arctic system.

Most investigations of seasonality in microbial community 
composition and function in the Arctic Ocean have focused 
on offshore regions in the Chukchi and Canadian Beaufort 
Seas, the Norwegian Coast, and the plumes of very large Arctic 
rivers (Alonso-Sáez et al., 2008; Garneau et al., 2008; Ghiglione 
et  al., 2012; Marquardt et  al., 2016; Onda et  al., 2017). Less 
is known about shallow estuarine environments on Arctic 
coastlines, despite their importance to coastal fisheries (von 
Biela et  al., 2013) and as breeding habitat for over 157 species 
of migrating birds (Brown et  al., 2007). Nearly one-half the 
Alaskan Beaufort Sea coast and one-third of the Chukchi Sea 
coast is skirted by an irregular and discontinuous chain of 
barrier islands that enclose shallow (< 6  m deep) lagoons 
(Dunton et  al., 2006; Schreiner et  al., 2013). Seasonal changes 
in these lagoons are different than in the open Arctic Ocean. 
For example, the magnitude of seasonal temperature fluctuations 
is larger in the lagoons, ranging from as low as −2.1°C in 
the winter to over 10°C in the summer, while that in much 
of the rest of the Arctic Ocean does not exceed 0–4°C 
(Timmermans and Ladd, 2018). Salinity fluctuations are also 
larger in the lagoons, in some cases ranging from hypersaline 

in winter due to sea ice brine rejection to nearly fresh conditions 
in spring due to river inputs (Harris et al., 2017). The organisms 
inhabiting these lagoon systems must be  capable of surviving 
rapid changes in physical and chemical conditions.

Several studies have demonstrated that organic carbon from 
terrestrial runoff subsidizes lagoon food webs in the Arctic 
(Dunton et  al., 2006, 2012; Bell et  al., 2016; Mohan et  al., 
2016; Harris et  al., 2018). These subsidies likely enter food 
webs via heterotrophic bacterial and protistan communities; 
however, the extent to which terrestrial subsidies influence the 
composition of microbial communities in these lagoons remains 
unknown. One study in a lagoon near Barrow, Alaska, used 
experimental incubations to show a change in Arctic marine 
bacterial community composition and an increase in production 
in response to tundra-derived organic matter amendments 
(Sipler et  al., 2017). Understanding how coastal microbial 
populations incorporate terrestrial organic matter and use 
terrestrially derived nutrients is paramount to refining our 
understanding of pathways for the integration of terrestrial 
carbon into coastal Arctic marine systems. A first step in 
achieving this is to characterize how microbial populations  
in terrestrially influenced Arctic waters change seasonally and 
in response to inputs of riverine material.

In this study, we  describe seasonal variation in prokaryotic 
and protistan community composition in coastal lagoons of 
the Alaskan Arctic Ocean, and identify potential controls on 
microbial population dynamics, including organic matter source 
and prokaryotic-eukaryotic associations. This work was carried 
out in the context of a larger interdisciplinary study aimed at 
understanding how terrestrial inputs control physical (Harris 
et  al., 2017), biogeochemical (Connelly et  al., 2015; Mohan 
et  al., 2016), and ecological (Nolan et  al., 2011; Dunton et  al., 
2012; Harris et al., 2018) properties of lagoon ecosystems along 
the Alaskan Beaufort Sea coast.

MATERIALS AND METHODS

Sample Collection
Water samples (2  L) for microbial community analyses were 
collected from several sites within lagoons and outside barrier 
islands along the Alaskan Beaufort Sea coast in August 2011, 
and April, June, and August 2012 and 2013. Four lagoons, 
Kaktovik (KA), Jago (JA), Angun (AN), and Nuvagapak (NU), 
and one site outside the barrier islands near Barter Island 
(BP) were sampled in all three seasons (Figure 1, BP was not 
sampled in August 2011). Two more lagoons, Tapkaurak (TA) 
and Demarcation Bay (DE), and three additional sites outside 
the barrier islands, near the Hulahula River (HU), Bernard 
Spit (BE), and Demarcation Point (DP), were also sampled in 
August (Figure 1). Severe weather limited sample collection 
to KA, JA, AN, BP, and BE  in August 2013. Samples were 
collected from one to two stations per site in April and June, 
and two to three stations per site in August of each year. BP 
had only one station in all seasons. Most sites were less than 
4  m deep, with the exception of BE  and DP, which were 
~9–10  m deep. Samples were collected approximately 10  cm 
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below the bottom off the ice cover in April (ice thickness 
1.3–1.7  m) and from the top 2  m of the water column in 
June using a peristaltic pump, and by submerging hand-held 
sample bottles to ~0.5  m below the water surface in August. 
River endmembers were collected from the Canning, Jago, and 
HulaHula rivers in August 2011 and from Canning and Jago 
rivers in August 2012.

Samples were also collected for a suite of environmental 
measurements including particulate organic carbon (POC) and 
nitrogen (PON) concentrations and stable isotope ratios (POC 
δ13C and PN δ15N), chlorophyll a (Chl a) concentration, dissolved 
organic carbon and nitrogen concentrations, dissolved inorganic 
nitrogen (DIN  =  NO3  +  NH4) concentrations, and oxygen 
stable isotope ratios of water (H2O-δ18O). Sample processing 
methods and measurements of particulate parameters (POC, 
PON, Chl a) are discussed in Connelly et  al. (2015). Methods 
for dissolved parameters follow procedures described in 
McClelland et  al. (2014). A YSI Sonde was used for measuring 
temperature, salinity, and dissolved oxygen from depths sampled 
(in addition to other depths throughout the water column). 
See Harris et  al. (2017) for details of physical measurements 
and oxygen stable isotope ratios.

Microbial Sample Processing, DNA 
Extraction, and Polymerase Chain 
Reaction Amplification
After collection, samples were kept under shade during transit 
back to the Arctic National Wildlife Refuge field station in 
Kaktovik, Alaska. Within hours of collection, 2  L of water 
was filtered onto a 0.22-μm Sterivex filter (Millipore) using a 
peristaltic pump and preserved with 1  ml of DNA extraction 
buffer (100  mM Tris, 100  mM NaEDTA, 100  mM phosphate 
buffer, 1.5 M NaCl, 1% CTAB) and kept frozen until extraction. 
Prior to filtration, duplicate 14-ml samples were collected from 

the sample bottles, fixed with glutaraldehyde (2% final 
concentration), and frozen for estimation of bacterial abundance 
using flow cytometry.

Prior to extraction, Sterivex filter cartridges were cracked 
open with pliers and filters were removed using an ethanol-
flamed scalpel. The DNA extraction buffer from the cartridge 
was decanted into a sterile 2-ml microcentrifuge tube and the 
filter was subsequently cut into multiple pieces on a sterile 
cutting board and placed in the same tube. Samples were then 
subjected to three freeze-thaw cycles, followed by enzymatic 
lysis with Lysozyme (0.2  mg/ml final concentration) and 
Proteinase K (2 mg/ml final concentration) at 37°C for 30 min 
and continued digestion and lysis with the addition of SDS 
(1% final concentration) at 65°C for up to 2  h. Samples were 
then extracted two times with an equal volume of 
Phenol:Chloroform:Isoamyl alcohol (25:24:1) and nucleic acids 
were precipitated using 100% isopropanol (0.6 × volumes of 
the resulting supernatant) for 2  h up to overnight. Samples 
were then pelleted at 18,000 RCF for 30  min, rinsed, and 
re-pelleted two times with 70% ethanol, and dried down in 
a roto-evaporator. Once dry, samples were resuspended in 
250  ml of nuclease-free water.

For community composition analysis, we  amplified the V4 
region (515F, GTGCCAGCMGCCGCGGTAA and 806R, 
GGACTACHVGGGTWTCTAAT) of the 16S rRNA gene for 
prokaryotic composition, and the V9 region (1391F, GTACACA 
CCGCCCGTC and EukBr, TGATCCTTCTGCAGGTTCA 
CCTAC) of the 18S rRNA gene for eukaryotic composition 
for sequencing on the Illumina MiSeq platform using Earth 
Microbiome Project protocols (http://www.earthmicrobiome.
org/protocols-and-standards/16s/, but with only 30 PCR cycles). 
However, a known mismatch in the 16S primers with 
Thaumarcheaota, a dominant phylum of the marine Archaeal 
community, precluded us from drawing conclusions about 
Archaeal community composition. Each sample was amplified 

FIGURE 1 | Map of the sampling region. Black circles indicate all locations from which samples were collected. Site names in bold were sampled in all seasons, 
while those not bolded were sampled only in August. The star indicates the location of the town of Kaktovik, Alaska.
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three times, pooled, quantified using Picogreen, and then, for 
each amplicon, pooled at equimolar concentrations (100  μmol 
each). The 16S sample pool and 18S sample pool were each 
cleaned using a MoBio Ultraclean PCR Clean-Up Kit and quantified 
using Picogreen. Amplicon pools were sequenced at Argonne 
National Lab (the 16S sample library composed of August 2011, 
and April and June 2012 samples) or the Oregon State University 
Center for Genome Research and Biocomputing (all 18S sample 
libraries and an additional 16S library from August 2012 and 
all 2013 samples) 2  ×  150 bp paired-end reads. Gene amplicon 
sequences have been deposited in NCBI Sequence Read Archive 
(SRA) bioproject accession number PRJNA530074, under run 
accessions SRR8832739-SRR8833063 (16S rRNA gene) and 
SRR8837972-SRR8838296 (18S rRNA gene)1.

Bacterial Abundance Measurements
Cell counts were performed using a BD Biosciences FACSCalibur 
Flow Cytometer at UMCES Horn Point Laboratory (2011 and 
2012 samples) and Oregon State University (2013 samples). 
Single samples were counted for 2011 sites, while duplicate 
samples were counted and averaged for all sites after 2011. 
In the field, 14 ml of seawater was preserved with glutaraldehyde 
(2% final concentration) and frozen. In the lab, samples were 
thawed and 1.5-ml aliquots were stained overnight in the case 
of 2011 and 2012 samples with 20  μl of 1:200 SYBR Green I. 
The next day, samples were spiked with 15  μl (25  μl in 2013) 
of a sonicated beadstock created from PeakFlow Flow Cytometry 
Reference Beads (Life Technologies, Inc.) for internal reference. 
Samples from 2013 were stained and counted on the same 
day. Data were collected using the program CellQuest Pro 
(BD Biosciences) in logarithmic mode based on side scatter 
(SSC) and green fluorescence (FL1) with a target rate of 
100–1,000 events s−1 for a total of 20,000 events for 2011–2012 
samples and for a set period of time for 2013 samples (average 
78,000 events). See Meyer et  al. (2014) for additional 
methodological details, including how cell concentration was 
calculated from counted events.

Sequence Analysis
Reads that were successfully paired using fastq-join (Aronesty, 
2011) were quality filtered with an expected error rate of 0.5, 
dereplicated (derep_fulllength), and abundance sorted (sortbysize) 
using UPARSE v. 8 (fastq_filter; Edgar, 2013). Singleton sequences 
were removed in the latter step to prevent them from seeding 
clusters when clustering sequences into operational taxonomic 
units (OTUs). Reads were then clustered into OTUs (cluster_otus 
in UPARSE pipeline) at 97% similarity. A de novo chimera check 
is inherent in the cluster_otus algorithm and chimeric sequences 
were removed during OTU clustering. Reference-based chimera 
filtering was performed using UPARSE (uchime_ref) with the 
Gold Database2 as reference. Reads (including singletons) were 
subsequently mapped back to OTUs using UPARSE (usearch_global) 
and an OTU table created. Taxonomy of the  representative 

1 https://www.ncbi.nlm.nih.gov
2 https://drive5.com/usearch/manual/uchime_algo.html

sequences was assigned in QIIME v. 1.9 (assign_taxonomy.py; 
Caporaso et  al., 2010) using the RDP classifier trained to the 
Greengenes database (v. 13.8, http://greengenes.secondgenome.
com/) for 16S amplicons or the Silva database (v. 119; Quast 
et al., 2013; Yilmaz et al., 2014) for 18S amplicons. Any remaining 
singletons and OTUs occurring in only one sample were removed 
in QIIME (filter_otus_from_otu_table.py). Sequences identified 
as Archaeal, chloroplast, and mitochondrial were also removed 
from 16S reads. For the 18S rRNA gene library, we  removed 
clades known to have multicellularity, as well as unclassified reads, 
in order to focus on protists. After these quality control steps, 
the average number of reads per sample was 22,326 for 16S 
amplicons (range 3,651–73,169 sequences per sample) and 43,093 
sequences for 18S amplicons (range 6,720–103,750 sequences 
per sample).

Statistical Analyses
Given recent insights that rarefying microbiome datasets may 
not be  the best method for comparing samples (McMurdie and 
Holmes, 2014), we chose not to randomly subsample OTU tables 
for the bulk of our analyses, with the exception of alpha diversity 
estimates. For alpha diversity measurements, the 18S rRNA gene 
OTU table was rarefied to 6,700 sequences per sample, and the 
16S rRNA gene OTU table to 3,650 sequences per sample. Alpha 
diversity was calculated as Chao1 Diversity Index to measure 
species richness (Chao, 1984), Simpson’s Evenness Measure (Smith 
and Wilson, 1996) to measure evenness, and Phylogenetic Diversity, 
which incorporates phylogenetic differences among species in 
the calculation of diversity (Faith, 1992; Caporaso et  al., 2011). 
For beta diversity analyses, comparisons with environmental 
data, and indicator species analysis, OTU tables were normalized 
using proportional abundance of each OTU within each sample. 
To verify that using proportional abundance did not substantially 
change our conclusions compared to using OTU tables that 
were subsampled, we  ran a subset of the analyses described in 
this paper using rarefied OTU tables and found no significant 
difference in results or conclusions.

Microbial community structure was assessed using nonmetric 
multidimensional scaling (NMDS) calculated using the metaMDS 
function in the Vegan package for R (Oksanen et  al., 2019). 
Variability in bacterial and eukaryotic community composition 
among samples was calculated using Bray-Curtis dissimilarity. 
Permutational multivariate analysis of variance (PERMANOVA; 
Anderson, 2017) and Analysis of Similarity (ANOSIM; Clarke, 
1993) calculated using the adonis and anosim functions in 
the Vegan package for R (Oksanen et  al., 2019) were used to 
test for differences among sample groupings determined a priori 
(e.g., by season, inside versus outside of barrier islands). 
PERMANOVA provides a pseudo-F-ratio, a value of p for the 
group-wise tests for differences (as you  would get from a 
standard ANOVA), and the percent of variation in the community 
dataset explained by the grouping. ANOSIM provides an R 
value ranging from 0 to 1 with higher values indicating stronger 
differences between or among groups, and a significance value 
for the ANOSIM R value based on 999 permutations.

The degree to which physico-chemical data explained the 
variation in bacterial and eukaryotic communities was assessed 
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using three methods. First, a Procrustes analysis was used to 
compare ordinations of community and physico-chemical data 
(Peres-Neto and Jackson, 2001) yielding correlation and 
significance values. Second, envfit in the Vegan package of R 
was used to decipher which variables were contributing to the 
structure of community nonmetric multidimensional scaling 
ordinations by fitting vectors of significant physico-chemical 
variables onto community NMDS ordinations. Finally, redundancy 
analysis (RDA) was used to quantify the percent of variation 
in bacterial or eukaryotic community composition explained 
by the physico-chemical environmental characteristics. Bacterial 
and Eukaryotic OTU tables were Hellinger-transformed prior 
to use in the RDA. Before running the RDA, physico-chemical 
variables for the model were selected to reduce multicollinearity 
using correlation matrices. The absence of substantial 
multicollinearity in this subset of variables was verified using 
the vif.cca function available in the Vegan package for R. RDA 
was run using the Vegan package for R.

Indicator species analysis (Dufrêne and Legendre, 1997) was 
used to identify bacterial and eukaryotic taxa that significantly 
contributed to seasonal differences in the coastal Beaufort Sea 
microbial community. In order to distinguish between river 
indicator species and lagoon indicator species, four sample 
groups were used for this analysis: River, April, June, and 
August. The indval program in the labdsv package for R was 
used to run the Dufrêne-Legendre Indicator Species Analysis, 
and OTUs having an indicator value (IV)  >  0.7 and p  <  0.005 
were considered significant indicators. Monthly indicators were 
then further broken down into two groups, high-abundance 
indicators, having an average relative abundance of greater than 
0.5% of the total average population for that month, and 
low-abundance indicators, which were significant but had an 
average relative abundance of less than 0.5%. The taxonomic 
composition of only high-abundance indicators was further 
scrutinized. The relationship between the distribution of high-
abundance indicators and the Beaufort Sea environment was 
examined using Spearman correlations, with values of p adjusted 
using the Benjamini-Hochberg correction (Benjamini and 
Hochberg, 1995). Correlations were calculated using the Hmisc 
package for R, while the calculated values of p were adjusted  
using the base R stats package.

Co-occurrence Network Analysis
Microbial association networks were generated for each month, 
across all years, using CoNet (Faust et  al., 2012). In order for 
an OTU to be  included in the network it had to be  present 
in 25–33% of the samples (Aprilminocc = 4, Juneminocc  =  5, and 
Augustminocc = 14). In April and June, a percentage slightly higher 
than 25% was used because the number of correlations was 
very large and computation time was too great, preventing 
completion of network calculations at a minimum occurrence 
of 25%. Pairwise scores were computed for both Bray–Curtis 
similarity and Spearman correlation. Associations with a Spearman 
correlation above 0.7 or below −0.7 and a Bray-Curtis similarity 
of above 0.6 or below 0.4 were retained. For each measure and 
edge, 1,000 permutations (with renormalization for correlation 
measures) and bootstrap scores were generated, following the 

ReBoot routine. Values of p were calculated as described in 
Weiss et al. (2016) and measure-specific values of p were merged 
using Brown’s method. Associations were corrected using the 
Benjamini-Hochberg’s false discovery rate (Benjamini and 
Hochberg, 1995) and edges with merged values of p below 0.05 
were retained. Edges had to be  significant using both similarity 
measures to be  kept. Network statistics were calculated in 
Cytoscape 3.6.1 (Smoot et  al., 2011). Chord diagrams, created 
using the R package circlize, were used to display significant 
associations among the 15 most abundant taxa groups across 
all three networks (Gu et  al., 2014).

RESULTS

Environmental Conditions
April waters were ice-covered and cold (average of −2°C; Harris 
et  al., 2017), with high salinity and inorganic nutrients, and 
low Chl a, dissolved oxygen, pH, organic matter, and bacterial 
abundance (Figure 2A). June waters, sampled during ice break-
up, were also cold but had the highest organic matter 
concentrations, the highest SUVA254 (a measure of DOC 
aromaticity), and the lowest salinity because of freshwater input 
from rivers (Table 1). August waters were warmer (average 
of 8.9°C), with lower concentrations of inorganic nutrients 
and organic matter, and higher values of H2O-δ18O, POC δ13C, 
and PN δ15N. Ranges of these variables fluctuated interannually, 
but seasonal patterns of change in coastal Beaufort Sea waters 
were the same from year to year.

Bacterial Diversity and Community 
Composition
Alpha Diversity
We identified 17,340 bacterial OTUs and 9,583 protistan 
(unicellular eukaryotes, including fungi) OTUs. For bacterial 
OTUs, river samples had the highest species richness and 
phylogenetic diversity (FDR-corrected p  <  0.005). Evenness in 
river samples was not significantly different from lagoon coastal 
waters in April and August. Among lagoon and coastal samples, 
richness was highest in June (FDR-corrected p  <  0.01, 
Supplementary Figure S1), phylogenetic diversity was lowest 
in August (FDR-corrected p  <  0.01), and evenness was highest 
in August (FDR-corrected p  <  0.01) and lowest in June 
(FDR-corrected p < 0.005). There was no interannual variability 
in richness and evenness in April or June, but evenness was 
significantly greater in August 2012 and 2013 than in 2011 
(FDR-corrected p < 0.05, Supplementary Figure S2). Bacterial 
richness and evenness were the same between sites within and 
outside of barrier islands except in August when evenness 
outside the barrier islands was lower (FDR-corrected p = 0.0035, 
Supplementary Figure S3).

As with bacteria, eukaryotic species richness was greatest 
in rivers, but unlike bacteria the coastal eukaryotic communities 
had the lowest richness and phylogenetic diversity in June 
and the highest in April (Supplementary Figure S1). No 
significant differences in richness were observed among the 
eukaryotic communities when grouped by month or location. 
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There was also no interannual variability in eukaryotic richness, 
phylogenetic diversity, or evenness except in August 2011 when 
richness and phylogenetic diversity values were significantly 
lower than later years (FDR-adjusted p  <  0.05, Supplementary 
Figure S2). Eukaryotic richness and evenness were the same 
between sites within and outside barrier islands in June, but 
richness was greater outside the islands in April (FDR-adjusted 
p  <  0.05, Supplementary Figure S3) and evenness was greater 
inside the islands in August (FDR-adjusted p  <  =0.021, 
Supplementary Figure S3).

Taxonomic Composition
River bacterial communities were dominated by 
Betaproteobacteria (22% of the community on average), 
Bacteroidetes (21%), Gammaproteobacteria (11%), and 
Alphaproteobacteria (11%) (Figure 3A). Coastal bacterial 
communities in April and August were dominated by 
Gammaproteobacteria (36.3 and 29.6%, respectively), 
Bacteroidetes (23.7 and 27.2%), and Alphaproteobacteria (17.4% 
in April and 23.4% in August), but differed in the abundant 
members of these groups. For example, in August, 
Gammaproteobacteria included many members of the 
oligotrophic marine clades SAR86, SAR92, OM60, and OM182 
groups (43% of Gammaproteobacteria), whereas in April these 
taxa were less abundant (20% of Gammaproteobacteria) and 
the Gammaproteobacteria were dominated by other members 
of the orders Alteromonadales and Oceanospirillales (64% of 
Gammaproteobacteria, Supplementary Figure S4). April 
communities also included a large population of iron- 
oxidizing Zetaproteobacteria (4.6%; Figure 3A), and a diverse 
community of Deltaproteobacteria including the putative 
chemolithoautotrophic bacteria SAR324 (Sheik et  al., 2014). 
June coastal bacterial communities were dominated by 

A

B

C

FIGURE 2 | Environmental and microbial community variability across seasons. 
Principal component analysis of (A) physico-chemical data and nonmetric 
multidimensional scaling plots showing (B) bacterial and (C) protistan beta 
diversity (based on Bray-Curtis distances) highlight seasonal variation.

TABLE 1 | Monthly average physical and chemical properties across all lagoons.

April (n = 13) June (n = 15) August (n = 57)

Salinity 35.6 (4.4) 5.4 (9.9) 22.5 (6.8)
Temperature (°C) −2.0 (0.3) 2.0 (1.5) 8.9 (2.9)
DO (mg l−1) 12.1 (2.1) 13.4 (1.0) 10.7 (1.3)
Chl a (μg l−1) 0.042 (0.03) 2.3 (3.8) 0.38 (0.4)
pH 7.5 (0.3) 7.9 (0.3) 7.9 (0.2)
BA (× 108 cells/L) 4.0 (4.5) 6.6 (2.9) 8.7 (5.5)
DOC (μmol) 107.9 (23.2) 211.3 (57.2) 109.9 (37.7)
DON (μmol) 5.4 (6.6) 6.6 (2.9) 6.4 (2.0)
DOC:DON 15.6 (11.8) 45.4 (43.5) 18.5 (7.5)
SUVA254 2.3 (1.1) 3.5 (0.5) 2.6 (1.0)
S275–295 −0.014 (0.005) −0.014 (0.001) −0.014 (0.004)
TDN (mg/l) 0.18 (0.09) 0.13 (0.03) 0.10 (0.02)
NO3 (μmol) 2.8 (2.0) 1.2 (1.6) 0.081 (0.3)
NH4 (μmol) 4.9 (10.5) 1.4 (1.6) 0.3 (0.7)
POC (μg l−1) 106.6 (119.7) 538.4 (152.3) 216.4 (75.7)
PN (μg l−1) 17.9 (22.5) 74.4 (19.3) 36.6 (12.9)
POC:PN 6.7 (1.3) 7.3 (1.2) 6.0 (0.9)
POC δ13C (‰) −26.7 (1.3) −28.5 (1.4) −26.8 (2.6)
PN δ15N (‰) 5.2 (2.4) 4.7 (2.3) 6.5 (1.7)
H2O-δ18O −3.7 (0.5) −15.3 (3.2) −6.4 (3.0)

BA, bacterial abundance.
Standard deviations are given in parentheses.
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Bacteroidetes (32.6%), and Betaproteobacteria (25%), in part 
reflecting riverine influence, but many members of these groups 
differed from those in river samples (Figure 3A). For example, 
Betaproteobacteria in coastal waters were dominated by the 
marine genus Polaromonas (48% of Betaproteobacteria), while 
river samples were dominated by other Burkholderiales (64% 
of Betaproteobacteria, Supplementary Figure S5). Also, 
Bacteroidetes in June were dominated by members of the class 
Flavobacteriia (80% of Bacteroidetes), while this class made 
up only 49% the Bacteroidetes community in river samples 
(Supplementary Figure S6).

River protistan and fungal communities were dominated 
by Diatoms (20.7%), with substantial contributions from other 
Ochrophytes (14.7%; especially Ochromonas sp. CCMP1899), 
Nucletmycea (13.7%), Rhizaria (12.5%), and Chlorophytes (11.1%; 
Figure 3B). April eukaryotic communities were dominated by 
Ciliophora (27.8%) and Syndiniales (20.1%), with Dinophyceae 
(13.8%), non-Diatom Ochrophytes (10.6%), and marine 
stramenopiles (9.3%) also contributing to ice-covered eukaryotic 
populations (Figure 3B). June eukaryotic communities were 

dominated by Diatoms (33.3%), Ciliophora (21.6%), Dinophyceae 
(10%), and Rhizaria (13.3%). River and lagoon eukaryotic 
communities in June were both dominated by Diatoms, but 
the dominant taxa differed (rivers: Fragilaria sp. (68%); lagoons: 
Chaetoceros (59%) and Skeletonema spp. (30%); Supplementary 
Figure S7). Eukaryotic communities transitioned from diatom-
dominated during ice break-up in June to dinoflagellate-
dominated in August (24.8%) when communities also included 
high proportions of Ciliophora (17.4%), Chlorophyta (13.1%), 
and non-Diatom Ochrophytes (10%, Figure 3B). Across all 
seasons, Spirotrichea was the dominant group of ciliates observed 
in coastal samples, with Heterotrichea also abundant (5%) in 
April. Gymnodiniphycidae was the dominant dinoflagellate taxa 
(Supplementary Figure S8).

Beta Diversity
With respect to beta diversity, both bacterial and eukaryotic 
communities differed seasonally, and all coastal communities 
differed from river communities (Figures 2B,C). We  found 
that 43% of the variance in bacterial communities and 27% 

A B

FIGURE 3 | Boxplots of abundant (A) bacterial and (B) eukaryotic (protistan and fungal) groups for each month across all years sampled. River samples, though 
collected in August, were averaged separately. The color of the lines next to taxa names indicates the month in which each taxon or group of taxa was  
most abundant.
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of the variance in eukaryotic communities was accounted for 
by seasonal coastal and river group differences (p  =  0.001, 
using PERMANOVA). Pairwise seasonal differences, as quantified 
using ANOSIM tests, were greater among eukaryotic communities 
(0.62–0.97 for eukaryotes and 0.4–0.96 for bacteria, p  =  0.001) 
with the exception of April–June comparisons, which had a 
higher ANOSIM R value for bacteria than for eukaryotes (0.93 
vs. 0.88, p  =  0.001). In total, 1,207 bacterial OTUs and 712 
eukaryotic OTUs were shared among all coastal microbial 
communities. Among coastal communities, June had the greatest 
number of unique bacterial OTUs (49.8%) but the fewest unique 
eukaryotic OTUs (38.9%). August had the most unique eukaryotic 
OTUs (55%). June coastal communities shared the greatest 
percentage of OTUs with river communities among all coastal 
water-river water comparisons (38.8% for bacteria and 50.9% 
for eukaryotes). August communities also shared a substantial 
percentage of their OTUs with river communities (34.1% for 
bacteria and 31.7% for eukaryotes), but April samples shared 
20% or less of their OTUs with river communities.

Indicator Species
Indicator species analysis was used to determine which OTUs 
significantly contributed to differences among seasons. We focused 
on OTUs with indicator values greater than 0.7, values of p 
less than 0.001, and average relative abundance greater than 
0.5% of the average community composition for the month 
for which the OTU was an indicator. In April, 23 bacterial 
indicator taxa made up 36% of communities in these ice-covered 
waters (Figure 4A). Many of these indicator taxa belonged to 
the Gammaproteobacteria order Oceanospirillales and the 
Bacteroidetes order Flavobacteriales. April indicator taxa also 
included members of the methanotrophic order Methylococcales, 
and several chemolithoautotrophic taxa including iron-oxidizing 
Zetaproteobacteria and sulfur-oxidizing SAR324. In June, 13 
indicator taxa composed 50% of communities in these highly 
productive, lower salinity waters (Figure 4B). Most of these 
taxa belonged to the Bacteroidetes phylum, and to the 
Betaproteobacteria genus Polaromonas and methylotrophic order 
Methylophilales. June indicators also included Alphaproteobacteria 
related to Loktanella sp. In August, 22 indicator taxa made up 
31% of the bacterial communities in these late summer, nutrient-
poor waters (Figure 4C). Many of these indicators belonged 
to the Alphaproteobacteria family Rhodobacteraceae, including 
Phaeobacter and Octadecabacter spp. August indicators also 
included Gammaproteobacteria from oligotrophic marine clades 
(OM60, OM182, SAR86, and SAR92).

As with the bacteria, a small number of eukaryotic indicator 
taxa made up a large fraction of the average April, June, and 
August communities (Figure 4). In April, 13 eukaryotic indicator 
taxa from four phyla made up 31% of the April eukaryotic 
community (Figure 4D) and included several OTUs closely 
related to the parasitic order Syndiniales, and several marine 
stramenopiles (MAST) belonging to groups 1, 7, and 8. In 
June, a more diverse set of 17 indicator taxa made up 58% 
of the eukaryotic community (Figure 4E). June indicators were 
dominated by several diatoms closely related to Chaetoceros, 

Skeletonema, and Melosira sp., but also included a diverse 
community of taxa from the class Dinophyceae (dinoflagellates), 
phyla Ciliophora (ciliates), Chlorophyta (green algae), and 
Cercozoa. In August, an even broader array of indicators was 
observed, with 23 OTUs representing 32% of the eukaryotic 
community (Figure 4F). August indicators were dominated 
by Chlorophyta, Dinophyceae, and Ochrophyta OTUs, but 
included other taxa such as haptophytes, cryptophytes, and 
ciliates. While diatoms made up the bulk of the Ochrophyta 
indicators in June, this was not the case in August, when 
Ochrophyta indicators instead belonged to the Dictyochophyceae, 
Chrysophyceae, and Pelagophyceae.

Environmental Drivers of Coastal Beaufort 
Sea Microbial Communities
Several methods were used to investigate relationships between 
physico-chemical parameters and microbial community 
composition. First, Procrustes analysis showed that both bacterial 
and eukaryotic community composition were significantly 
correlated with variation in Beaufort Sea lagoon environmental 
conditions (CorrBAC  =  0.7278, CorrEUK  =  0.5923, sig  =  0.001). 
Second, physico-chemical vectors that correlated significantly 
with bacterial and eukaryotic NMDS ordinations were overlain 
onto NMDS plots to determine the environmental gradient 
that correlated with the variations in community structure 
(Supplementary Figure S10). For the bacterial community, 
the first NMDS axis was negatively correlated with salinity 
and POC δ13C (r2  <  −0.7) and positively correlated with 
SUVA254, POC, DOC, and Chl a suggesting that separation 
of June communities from August and April along this NMDS 
axis represents gradients in terrestrial input and productivity. 
The second NMDS axis was strongly correlated with temperature 
(r2 < −0.9) and negatively correlated with nitrate and ammonium 
(r2  >  0.9, Supplementary Figure S10A), suggesting that 
separation of August from April communities is driven by 
seasonal changes in temperature and nutrients. Finally, 
redundancy analysis was used to quantify the amount of 
variation explained by these physico-chemical variables 
(Supplementary Figure S11). Approximately 70% of the variation 
in bacterial community composition could be  explained by 
the Beaufort Sea environment.

For the eukaryotic community, the orientation of samples 
on the NMDS was rotated slightly relative to the bacterial 
NMDS, but the major trends were essentially the same. April 
and August communities were separated from June communities 
along gradients in terrestrial input and productivity 
(Supplementary Figure S10B). The C:N ratio of particulate 
organic matter (POM) and concentrations of DOC, nitrate, 
and ammonium were all strongly correlated this first NMDS 
axis (r2 > 0.7), suggesting that the August and April communities 
existed in waters with more degraded organic matter and lower 
nutrients than June communities. Like bacterial communities, 
April and August eukaryotic communities separated along a 
temperature and nutrient gradient, but productivity (e.g., Chl 
a) and organic matter source components (SUVA254, Chl a, 
Salinity, and POC δ13C) were also important correlates with 
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the second NMDS axis for the eukaryotic ordination 
(Supplementary Figure S10B). Finally, redundancy analysis 
showed that approximately 55% of the variation in eukaryotic 
community composition could be  explained by the Beaufort 
Sea environment (Supplementary Figure S11).

Correlations between high-abundance indicator taxa and 
measured physico-chemical variables reflected those of the whole 
communities (Figure 5). April indicator taxa in ice-covered 
waters correlated with less productive and cold, nutrient-rich 
conditions (negative correlations POC, PN, Chl a, bacterial 

A D

B E

C F

FIGURE 4 | Taxonomic affiliation of top bacterial (A–C) and eukaryotic (D–F) high-abundance indicator OTUs for each month. High-abundance indicator OTUs are 
those OTUs that had an indicator value of >0.7, p < 0.001, and made up at least 0.5% of the community for the month in which they were an indicator. The monthly 
average relative abundance of these indicator OTUs is shown relative to the average relative abundance of non-indicator and low-abundance (<0.5%) indicator taxa.
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abundance; positive correlations with salinity and inorganic 
nutrients). This was particularly true for the eukaryotic MAST 
and Syndiniales OTUs, and several bacterial indicator taxa  
known to use diverse metabolic strategies for survival (e.g., 
Methylococcales, Zetaproteobacteria, and SAR324; Figure 5). 
During ice break-up, June indicator OTUs correlated with 
conditions representing riverine input (positive correlations with 
SUVA254, C:N, POC, PN, DOC, Dissolved Oxygen, and Chl a; 
negative correlations with POC δ13C and PN δ15N and Salinity; 
Figure 5). August indicators correlated with conditions representing 
post-bloom, nutrient-depleted conditions (positive correlations 
with bacterial abundance and temperature; negative correlations 
with dissolved oxygen, nutrients, DOC, POC, and PN; Figure 5).

Microbial Co-occurrence Network 
Properties
Network Structure
Co-occurrence networks for the three seasons were strikingly 
different in size and topology (Table 2). The percentage of bacterial 
and eukaryotic OTUs retained in these networks after frequency 
filtering and subsequent co-occurrence analyses varied from 7 
to 36% (Supplementary Table S1), causing the networks to vary 
substantially in size. Among the taxa retained in these networks, 
significant combinations represented 1.4–14.9% of the possible 
combinations (Supplementary Table S1), and average path length, 
or the number of nodes needed to link two nodes was short, 
ranging from 3.1 to 4.3 (Table 2). Network diameter, or the 
longest distance in a network, ranged from 10 edges (June) to 
13 edges (August). Network density, a normalized measure for 
the average connectivity within a network, was the highest in 
June (0.057) and lowest in August (0.014). The average node degree, 

or the average number of connections for each node, was very 
high in June (111) compared to April (33) and August (9). 
Overall network complexity, as estimated by connectance (the 
fraction of all possible links that are realized in a network; 
Williams et  al., 2002), was highest in June (0.0282) and lowest 
in August (0.0071) (Table 2). The number of connected components, 
or a set of nodes in the network graph for which there is always 
an interconnecting path (Corel et  al., 2016), was the lowest in 
April (5) and highest in August (36, Table 2). If a network has 
only one connected component, all nodes can be  linked to any 
other node in the network either directly or indirectly. The 
presence of more than one connected component indicates that 
some groups of nodes are segregated from the main network, 
not significantly correlated with any nodes in that graph.

A

B

FIGURE 5 | Heatmap showing significant (FDR-corrected) Spearman correlations between top indicator OTUs and physico-chemical variables for (A) Bacteria and 
(B) Protists. Both the month and taxonomic affiliation of the indicator OTU are indicated above the heatmap.

TABLE 2 | Network statistics, calculated in Cytoscape v. 3.6.1.

Network property April June August

# Nodes (S) 1,272 1966 662
# Edges (L) 21,122 109,143 3,121
# Positive edges 18,601 107,836 2,650
# Negative edges 2,521 1936 471
Link density (L/S) 16.61 55.52 4.71
Connectance (L/S2) 0.0131 0.0282 0.0071
Ave. degree 33.2 111 9.4
Network diameter 12 10 13
Graph density 0.026 0.057 0.014
Network centralization 0.146 0.222 0.104
Connected 
components

5 6 35

Clustering coefficient 0.363 0.441 0.385
Average path length 3.929 3.097 4.27
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Indicator taxa were most abundant in their corresponding 
seasonal networks, and river indicators were most abundant 
in the June network (Supplementary Figure S12). In all cases, 
these indicator taxa were outnumbered by non-indicator taxa, 
but in most cases indicator taxa had higher average node 
degrees than non-indicator taxa (Supplementary Figure S13), 
indicating that they were more highly connected within the 
networks. This was the case for seasonal indicators in the 
April and August networks, and for river indicator taxa in 
the June network underscoring the importance of river microbes 
in spring surface waters in these coastal lagoons.

Network Composition
Taxa that were abundant during each season were also abundant 
in corresponding seasonal networks (Supplementary Figure S14). 
The April and August networks shared many of the same 
abundant taxa (Supplementary Figure S16) including bacterial 
taxa Rhodobacterales, Alteromonadales, Oceanospirillales, and 
Flavobacteriales, and eukaryotic taxa Rhizaria, Diatomea, 
Ciliophora, Syndiniales, and Dinophyceae. The June network 
included some of the same abundant eukaryotic taxa with  
the addition of Chrysophyceae, but featured a different set  
of bacterial taxa including Legionellales and Actinobacteria 
(Supplementary Figure S16).

All three networks were dominated by positive edges 
(indicating co-presence), with far fewer negative edges (indicating 
mutual exclusion; Table 1). Also, organism–organism associations 
were far more abundant than those between organisms and 
environmental variables (Supplementary Figure S17). The June 
network was dominated by co-occurrences between prokaryotes 
(Figure 6), while April and August networks had a more even 
distribution of bacteria-bacteria (Bac-Bac), bacteria-eukaryote 
(Bac-Euk), and eukaryote-eukaryote (Euk-Euk) associations 
(Supplementary Figure S18).

We examined the positive and negative correlations among 
the 10 most abundant taxonomic groups within each network, 
which represented a total of 15 different groups (Figure 6). In 
April, Euk-Euk edges were dominated by Syndiniales taxa, including 
marine alveolate (MALV) Groups I  and II and Amoebophrya. 
These taxa correlated most frequently with themselves, with 
dinoflagellates including Gymnodiniphycidae and Peridiniphycidae, 
and with ciliates, including Oligotrichia and Choreotrichia  
(Figure 6). Syndiniales also co-occurred with more bacterial 
taxa than other abundant eukaryotic taxa, and were positively 
correlated with Flavobacteriales and Deltaproteobacteria.

There were far fewer Euk-Euk and Bac-Euk edges than Bac-Bac 
edges in June, and the most abundant eukaryote in the June 
network, Chrysophyceae, was not the most abundant eukaryotic 
taxa in June samples (i.e., Diatomea). Chrysophyceae correlated 
mostly with themselves but also had significant correlations  
with Betaproteobacteria, Deltaproteobacteria, and Legionellales  
(Figure 6). By comparison, Diatomea had far fewer correlations 
within the network. The June network was dominated by Bac-Bac 
edges involving Betaproteobacteria, Legionellales, and Rhizobiales, 
all of which are commonly associated with freshwater and 
brackish environments (Figure 6). Deltaproteobacteria also had 
a high number of edges in June networks.

The August network featured many of the same taxonomic 
groups as the April network, but the connections among the 
nodes were different. Most Euk-Euk associations were positive 
correlations among Syndiniales and other dinoflagellates. By 
comparison, correlations involving ciliates were less frequent. 
Many Bac-Euk associations were negative, particularly those 
involving protist groups Syndiniales and Rhizaria and bacterial 
groups Alteromonadales, Flavobacteriales, Betaproteobacteria, 
and Rhodobacterales (Figure 6). In contrast, most Bac-Bac 
associations in the August network were positive.

The most connected taxa in the three networks were not 
always the most abundant taxa, suggesting that, in many cases, 
more abundant taxa may not require mutualistic interactions 
to thrive and can become abundant without the “help” of  
other microbial taxa, while the reverse may be  true for the 
less abundant but highly connected taxa (Supplementary  
Figure S15). In the April network, the highest node degrees 
were associated with relatively rare bacterial OTUs related  
to the gammaproteobacterium HTCC2188, Thiotrichales, and 
Gemmatimonadetes, and eukaryotic taxa Developayella and 
MAST-3 OTUs, a single Goniomonas OTU and a Pirsonia OTU 
(Supplementary Figure S19). Similarly, in the June network, 
taxa with the highest node degrees were relatively rare OTUs 
from the Enterobacteriales, WS3, and SR1 taxa, all with average 
node degrees >300 (Supplementary Figure S19). However, OTUs 
representing the abundant taxa Rhizobiales and Betaproteobacteria 
also had high average node degrees (>200). In the August 
network, many of the abundant taxa had high average node 
degrees, including Oceanospirillales and Alteromonadales 
(Supplementary Figure S19). Also, in August, several taxa with 
high average node degrees featured a large fraction of negative 
correlations including the bacteria Saprospirales, and eukaryotes 
MAST-9 and Palpitomonas (Supplementary Figure S19).

DISCUSSION

Coastal waters along the North Slope of Alaska are important 
feeding and breeding grounds for many species of migratory 
birds (Johnson et  al., 2007; Taylor et  al., 2010) and fish, such 
as Arctic char and Arctic cod (Craig, 1984) that are critical 
to native subsistence fisheries (Dunton et al., 2012). Maintenance 
of healthy lagoon and coastal ecosystems is crucial to sustaining 
these higher trophic levels. The base of food webs in these 
ecosystems is occupied by several interacting and species-rich 
microbial communities that perform many important ecosystem 
services, including organic matter degradation, nutrient 
regeneration, and carbon fixation via photosynthesis. In coastal 
systems, these communities provide a critical pathway for the 
incorporation of terrestrial organic matter and nutrients into 
estuarine and marine food webs (e.g., Carlsson et  al., 1993; 
McCallister et al., 2004), especially in the Arctic, where terrestrial 
inputs are high (Whitefield et al., 2015). In the Beaufort coastal 
lagoons, microbial communities must maintain ecosystem 
functions despite huge seasonal changes in environmental 
conditions. This study demonstrates that microbial communities 
in these lagoons respond to seasonal changes through annually 
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repeating seasonal shifts in species composition of both 
prokaryotic and microbial eukaryotic communities.

Terrestrial Subsidies
Previous studies have shown that terrestrial inputs of organic 
matter help fuel food webs along the Alaska Beaufort Sea coast 
(Dunton et  al., 2006, 2012; Harris et  al., 2018); yet, no studies 

to this point have characterized relationships between the 
microbial communities living within these coastal waters and 
the organic matter inputs to them. Characterized by relatively 
low concentrations of POC, PON, and pigments, especially Chl 
a (Connelly et  al., 2015), April waters in these coastal lagoons 
had a low contribution of phototrophic microbial taxa. The 
suspended organic material present was highly processed, with 
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FIGURE 6 | Chord diagrams showing the positive and negative correlations among the top 15 taxa in the monthly co-occurrence networks [April: (A,B), June: 
(C,D), and August: (E,F)]. The inner circle shows the breakdown of how the correlations within each month are distributed among these 15 taxa, with the outer 
circle showing the domains to which these taxa belong. The width of the bar is proportional to the number of correlations (positive and negative) for each taxon with 
the other 14 taxa. The arcs drawn between bars (i.e., taxa) are proportional to the number of positive (left) or negative (right) correlations between these two taxa. 
Arcs that remain within a bar denote significant correlations among OTUs within that taxon.
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high ratios of phaeopigments to Chl a and elevated saturated 
fatty acid proportions (Connelly et  al., 2015), suggestive of a 
heterotroph-dominated system. Indeed we  show that April 
communities were dominated by high proportions of small 
heterotrophs (e.g., MAST) and parasitic Syndiniales clades in 
eukaryotic communities (Figure 2B). Furthermore, the refractory 
nature and low concentrations of organic matter favored relatively 
high proportions of chemoautotrophs in bacterial communities 
(Figure 2A, Supplementary Figures S4, S5). OTUs belonging 
to family Oceanospirillaceae, members of which have been 
implicated in hydrocarbon degradation (Satomi and Fujii, 2014), 
were also in high relative abundance in April. Arctic peat 
contains hydrocarbons (Yunker et  al., 1993) and aromatics that 
likely contribute to the DOM in these coastal waters, as observed 
further west in the coastal Chukchi Sea (Sipler et  al., 2017). 
The ability to degrade what is commonly considered more 
refractory components of organic matter (Yunker et  al., 2002) 
may give members of Oceanospirillaceae a competitive advantage 
at the end of winter, after all of the fresh phytoplankton-derived 
organic matter has been degraded.

By June, the peak of the spring freshet had passed and ice 
break-up was well underway. POM analyses pointed to a much 
more productive system characterized by carbon inputs from 
both terrestrial sources and autochthonous phytoplankton 
(Connelly et  al., 2015). Eukaryotic microbial communities were 
dominated by diatoms, and bacterial communities by a mixture 
of freshwater bacteria and a distinct estuarine community that 
presumably grew to dominate these communities in each year 
of the study (Figure 3B). Bacteroidetes, including Cyclobacteriaceae 
and Flavobacterium spp., and Betaproteobacteria, particularly 
Polaromonas sp. were abundant in the June surface waters of 
the lagoons. Cyclobacteriaceae and Flavobacterium sequences 
were found to be enriched in low-salinity waters of the Columbia 
River estuary in Oregon and generally showed tolerance to a 
wide range of salinities (Smith et  al., 2017). Polaromonas is a 
euryhaline bacterial taxa that can survive across a wide range 
of salinities (Veillette et  al., 2011). Interestingly, this taxa was 
observed to be  enriched in sea ice brackish brines (salinity 
2.4–9.6) in the central Arctic Ocean but not in the surface 
seawater below the sea ice (salinity 33.3–34.9), which was thought 
to indicate that they were unable to survive the salinity shock 
during brine rejection (Fernández-Gómez et al., 2019). However, 
closer to the coast we  observed that Polaromonas appears to 
survive this transit from sea ice into surface seawater; perhaps 
lower salinity surface waters resulting from river input coincident 
with sea ice melt provide a refuge for these taxa.

By the middle of the open-water period in August, POM 
was characterized by elevated proportions of terrestrial and 
dinoflagellate fatty acids relative to those of diatoms (Connelly 
et  al., 2015), which was validated by a shift from a diatom-
dominated community in June to a dinoflagellate-dominated 
community in August (Figure 3B, discussed in detail below). 
Coincident with these changes in OM source and decreased 
inorganic nutrient concentrations, the bacterial community came 
to resemble a typical coastal ocean community, becoming enriched 
in bacterial clades commonly considered to be  oligotrophic, 
including SAR86, SAR92, and OM182 (Figure 4). Many of 

these clades were also present in April but in lower proportions. 
SAR92 and OM182 belong to the oligotrophic marine 
Gammaproteobacteria (OMG), while SAR86 is more distantly 
related and possesses an even more streamlined genome (Spring 
et  al., 2015). OM182 and SAR86 were observed to become 
more abundant in late summer and fall in brackish waters of 
the Baltic Sea (Hugerth et al., 2015), aligned with an oligotrophic 
lifestyle. SAR92 is common in coastal waters at high (Ghiglione 
et  al., 2012) and lower latitudes (Teeling et  al., 2012), often in 
association with or just following phytoplankton blooms. Since 
Chl a was lower in August than in June, it appears that SAR92 
can also persist in coastal waters of the Beaufort Sea well after 
peak primary production. Altogether, these parallels between 
our study and Connelly et  al. (2015), coupled with the high 
percentage (55–70%) of community variation explained by 
physico-chemical measurements, suggest strong linkages between 
organic matter source and microbial community composition, 
and are consistent with similar seasonal changes in POM pigments 
and phytoplankton communities observed further east near the 
Mackenzie River plume (Morata et  al., 2008).

Photosynthetic Protists
In much of the Arctic Ocean, diatoms are the most abundant 
primary producers in spring (Figure 5), while smaller 
picoeukaryotes dominate the photoautotroph community the 
remainder of the year (Lovejoy et  al., 2011; Marquardt et  al., 
2016). This also occurs in the Beaufort coastal lagoons in June 
despite significant river influence and lower salinity. Chaetoceros 
and Thalassiosira, two abundant taxa in June, are dominant 
diatoms in under-ice blooms on the Chukchi Shelf (Arrigo 
et  al., 2012) and in pelagic spring blooms across the Arctic 
(Poulin et  al., 2011), including in the Beaufort Sea (Balzano 
et  al., 2012b). Melosira and Navicula, also abundant in June, 
are common sea-ice associated diatom taxa (Booth and Horner, 
1997; Poulin et  al., 2011) that are thought to seed pelagic 
phytoplankton communities in spring (Michel et  al., 1993; 
Hardge et  al., 2017). In the Beaufort coastal lagoons, Melosira 
was only abundant in June, suggestive of a sea-ice source, but 
Navicula was present in all seasons demonstrating that, while 
sea-ice may be  a source for Navicula, members of this genus 
persist in the water column and contribute to the pelagic 
phytoplankton community (Hardge et al., 2017). Other notable 
primary producers in spring included the chlorophytes Carteria, 
Chlamydomonas, and chrysophyte Ochromonas which are 
commonly considered to be  freshwater and snow genera, but 
their presence has been reported in Arctic coastal waters 
influenced by the Mackenzie River (Balzano et  al., 2012a) and 
in sea ice and melt ponds elsewhere in the Arctic (Kilias 
et  al., 2014). Given that members of these genera appear to 
survive across a wide range of salinities, these euryhaline 
phototrophs may become increasingly important in coastal 
Arctic waters, and across the Arctic as a whole, with the 
forecasted freshening of the Arctic Ocean (McPhee et al., 2009; 
Morison et  al., 2012).

As spring progressed into summer, the composition of the 
primary producers shifted from large cells (diatoms) to smaller 
picophytoplankton, predominately prasinophytes Micromonas and 
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Bathycoccus (Supplementary Figure S9). Micromonas was dominant 
in 2011 (average 11% vs. 0.9% for Bathycoccus) when summertime 
waters were relatively cold (7.9°C) and salty (27.5 PSU). Bathycoccus 
was dominant in 2012 and 2013 (4.7 and 6.5% vs. 0.6 and 0.5% 
for Micromonas) when waters were warmer and fresher (9–11.2°C, 
19.6–22.1 PSU). Micromonas is commonly thought to be  the 
most abundant Arctic prasinophyte (Terrado et  al., 2013), but 
Bathycoccus was more abundant on the river-influenced Mackenzie 
Shelf (Monier et  al., 2015) and during polar sunset and polar 
night in the Amundsen Gulf Region (Joli et  al., 2017), possibly 
due to differences in low-light survival strategies. In both cases, 
light, grazing, and nutrients were hypothesized to drive this 
taxonomic shift. Both Micromonas and Bathycoccus have been 
shown to be capable of osmotrophy (Hernández-Ruiz et al., 2018), 
but Bathycoccus appears to have a stronger preference for amino 
acids as a carbon source relative to bicarbonate, suggesting that 
Bathycoccus is particularly adapted to organic matter utilization. 
Low-light adaptation and the ability to consume organic matter 
may explain the success of Bathycoccus in 2012 and 2013, when 
river input and organic matter concentrations were higher.

Under the ice in April, photoautotrophs were much less 
abundant, and consisted mainly of the prasinophytes discussed 
above, stramenopiles related to Bolidophyceae (2.7%) and 
dictyochophyte Pedinellales (3.4%), which was also abundant 
in August (4.1%). Bolidophyceae and Pedinellales have been 
observed elsewhere in the Beaufort Sea (Balzano et  al., 2012a; 
Terrado et al., 2013), under the ice in the Central Arctic Ocean 
(Pedinellales only; Hardge et  al., 2017), and in Canadian High 
Arctic sea ice (Piwosz et  al., 2013). Seventeen percent of the 
bolidophyte cells investigated from sea ice were found to have 
at least one bacterium in their food vacuole (Piwosz et  al., 
2013) and thus their presence under ice may be  sustained 
through heterotrophy rather than photosynthesis.

Chemolithoautotrophs and Methylotrophs
Ice-covered waters were dominated by bacterial taxa  
known to thrive in low-organic matter conditions, such as 
chemolithoautotrophs including Zetaproteobacteria (4.6%), 
Deltaproteobacteria clade SAR324 (1.3%), and methylotrophs 
including Methylococcales (2%) (Figure 3). Zetaproteobacteria 
(4.6%) are mat-forming Fe(II) oxidizers that are closely related 
to the chemotrophic iron-oxidizing genus Mariprofundus (Singer 
et  al., 2011). Their presence in April waters was consistent 
with the orange tint observed on several April sample filters, 
but was surprising given that this is, to our knowledge, the 
first evidence of this microbial taxa in coastal Arctic waters. 
Zetaproteobacteria have been observed in iron-rich hydrothermal 
vents of the Loihi Seamount (McAllister et  al., 2011), and 
coastal waters in Maine, USA (McBeth et al., 2011). Our study 
extends their distribution to include the coastal Arctic Ocean. 
These lagoons receive large pulses of iron during the spring 
snow melt (Rember and Trefry, 2004), and iron concentration 
in Arctic freshwaters increases through spring and summer 
(Pokrovsky et  al., 2016) and may be  enhanced by permafrost 
thaw (Barker et  al., 2014).

SAR324 (1.3%) have genes for sulfur and alkane oxidation 
and have the capacity to degrade short-chain fatty acids, among 

other metabolic strategies (Sheik et  al., 2014). Interestingly, 
Connelly et  al. (2015) observed the highest proportional 
abundance of short-chain fatty acids in April waters compared 
to June or August. SAR324 were also found to be proportionally 
more abundant in surface waters under-ice than in open waters 
off Point Barrow (Sipler et  al., 2017) and were shown to 
be  important in nitrogen cycling in the winter (Connelly et al., 
2014). Chemoautotrophic production under-ice may help sustain 
biological communities during the long winter, as it is thought 
to in other continually ice-covered systems (Boyd et  al., 2014; 
Vick-Majors et  al., 2016).

Methylococcales are exclusively methylotrophs and type 
I methanotrophs that have been observed to thrive in association 
with iron-oxidizing microbial mats in freshwater systems (Quaiser 
et al., 2014). Our data suggest that iron-oxidizing and methane-
oxidizing bacteria may also live in close association in iron-
rich, coastal marine waters. Methane is present in shallow 
sediments throughout the Beaufort Sea shelf (Coffin et  al., 
2013), and dissolved methane is highly concentrated in Beaufort 
Sea water (Lorenson et al., 2016), particularly in shallow waters. 
This methane is mainly generated by microbial degradation 
of organic matter (Lorenson et  al., 2016), but may also arise 
from permafrost-associated methane gas hydrates (Shakhova 
et  al., 2017), which are present throughout the Beaufort shelf 
region (Riedel et  al., 2014). We  did not measure methane 
concentrations in our water samples, but wintertime under-ice 
methane concentrations to the west of our sample region were 
3–28 times greater than in summer (Kvenvolden et  al., 1993). 
While both of the iron- and methane-oxidizing taxa in our 
samples are aerobic, they prefer to live at oxic-anoxic interfaces 
to allow for the presence of both oxygen and reduced electron 
donors, which may have been available given the presence of 
low oxygen levels in some lagoons in April (Connelly et  al., 
2015). Overall, the presence of these bacterial functional groups 
suggests that iron, methane, nitrogen, and sulfur cycling become 
relatively important under the ice in these coastal lagoons as 
more labile organic matter is progressively depleted through 
the long Arctic winter.

Parasites
Heterotrophic protists play an important part in marine food 
webs as grazers of phytoplankton and bacterioplankton, and 
as food for zooplankton. In the Central Arctic Ocean, their 
biomass can rival or exceed that of phototrophic protists (Sherr 
et al., 1997). Heterotrophic and parasitic protists were relatively 
abundant in the Beaufort coastal lagoons in all seasons, but 
were particularly dominant in April when sea ice and snow 
attenuated light penetration into surface waters, limiting the 
abundance of photosynthetic protists (Figure 3). Thus, 
heterotrophy and parasitism likely dominated the protistan 
lifestyle in April waters. This is corroborated by the presence 
of abundant sequences related to ciliates, heterotrophic 
dinoflagellates, parasitic Syndiniales, and MAST taxa in the 
under-ice community (Figure 3). Heterotrophic protists were 
relatively less abundant in spring, but became dominant again 
later in summer, following the spring bloom and depletion of 
macronutrients (Table 1).
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Syndiniales, including the MALVs, are a globally distributed 
parasitic group within the Alveolates (Guillou et  al., 2008; de 
Vargas et  al., 2015), that constitute a substantial component 
of the global marine interactome (Lima-Mendez et  al., 2015), 
and are generally considered to have a broad host range from 
other protists to metazoans (Guillou et al., 2008). We observed 
clear seasonality in Syndiniales, especially Groups I  and II, 
with the greatest relative abundance under ice in April (20%), 
and lower relative abundance in June (4%) and August (6.3%). 
Syndiniales followed a similar abundance pattern in Franklin 
Bay further east in the Beaufort Sea (Terrado et  al., 2009), 
in a high-Arctic Fjord (Marquardt et al., 2016), and in Antarctic 
waters (Cleary and Durbin, 2016). Oxygen may influence the 
distribution of these two groups in the water column, with 
Group I preferring low-oxygen waters or sediments and Group 
II preferring oxygenated waters (Guillou et al., 2008), although 
both groups were abundant in suboxic and anoxic fjord waters 
in British Columbia (Torres-Beltrán et al., 2018). Low dissolved 
oxygen was measured in some of the lagoons under the ice 
(Connelly et  al., 2015), yet Group II were the most abundant 
Syndiniales in this season, which further suggests that oxygen 
is not the only driver of their distribution and that other 
factors such as host availability and host stress under winter 
conditions (Cleary and Durbin, 2016) control the abundance 
and diversity of Syndiniales.

Grazers
Heterotrophic flagellates like marine stramenopiles are ubiquitous 
in the global ocean (Lovejoy et  al., 2006; de Vargas et  al., 
2015) and, as bacterivores, represent important links in marine 
microbial food webs, transferring carbon from bacteria to 
higher trophic levels like zooplankton (Monier et  al., 2013; 
Worden et  al., 2015). More abundant in the lagoons during 
less productive months, MAST clades MAST-1 and MAST-6 
had the highest relative abundances in our dataset with MAST-1A 
and MAST-1C most abundant in April (6% of 18S rRNA 
genes). These clades were also found to be abundant in near-ice 
or under-ice stations along a transect from the Labrador Sea 
west to the Beaufort Sea (Thaler and Lovejoy, 2013). In August, 
MAST-6 was the most abundant MAST clade (2.2%). This 
clade has rarely been reported in the Arctic, but that is likely 
due to the fact that it is missed by the PCR primer set 
commonly used to assess protist diversity in Arctic waters 
(e.g., Thaler and Lovejoy, 2015). Using CARD-FISH, MAST-6 
was found in first year sea ice in the Canadian Arctic Archipelago, 
with 20% of the cells containing at least one bacterium in 
their food vacuoles, suggesting that MAST-6, like MAST-1, 
are bacterivorous (Piwosz et  al., 2013). In the Baltic Sea, 
MAST-6 cells were found to have both phytoplankton and 
bacteria in their food vacuoles suggesting that they are both 
algivorous and bacterivorous (Piwosz and Pernthaler, 2010). 
This clade of marine stramenopiles has been observed to prefer 
sediments across several coastal stations around Europe (Logares 
et  al., 2012); however, our observations show that they are 
also important in pelagic systems in the Arctic.

Dinoflagellates had the highest relative abundance in August 
(24%), followed by April (14%) and June (10%); however, like 

with MAST, the dominant taxa varied by season. While both 
April and August were dominated by the Gyrodinium sp., 
Gymnodinium sp. was also abundant in August. While difficult 
to identify microscopically (Lovejoy, 2014; Kubiszyn and Wiktor, 
2016), these two genera of naked heterotrophic dinoflagellates 
are abundant in 18S rRNA gene surveys of Arctic waters 
(Comeau et al., 2011; Marquardt et al., 2016). The dinoflagellate 
population in June was dominated by Pelagodinium sp. (7.6%), 
a member of the Suessiaceae. Pelagodinium is thought to be  a 
symbiont of Foraminifera (Siano et  al., 2010), but forams were 
a very small fraction of the protist communities, especially in 
June (<0.001%). The highest abundance of Foraminifera was 
observed in April (0.1%), but still was small compared to the 
relative abundance of Pelagodinium sp. in June. Given these 
observations, it is possible that we  detected this symbiont 
during the free-living stage of its life cycle or that it is also 
a symbiont of other taxa abundant in June.

While typically less abundant than dinoflagellates in the 
Arctic, ciliates represent another important group of grazers 
in marine systems (e.g., Sherr et  al., 1997). In line with 
microscopically obtained abundance estimates, dinoflagellate 
18S rRNA gene sequences were always at least twice as abundant 
as ciliates regardless of season in a high-Arctic fjord (Marquardt 
et  al., 2016). We  observed more seasonality in the ratios of 
these two groups of protists, with ciliate sequences twice as 
abundant as dinoflagellate sequences in April and June, but 
less abundant in August (17%, compared to 24% dinoflagellates). 
This suggests that ciliates may play a more important role in 
coastal lagoon food webs than in other Arctic systems.

Oligotrich ciliates were the most abundant group of ciliates 
across all seasons, including Strombidium and Laboea (the latter 
only in August; 1.4%). OTUs classified as Strombidium were 
two times more abundant in June and August than April, while 
all months had a large percentage of reads that could not 
be  classified beyond Oligotrichia, similar to other studies of 
ciliates in polar waters (Onda et  al., 2017). Strombidium was 
found to be abundant in surface waters elsewhere in the Arctic, 
especially in the spring and summer, perhaps in part due to 
a mixotrophic lifestyle (Stoecker et  al., 2017). Strombidium and 
Laboea have been observed to temporarily retain and gain 
energy from the chloroplasts from ingested diatoms or other 
phototrophic prey (Dolan and PÉrez, 2000). This could  
provide an energetic advantage over ciliates that rely solely on 
phagotrophy. April had higher relative abundances of ciliates 
belonging to the Mesodiniidae (3.1%) and Oligohymenophorea 
(specifically Scuticociliatia; 2.5%). Oligohymenophorea are strictly 
bacterivorous (Vaqué et al., 2008), but some Mesodiniidae species 
are mixotrophic, bordering autotrophic, with a preferred diet 
of cryptomonads as a source for harvested chloroplasts (McManus 
and Santoferrara, 2013). Cryptomonads were most abundant 
in April and August, in line with the distribution of Mesodiniidae 
OTUs. Mixotrophy was found to be  the primary metabolism 
of ciliates in the oligotrophic waters of Fram Strait (Seuthe 
et  al., 2011). The dominance of several potentially mixotrophic 
groups of ciliates in this study suggests that mixotrophy is also 
important in the coastal lagoons of the Beaufort Sea and could 
contribute to the overall productivity of these waters.
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Community Connectivity and Microbial 
Food Web
We used co-occurrence network analysis to investigate prokaryotic 
and eukaryotic community connectedness in each season using 
data from multiple years. We  were unable to find similar 
seasonal networks for comparison in marine systems because 
most marine networks have been grouped by depth (Lima-
Mendez et  al., 2015; Milici et  al., 2016) or were generated for 
entire time series datasets without seasonal breakdown (e.g., 
Chow et  al., 2013). Still, our network sizes and clustering 
coefficients (Table 2) were within the range of these marine 
co-occurrence networks.

In one of the only aquatic microbial time series studies that 
performed seasonal network analysis, it was observed that network 
complexity of lake microbial communities was the greatest in 
spring, compared to summer or autumn (Kara et  al., 2013). 
Similarly, we  found that the June network was the largest, most 
connected, and most complex, having the highest clustering 
coefficient, highest connectance, and the lowest average path 
length, while the August network was the least complex and 
the complexity of under-ice network in April was intermediate. 
Kara et  al. (2013) also noted that spring and autumn samples 
had the lowest and highest diversity, respectively, resulting in 
a negative relationship between network complexity and diversity. 
We did not observe this same relationship in the lagoons, possibly 
due to the contribution of freshwater bacteria and protists to 
the marine system and the formation of a diverse brackish 
microbial community in June. Given the same seasonal trends 
in network complexity between the lake study and our study, 
but differences in diversity-network complexity relationships, it 
is possible that seasonal trends in aquatic microbial network 
characteristics may be independent of the number of taxa present 
and driven more by ecosystem productivity, with food web 
complexity being highest during periods of high production.

River indicator taxa had the highest average node degree 
in June networks (Supplementary Figure S16) and common 
freshwater and brackish bacterial taxa accounted for the bulk 
of the significant correlations in the June networks (e.g., 
Legionellales, Betaproteobacteria, Deltaproteobacteria, and 
Rhizobiales, Figure 6). Whether these taxa were actively 
interacting or just happen to be passively co-existing is impossible 
to determine from this analysis, but it is important to note 
that river-impacted, nearshore systems may follow different 
diversity and connectivity patterns than lake or open ocean 
systems because mixing of freshwater and marine communities 
may elevate microbial diversity and form more complex microbial 
networks. The prevalence of freshwater and brackish microbial 
nodes in the spring network underscores the importance of 
these taxa in the coastal Arctic ecosystem during the spring 
freshest. Interestingly, two bacterial candidate phyla with small 
genomes, including WS3 and SR1 (Kantor et  al., 2013; Farag 
et  al., 2017), represented network “hubs” in June, with average 
node degrees >300. Microbes with streamlined genomes have 
also been observed to be  network hubs in other studies of 
freshwater and marine systems (Peura et al., 2015; Milici et al., 
2016), relying on interactions with other taxa in order to obtain 
metabolites that they cannot synthesize themselves.

Protists represented a small fraction of the nodes in the June 
networks, possibly due to the higher relative abundance of 
photoautotrophic protists during ice break-up. Most of the significant 
protistan relationships in June were between protists and bacteria 
rather than with other protists and were dominated by Chrysophytes 
(which can by mixotrophic; Beisser et  al., 2017), diatoms, and 
heterotrophic groups of Rhizaria (Nakamura and Suzuki, 2015). 
These protists could be obtaining a necessary metabolite produced 
by co-located bacteria or, if heterotrophic or mixotrophic, could 
be grazing on bacteria, which can be enhanced during phytoplankton 
blooms (Hyun and Kim, 2003). Still it is important to note that 
the total number of significant protist-bacteria edges (11,256) in 
June exceeded those in April or August, but was far smaller 
than the number of Bac-Bac edges (94,983) and thus the relative 
contribution was less than in other months.

The April network was the next largest and contained the 
largest number (and percentage) of eukaryote nodes and Euk-Euk 
edges, especially among nodes belonging to the Syndiniales, 
other dinoflagellates, and ciliates (Figure 6A, Supplementary 
Figure S19). These relationships are in line with the known 
hosts for this group of parasites (Guillou et  al., 2008; Torres-
Beltrán et al., 2018) and support our hypothesis that parasitism 
was an important component of the under-ice food web. Extreme 
winter conditions in polar systems may increase parasitism 
due to environmental stress (e.g., low light, low in situ production). 
Syndiniales were also the most abundant group in co-occurrence 
networks generated as part of the Tara Oceans project from 
all regions sampled except for the Southern Ocean (the Arctic 
Ocean was not sampled as part of Tara Oceans; Lima-Mendez 
et al., 2015). As was observed at lower latitudes, these parasitic 
OTUs were most commonly correlated with other Syndiniales 
OTUs and with Dinophyceae OTUs. Syndiniales also correlated 
with several radiolarians, consistent with direct observations 
of similar associations through single-cell sequencing of 
radiolarians from a Norwegian fjord (Bråte et  al., 2012), and 
with correlations between these protist groups under the ice 
north of Svalbard (Meshram et  al., 2017). But unlike at lower 
latitudes (Lima-Mendez et  al., 2015), correlations between 
Syndiniales and Ciliophora OTUs were common under the 
ice in the April. It is not possible to determine if this means 
that parasitism of ciliates is more prevalent in Arctic waters 
than at lower latitudes, but these observations suggest that 
correlations between putatively parasitic OTUs and presumed 
hosts under sea ice warrant continued investigation.

The August microbial community was less connected and 
more fragmented than other seasons, with a higher number 
of connected components, highest average path length (number 
of nodes needed to link individual nodes), and the lowest 
connectance (fraction of all possible links that are realized). 
A similar pattern was found for a Wisconsin lake in which 
the autumn network had the smallest network size and highest 
path length (Kara et  al., 2013). The breakdown of microbial 
networks between June and August may be  driven by physical 
processes such as increased mixing and reduced water column 
stratification, which was weaker in August than in June (Harris 
et  al., 2017). Another possible explanation is that the August 
food web is not as reliant on fast energy transfer from large, 
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fast-growing phytoplankton but rather on a slower energy 
transfer characteristic of a more detrital food web, the latter 
of which is often characterized by longer path lengths and 
generally weaker links (Rooney and McCann, 2012).

The August network featured the greatest percentage of 
negative relationships between nodes, suggesting more 
antagonistic relationships in the microbial food web in the 
summer than the spring (Figure 6). This is supported by our 

FIGURE 7 | Diagram depicting major seasonal microbial community changes in the Beaufort Lagoons ecosystem, with arrows depicting hypothesized pathways 
for carbon flow from one group of organisms to another. The size of the arrow indicates relative magnitude of this hypothesized carbon flow, and the size of the text 
indicates relative size of the carbon pool, based on the relative abundance of microbial taxa each month. Many symbols after (Caron et al., 2017) or courtesy of the 
Integration and Application Network (ian.umces.edu/symbols/).
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observation of high relative abundance of heterotrophic protist 
sequences in August. Furthermore, the concentration of 
phaeopigments was the highest in August (Connelly et  al., 
2015), which also supports high grazing on and microbial 
remineralization of phytoplankton-derived POM. If microbial 
populations were more focused on degrading or grazing on 
phytodetritus in August, this could result in fewer significant 
correlations among taxa and also longer chains within the 
food web as compared to other seasons. Bacterial networks 
associated with POM tended to be  smaller than free-living 
networks in the Atlantic Ocean (Milici et  al., 2016). Indeed 
common particle-associated bacteria (Flavobacteriales, 
Alteromonadales, and Rhodobacterales) made up a large 
component of our August networks (e.g., Buchan et  al., 2014). 
Syndiniales, Dinophyceae, and ciliates were also abundant in 
the August network with a much more even distribution that 
in April, highlighting that both grazers and parasites were 
integral components of the August food web. The most connected 
protists belonged to the heterotrophic flagellate Palpitomonas 
(Yabuki et  al., 2010) and the bacterivorous MAST-9, with a 
high percentage of significant negative correlations suggestive 
of an important predatory role.

CONCLUSIONS

We observed strong seasonal changes in the composition and 
connectivity of bacterial and protistan communities in nearshore 
waters of the eastern Alaskan Beaufort Sea (Figures 2, 3, 7). 
Environmental conditions beneath sea ice favored parasitism 
and chemoautotrophy, including the surprising finding of 
Zetaproteobacteria. The presence of an increased relative 
abundance of chemoautotrophs suggests that iron, methane, 
nitrogen, and sulfur cycling are important under the ice during 
a time when the food web is often considered to be  less 
productive. In the spring, we  observed the formation of a 
complex and highly connected, brackish microbial community 
highlighting the importance and influence of terrestrial inputs 
into coastal marine ecosystems. Given the freshening of the 
Arctic Ocean, these microbes may become increasingly important 
in Arctic marine food webs in years to come. Nutrient depletion 
over the course of the summer favored a shift from a diatom-
dominated food web to one characterized by an increased 
relative abundance of heterotrophic and mixotrophic protists, 
especially dinoflagellates, as well as picophototrophs Micromonas 
and Bathycoccus and other small phytoflagellates. Bacterial 
communities became increasingly enriched in common marine 
oligotrophic clades typically considered to have lower carbon 
demands and an increased ability to consume more recalcitrant 
organic matter. This shift to a more detrital food web in the 
late summer yielded a smaller and less connected network 
with longer paths between organisms than in April or June.

The Arctic is currently experiencing a number of physical 
changes that can have far-reaching effects on Arctic Ocean food 
webs. Surface air temperatures are warming at twice the rate 
of the rest of the globe, sea ice age and thickness continues to 
decline, and summer sea surface temperatures continue to show 

a warming trend year after year (Osborne et  al., 2018). These 
changes are no doubt amplified in shallow, coastal systems such 
as our study system. These warmer temperatures also result in 
changes in precipitation and runoff patterns. We  now have a 
baseline understanding of microbial communities in this region 
from which to predict community responses to a changing Arctic 
Ocean; one characterized by unique brackish communities with 
diatom blooms in the spring followed by long periods of nutrient-
poor conditions in shallow waters inhabited by small grazers, 
picophototrophs, and oligotrophic bacterial clades. Continued 
long-term observations in this region are necessary to validate 
these predictions and assess their effects on higher trophic levels.
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