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Editorial on the Research Topic

Role of Microbes in Climate Smart Agriculture

Soil microbes play an essential role in virtually all ecosystem processes, such that microbial
abundance and activity determines the sustainable productivity of agricultural lands, ecosystem
resilience against nutrient mining, degradation of soil and water resources, and GHG emissions
(Wagg et al., 2014). Their activity is directly affected by changes in the environment. In this
context, climate change is a relevant factor, with the potential to affect the role of microbes
in the soil, which is vital to support agriculture worldwide. Climate-smart agriculture (CSA) is
an approach that can help to reduce these impacts. CSA is an integrative approach to develop
agricultural strategies for sustainably increasing agricultural productivity, adapting, and building
resilience of agricultural and food security systems, and reducing agricultural greenhouse gas
emissions under climate change scenarios (Lipper et al., 2014; Paustian et al., 2016). In this Research
Topic, we aimed to provide the reader with a selection of studies to highlight novel experimental
concepts such as process-oriented omics approaches with state-of-the-art technological advances
in agricultural science to better understand how consequences of climate change such as elevated
atmospheric CO2 concentration (eCO2), temperature, and drought affect soil microbes and
associated ecosystem processes. In addition, the role of microbes in agricultural management
that contribute to climate change adaptation, GHG mitigation, and soil carbon storage has
been discussed.

As two core issues of global climate change, the constant rise in atmospheric CO2 concentration
and temperature have significant influences on ecosystem functioning (Mueller et al., 2016). In
a study in semiarid grassland ecosystems, Yu et al. revealed the potential feedback response
mechanism of soil microbiome to multiple climate change factors by the decrease in N cycling
processes under warming, and increase in C and N cycling processes under either eCO2 alone or
in interaction with warming. In the context of increasing global atmospheric CO2 concentration,
grasslands behave as a potential C sink (Roy et al., 2016). Clipping (removal of aboveground plant
biomass) is a common practice in grassland ecosystems, and this practice may reduce nutrient
inputs into soils (Garibaldi et al., 2007), which in turn may affect microbial functionality and
by extension, other ecosystem services. Accordingly, Guo et al. concluded that annual clipping
shifted functional communities and enhanced the relative abundance of genes related to labile and
recalcitrant C degradation with potential links to a clipping-induced acceleration of decomposition
of C stored in grassland ecosystems.

The impact of climate warming on soil C and N dynamics has recently received considerable
interest. Waghmode et al. revealed that climate warming and dried soil conditions remarkably
increased the abundance of ammonia-oxidizing bacterial (AOB), concomitant to a reduction
in the abundance of ammonia-oxidizing archaea and denitrifying bacteria, potentially affecting

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.02756
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.02756&domain=pdf&date_stamp=2019-11-26
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pjkim@gnu.ac.kr
https://doi.org/10.3389/fmicb.2019.02756
https://www.frontiersin.org/articles/10.3389/fmicb.2019.02756/full
http://loop.frontiersin.org/people/57899/overview
http://loop.frontiersin.org/people/255709/overview
http://loop.frontiersin.org/people/435615/overview
https://www.frontiersin.org/research-topics/7167/role-of-microbes-in-climate-smart-agriculture
https://doi.org/10.3389/fmicb.2018.01790
https://doi.org/10.3389/fmicb.2018.00954
https://doi.org/10.3389/fmicb.2018.00474


Das et al. Microbes for Climate-Smart Agriculture

nitrogen turnover in the agro-ecosystem. The authors further
suggested that, compared to regular irrigation (60mm), the
high irrigation (90mm) overrode the warming effects on soil
microbial community structure. The effects of extreme weather
events on pathogen-antagonist interactions were evaluated in a
perspective article by Meisner and de Boer. Extreme weather
events like droughts or heavy precipitation are becoming more
frequent and affect agricultural ecosystems (e.g., plant health
and productivity). Soil-borne plant pathogens might become a
bigger problem if microbial antagonists in soils are more strongly
affected by the extreme weather conditions than the pathogens
and can thus not suppress pathogens in soils. Different strategies
of microorganisms to cope with water stress were discussed, and
the potential for controlling soil-borne plant pathogens through
enhancing growth of beneficial microorganisms under extreme
weather conditions was highlighted in the perspective.

CSA emphasizes developing agricultural strategies not only
to protect food security under climate change but also to
mitigate GHG emissions and to improve soil C sequestration
(Lipper et al., 2014). Biochar (the C-rich solid formed by
pyrolysis of biomass) amendment in agricultural soil has been
proposed as a way to abate climate change by sequestering C
and mitigating GHG (particularly N2O), while simultaneously
increasing the crop yield (Woolf et al., 2010; Jiang et al.,
2019). In an innovative research, Wang et al. revealed that the
biochar predominately reduces CH4 and N2O emissions with
high straw load, but not with low straw load, and this could be
because biochar competes for electrons against methanogens and
promotes methanotrophs, nitrifiers and denitrifiers. Agricultural
intensification results in the enhanced re-investment of bio-
based residues in agricultural soils, with consequences for GHG
emissions (Ho et al., 2017). In this contest, Brenzinger et al.
suggested that the combination of compost with one of the
more nutrient-rich organic amendments such as sewage sludge
digestate provides a trade-off between sustaining crop yield
and reducing GHG emissions. Duan et al. documented that
the application of catch crop residues leads to higher N2O
emissions, which could be due to net N mineralization and
O2 depletion coupled with the residue degradation in organic
hotspots. The catch crop residue amendment can influence the
N2O production, but not the genetic potential of the community
to produce and reduce N2O. Further, Mohanty et al. advocated
that biogenic nitrate and microbial volatile organic compounds
(mVOCs) could have positive feedback effects on the nitrification
rate in arable soils. To this end, Norton and Ouyang reviewed the
status quo of the controlling factors and management practices

of soil nitrification. Management strategies to reduce N losses,
improve N use efficiency, and mitigate global climate change
were recommended based on the latest understanding of the
nitrification process.

The Research Topic further focused on the potential use of
slag (byproducts generated during iron and steel manufacturing)
fertilizer for sustainable agricultural production. Iron and steel
production rose dramatically with the advent of the industrial
revolution, and the volume of slag produced outpaced its
consumption. Slags are rich in fertilizer components and their
use in agriculture holds great promise for sustainable and eco-
friendly agriculture (Gwon et al., 2018; Das et al., 2019). In
a mini-review, Das et al. discussed the potential mechanisms
of slag-microbe interactions in soil and how the interactions
influence crop yield, GHG emissions, soil carbon sequestration,
and heavy metal stabilization in contaminated soils.

CSA also emphasizes the sustainable development of livestock
manure production for mitigating CH4 emissions, since livestock
production is a significant source of methane, mainly from
enteric fermentation, dairy farming operations, and manure
management (Laubach et al., 2015). In a study, Habtewold
et al. concluded that the acidified dairy slurry suppressed
CH4 emissions, which could be due to the inhibition of
Methanosarcina species.

The need for increased food production under CSA
interventions increasingly shifted the focus to the role of soil
biodiversity in general and arbuscular mycorrhizal (AM) fungi
in particular. In a review, Sosa-Hernández et al. presented an
overview on the current knowledge of subsoil ecology with
the focus on arbuscular mycorrhizal fungi (AMF) and their
potential significance for a sustainable agriculture. Practices of
no-tillage, crop rotations, and cover cropping with deep rooting
mycorrhizal plants may promote subsoil AM communities.

A deep understanding of microbial ecology and soil–
plant–microbe interactions in a changing climate scenario
is essential to use microbial technology for climate change
adaptation and mitigation. This Research Topic contributes to
the understanding of how climate changes affect soil microbes
and ecosystem processes, and how agricultural practices under
CSA interventions shifted microbiome for climate change
adaptation, GHG mitigation, and soil C storage.
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