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Phenotypic heterogeneity within microbial populations arises even when the cells are

exposed to putatively constant and homogeneous conditions. The outcome of this

phenomenon can affect the whole function of the population, resulting in, for example,

new “adapted” metabolic strategies and impacting its fitness at given environmental

conditions. Accounting for phenotypic heterogeneity becomes thus necessary, due to

its relevance in medical and applied microbiology as well as in environmental processes.

Still, a comprehensive evaluation of this phenomenon requires a common and unique

method of quantitation, which allows for the comparison between different studies

carried out with different approaches. Consequently, in this study, two widely applicable

indices for quantitation of heterogeneity were developed. The heterogeneity coefficient

(HC) is valid when the population follows unimodal activity, while the differentiation

tendency index (DTI) accounts for heterogeneity implying outbreak of subpopulations and

multimodal activity. We demonstrated the applicability of HC and DTI for heterogeneity

quantitation on stable isotope probing with nanoscale secondary ion mass spectrometry

(SIP–nanoSIMS), flow cytometry, and optical microscopy datasets. The HC was found

to provide a more accurate and precise measure of heterogeneity, being at the same

time consistent with the coefficient of variation (CV) applied so far. The DTI is able to

describe the differentiation in single-cell activity within monoclonal populations resolving

subpopulations with low cell abundance, individual cells with similar phenotypic features

(e.g., isotopic content close to natural abundance, as detected with nanoSIMS). The

developed quantitation approach allows for a better understanding on the impact and

the implications of phenotypic heterogeneity in environmental, medical and applied

microbiology, microbial ecology, cell biology, and biotechnology.

Keywords: phenotypic heterogeneity, single-cell resolution, SIP–nanoSIMS, anabolic activity, flow cytometry,

multimodality, heterogeneity quantitation, Zipf’s law
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INTRODUCTION

Ecosystems and microbial communities have traditionally been
studied as an assembly of different monoclonal populations. Each
population has been considered to be composed of genetically
identical cells performing the samemetabolic function. However,
techniques with single-cell resolution were developed over the
past decades, allowing us to narrow down the vision at the level
of individual cells (Brehm-Stecher and Johnson, 2004; Pumphrey
et al., 2009; Vasdekis and Stephanopoulos, 2015; Gao et al., 2016).
This facilitates the understanding of monoclonal population’s
physiology, strengthening the concept that genetically identical
cells can show cell-to-cell variability even when sharing the same
environmental and nutritional conditions and phenomenon,
generically known as phenotypic heterogeneity (Avery, 2006;
Ackermann, 2015; Davis Kimberly and Isberg Ralph, 2016).
By definition, the phenotype is every observable feature of an
organism originating from the complex interaction between
genotype, cellular biochemical mechanisms, and environment.
Although a univocal definition of phenotypic heterogeneity
is currently missing in literature, this usually embraces all
intrinsic and extrinsic cellular noise (Simpson et al., 2009)
as well as environment-induced differences arising between
single cells belonging to a monoclonal isogenic population
under homogeneous environmental conditions. Phenotypic
heterogeneity arises from stochastic effects in random molecular
and biochemical processes (Elowitz et al., 2002; Kærn et al., 2005;
Kussell and Leibler, 2005; Kiviet et al., 2014), inequalities in gene
expression, and transcriptional regulatory networks (Newman
et al., 2006; Maheshri and O’shea, 2007; Fraser and Kærn, 2009)
as well as constitutive single-cell features like cell cycle or cell
aging (Sumner and Avery, 2002; Levy et al., 2012). All these
effects contribute to the so-called cellular noise (Avery, 2006;
Samoilov et al., 2006; Tsimring, 2014), which is extensively used
in literature referring to cell-to-cell variability due to molecular
mechanisms, regulatory pathways, and genetic cues (Balázsi
et al., 2011; Levchenko and Nemenman, 2014). The unequal
segregation of DNA hyper-structures transmitted to the daughter
cells during division and the variation in populations’ growth
rate lead to the diversification in substrate assimilation by single
cells in batch and chemostat cultures (Kopf Sebastian et al., 2015;
Gangwe Nana et al., 2018). Metabolic/functional diversifications
help microbial populations to cope better with stresses and

Abbreviations: SIP–nanoSIMS, stable isotope probing combined with nanoscale

secondary ion mass spectroscopy; KA, fraction of an element incorporated by

a single cell during the incubation with isotope-labeled growth substrates; CV,

coefficient of variation (equal to the ratio of standard deviation to the mean);

CQD, coefficient of quartile deviation; COD, coefficient of dispersion; Qn, quantile

with percentile n; Sk, skewness, indication of asymmetry in the distribution of a

population; DW, distribution width on the histogram representing the distribution

of a population; HC, heterogeneity coefficient developed in the present study; CSE,

counting statistics error; HCcorr, heterogeneity coefficient corrected for counting

statistics error coming from nanoSIMS measurement; CSVR, CSVKA , counting

statistics variations of isotope ratios (R) and relative assimilation (KA); CSHKA ,

counting statistics heterogeneity of anabolic activity; DTI, differentiation tendency

index defined as a slope (s) in a rank–activity distribution; CDTI, cumulative

differentiation tendency index; SDT, strong differentiation tendency; WDT, weak

differentiation tendency.

fluctuations in their surrounding environment (Avery, 2006;
Ackermann, 2015; Bódi et al., 2017). Indeed, differences
at the metabolic level occur when cells respond to niche
perturbations with different metabolic strategies gaining new
ecological functions from which the whole population benefits
(West and Cooper, 2016; Bódi et al., 2017). The environment
affects considerably the metabolic fluxes inside bacterial cells
via activation of different regulatory pathways of the central
carbon metabolism, thus leading to different phenotypes
within an isogenic population (Kotte et al., 2014). Yeast cells
reveal multiple metabolic states under certain environmental
conditions, regulating dynamically the glycolysis pathway and
thus preventing metabolic imbalances (Van Heerden et al.,
2014). The occurrence of cell-to-cell differences in metabolic
traits results from an interplay of ecological, intracellular
and extracellular factors, usually referred to as metabolic
heterogeneity (Takhaveev and Heinemann, 2018). Thus, the term
phenotypic heterogeneity encompasses all aspects of cell-to-cell
variability including epigenetic, regulatory, metabolic, physical,
or physiological aspects observed at the single-cell level.

A challenge in the resolution of single-cell phenotypic features
as well as in the tracking of intracellular metabolic fluxes remains
the detection limits of the applied experimental techniques and
their throughput (Takhaveev and Heinemann, 2018). Nanoscale
secondary ion mass spectrometry (nanoSIMS) provides high
lateral resolution for single microbial cell imaging together
with a mass resolving power (MRP) sufficient for tracking the
assimilation of isotope-labeled substrates (Lechene et al., 2006).
A combination of stable isotope probing (SIP) with nanoSIMS
(SIP–nanoSIMS) has been applied to shed light on single-cell
metabolic activity withinmicrobial populations in environmental
setups as well as under laboratory conditions (Musat et al., 2008;
Pumphrey et al., 2009; Pett-Ridge and Weber, 2012; Sheik et al.,
2015; Zimmermann et al., 2015; Jiang et al., 2016; Schreiber et al.,
2016; Nikolic et al., 2017; Nuñez et al., 2017). Studies applying
SIP–nanoSIMS have been focused on assimilation activity in the
frame of specific metabolic functions, considering exclusively
the heterogeneity in terms of isotopic enrichment at the single-
cell level. Metabolic heterogeneity in monoclonal population has
been shown to increase under limitation of nutrients and/or
electron donors (Zimmermann et al., 2015, 2018; Schreiber
et al., 2016); nutritional and temperature upshifts as well as
carbon-source competition enhance metabolic specialization
among monoclonal cells (Sheik et al., 2015; Nikolic et al., 2017;
Simşek and Kim, 2018). The above-mentioned studies have
quantified the uptake of isotope-labeled substrates normalizing
it with output from bulk measurements and applying empirical
assimilation expressions. It is difficult to compare the results
on metabolic activity from different studies, even when derived
from SIP–nanoSIMS experiments, if a unified approach for
quantitation of single-cell assimilation is not followed. A SIP–
nanoSIMS-based approach has recently introduced the “relative
assimilation” (KA) as a measure to quantify the single-cell
assimilation activity (Stryhanyuk et al., 2018). However, being
exceptionally powerful in quantitation of isotopic composition at
the single-cell level, nanoSIMS-based approaches require a long
time to acquire chemical maps for a limited number of single
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cells (∼1–102), implying thus a considerable limitation in the
method throughput.

Flow cytometry and fluorescence time-lapse microscopy
have also been applied to study phenotypic heterogeneity
(Davey and Kell, 1996; Müller and Babel, 2003; Balaban
et al., 2004; Nikolic et al., 2013, 2017; Lieder et al., 2014;
Pratt et al., 2019). The output of these methods’ application
comprises multidimensional datasets providing information on,
for example, gene expression, physiology, metabolism, and
morphology of individual cells (Davey and Kell, 1996; Müller
and Babel, 2003; Balaban et al., 2004; Nikolic et al., 2013, 2017;
Lieder et al., 2014; Pratt et al., 2019). Notably, the data are
acquired within a short time while analyzing thousands of cells
(∼103-105). With single-cell resolution and high sensitivity, flow
cytometry is however not an imaging technique, and it cannot be
applied to resolve intracellular compartments and single cells in
spatial arrangements.

Physical properties of single cells (e.g., their morphology,
intracellular and extracellular features, and viability) and the 3-D
structure of their arrangement can be characterized with optical,
atomic force, or electron/ion probe microscopy techniques
(Hawkes and Spence, 2007; Hlawacek and Gölzhäuser, 2016).
The microscopy imaging delivers information on single-cell
phenotypes (geometry, size, volume, etc.), showing that the size
of individual cells differs from the population average, which in
turn is modulated by the environment and the growth conditions
(Grover andWoldringh, 2001; Taheri-Araghi et al., 2015; Nikolic
et al., 2017; Westfall and Levin, 2018).

To our knowledge, a general approach to quantify phenotypic
heterogeneity has not been developed to date. Nowadays, the
interest on phenotypic heterogeneity is increasing due to its
implications in medical microbiology, microbial ecology, and
biotechnology. Phenotypic heterogeneity has been shown to have
an impact on medical care, concerning antibiotic resistance,
treatment persistence, and biofilm formation (Turner et al., 2000;
Sumner and Avery, 2002; Balaban et al., 2004; Grote et al., 2015;
Dhar et al., 2016; Sadiq et al., 2017; Van Den Bergh et al.,
2017) but also in biomedical research for drug discovery, cancer
therapy, and diagnostics due to the variable effectiveness of
care treatments on different phenotypes (Almendro et al., 2013;
Gough et al., 2017). Understanding cell-to-cell heterogeneity in
bioprocessing is currently a big challenge due to its implications
in processes’ performance and therefore product yield in large-
scale production (Delvigne et al., 2014, 2017). Hence, the
quantitation of heterogeneity becomes relevant for an efficient
process optimization in every field of biotechnology.

Phenotypic heterogeneity has been so far expressed with the
coefficient of variation (CV) for its comparison under different
experimental conditions (Grover and Woldringh, 2001; Kopf
Sebastian et al., 2015; Schreiber et al., 2016; Nikolic et al., 2017).
The CV is calculated as the ratio of standard deviation over
the arithmetic mean value, and its application as a measure of
heterogeneity implies therefore a normal distribution of single
cells in their activity or function. However, this is not always the
case for a heterogeneous population, in which a large dispersion
of data from the centroid is observed and the distribution shape
is often asymmetrical (skewed). Measures of dispersion, such

as coefficient of quartile deviation (CQD) (Bonett, 2006) or
coefficient of dispersion (COD) (Bonett and Seier, 2006), are
likewise used to calculate the scattering of the data around
the centroids, but they are affected differently by fluctuations
(outliers) of observations in a dataset. Additionally, there are
currently no indices accounting for one of the distinctive features
of phenotypic heterogeneity, that is, the uprising of clonal
subpopulations (multimodality phenomenon) with different
metabolic activities (Arnoldini et al., 2014; Li et al., 2018; Simşek
and Kim, 2018). An attempt to quantify the growth-related
heterogeneity of microbial populations has been recently done in
a flow cytometry experiment (Heins et al., 2019), where authors
considered the slope of cumulative distribution function in
combination with skewness, peak width, and CV. The suggested
combination of distribution parametersmay represent an average
or describe a most abundant subpopulation but does not provide
a robust measure of heterogeneity for a multimodal distribution.

By extending the concept of CV and considering the
distribution of single-cell anabolic activity measured in KA

(Stryhanyuk et al., 2018), we developed a novel approach for
heterogeneity expression which returns the “heterogeneity
coefficient” (HC) involving the correction for the counting
statistics error (CSE) coming from nanoSIMS analysis. Since
neither the CV nor the HC accounts for the outcome of
subpopulations, the challenge of quantitating heterogeneity
in multimodal single-cell activity had to be tackled. With this
purpose, a modification of power Zipf ’s (1935) law describing
the rank–frequency distribution of words in literary texts
(Voloshynovska, 2011) was applied. The slope in rank–activity
distribution of single cells, interpreted as differentiation
tendency index (DTI), was suggested for heterogeneity
quantitation. The DTI is independent of the population
size, normalization procedures, and measure units, making its
use general and universal.

In this study, the applicability of both developed indices, HC
and DTI, was first tested on SIP–nanoSIMS datasets acquired
for two different bacterial strains. The HC facilitates routine
quantitation of heterogeneity for monoclonal populations
following unimodality and can be easily calculated for any single-
cell-resolved dataset with Supplementary Table S1 provided in
the Supplementary Material. The DTI allows for recognition
of subpopulations and expresses the heterogeneity showing
multimodality. To show the wide applicability of the HC index
and DTI, heterogeneity was also quantitated for datasets of
flow cytometry and optical microscopy experiments. To our
knowledge, this is the first time that such an approach was
applied broadly for quantitation and comparison of phenotypic
heterogeneity. Indeed, the two indices can be calculated for
any numerically expressed feature at the single-cell level, since
they are not bound to either any unit of measure or any
particular technique.

MATERIALS AND METHODS

Cultivation and Stable Isotope Labeling
Pseudomonas putida strain KT2440 (DSM 6125) and
Pseudomonas stutzeri (environmentally isolated) were grown
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under aerobic conditions with mineral salts medium (MSM)
containing (g/L) NH4Cl (0.3), KH2PO4 (0.2), NaCl (1),
MgSO4·7H2O (0.5), and CaCl2·2H2O (0.1) supplemented
with NaHCO3 (30 ml/L) as a buffer system. The medium
was supplemented with 1ml of a vitamin mix solution in
phosphate buffer [10mM NaH2PO4 · H2O, pH 7.1, containing,
in milligrams per liter, 4-aminobenzoic acid, 40; D(+)-biotin,
10; nicotinic acid, 100; Ca-D(+)-pantothenate, 50; pyridoxine
dihydrochloride, 150; folic acid, 40; and lipoic acid, 15] and
with 1ml of chelated trace element solution (containing, in
milligrams per liter, Na2EDTA, 5,200; H3BO3, 10; MnCl2 ·4H2O,
5; FeSO4 · 7H2O, 2100; CoCl2 · 6H2O, 190; NiCl2 · 6H2O, 24;
CuCl2 · 2H2O, 10; and ZnSO4 · 7H2O, 144; pH adjusted to 6.0
with 1M NaOH). The vitamin mix and trace element solutions
were prepared as previously described (Widdel, 2010). Both
bacterial cultures were prepared by inoculating 1ml of bacterial
suspension in 29ml of mineral medium in a sealed 140-ml serum
bottle. The cultures were grown at 30◦C with orbital shaking
(100 rpm) with 5mM acetate as growth substrate. Acetate is an
intermediate of many cellular biosynthetic pathways, therefore
a good candidate to track single-cell anabolic activity with the
SIP–nanoSIMS approach. Stable isotope labeling was performed
by adding [13C2]-acetate (Sigma Aldrich) to reach 20 at% of
13C relative to the total carbon in the growth substrate. A stock
solution of the isotope-labeled acetate was prepared in MSM
and filter-sterilized before use. Cultures were supplied with
[13C2]-acetate at the onset of their exponential growth phase.
Samples were collected at three different time points within the
exponential growth phase and prepared for nanoSIMS analysis.

Sample Preparation for NanoSIMS Analysis
Each sample was fixed overnight with 3% glutaraldehyde in
sodium cacodylate buffer (0.2M, pH 7.4, EM Science) at 4◦C.
Filters (0.22µm pore size, 25mm, GTTP type, Merck) were
coated with a 30 nm gold–palladium layer and mounted inside
a stainless steel syringe 25mm filter holder (Sartorius). Bacterial
cells were filtered; washed twice with cacodylate buffer; incubated
with 1% H2O2 in cacodylate buffer, for 30min; dehydrated via
increasing concentrations of ethanol in water (30 :50 :70 :80
:90 :96 :100); and dried upon 20 cycles in a critical point
drying device (Leica EM CPD 300a, Germany).

NanoSIMS Measurement
NanoSIMS analysis parameters were optimized in order to
achieve the appropriate precision at the single-cell level
[Supplementary Information (SI)]. From each filter of P. putida
and P. stutzeri, a piece of 5mm in diameter was cut and mounted
on the 24-holes-holder for nanoSIMS measurement. Single-
cell analysis was performed using a nanoSIMS-50L instrument
(Cameca) acquiring the following seven molecular ion species
(masses) 16O−, 12C−

2 ,
13C12C−, 12C14N−, 13C14N−, 32S−, and

31P16O−
2 . The MRP was set above 7,000. Samples areas of

100 × 100 µm2 were pre-implanted with 100 pA of a 16 keV
cesium (Cs+) primary ion beam for 5min before measurements.
Smaller areas within 20 × 20 µm2 field of view (FoV) were
analyzed with a 4 pA primary Cs+ ion beam, a nominal size
of 100µm for the entrance slit, 40µm exit slits, and an energy

slit cutting 20% of secondary ion intensity at the high-energy
distribution tail. Samples were scanned with a 512 × 512-pixel
raster size and a dwell time of 2 ms/pixel. In total, 30 planes
were acquired, ensuring complete sample consumption in each
FoV analyzed; 11 of those were accumulated and corrected
for lateral drifting using the Look@NanoSIMS (LANS) software
(Polerecky et al., 2012). Regions of interest (RoI) were drawn
manually around each single cell using the 12C14N− map as
a biomass distribution template supported by the cell image
acquired in secondary electron signal. Isotope ratio data were
exported and further processed with OriginPro 2019 software
for statistical analysis and graphing. The relative assimilation
(KA) values were calculated with the template provided in
Stryhanyuk et al. (2018) and used for further numerical analysis
and graphical representations.

Cell Cultivation and Preparation for Flow
Cytometric Analysis
After pre-cultivation on peptone medium (Medium 1, DSMZ),
P. putida KT2440 was inoculated in Erlenmeyer flasks with
50ml of M9 leucine medium and 1 g/L of acetate as carbon
and energy source and grown at 30◦C and 125 rpm. The
strain grew with a µmax of 0.62 h−1. After 24 h of incubation,
acetate was added to the cultures again to reach a concentration
of 1 g/l. Cell suspensions (1–3ml) were sampled hourly and
centrifuged for 10min (3,200 × g at 4◦C). The resulting pellets
were resuspended in 4ml of formaldehyde solution [1ml of
8% (wt/vol) formaldehyde/phosphate-buffered saline (PBS) in
3ml of PBS] and incubated at 4◦C for 30min. After a final
centrifugation, the pellets were resuspended in 4ml of 70%
(vol/vol) ethanol/bi-distilled H2O and stored at −20◦C. For
flow cytometric analysis, the cells were stained according to
Koch et al. (2013). In short, 1ml of the fixed sample was
centrifuged, and the pellet was resuspended in 2ml of PBS
(6mMNa2HPO4, 1.8mMNaH2PO4, and 145mMNaCl with bi-
distilled H2O, pH 7). The optical density (OD) of the well-mixed
samples was measured (d = 0.5 cm; λ = 700 nm) and adjusted
to 0.04 with PBS. After centrifugation of 1ml of this solution
for 10min (3,200 × g at 4◦C), the supernatant was discarded.
The cell pellet was resuspended in 0.5ml of permeabilization
buffer (0.1M citric acid, 4.1mM Tween 20, and bi-distilled
H2O) and incubated at room temperature for 20min. After
a further centrifugation step, the supernatant was discarded,
and the cells were resuspended in 1ml of DNA dye solution
for overnight staining at room temperature until cytometric
measurement [0.68µM 4′,6-diamidino-2-phenylindole (DAPI),
Sigma-Aldrich, in 417mM Na2HPO4/NaH2PO4 buffer, 289mM
Na2HPO4, and 128mM NaH2PO4 with bi-distilled H2O, pH 7].

Flow Cytometric Analysis
The DAPI-stained P. putida KT2440 single cells were analyzed
with a MoFlo Legacy cell sorter (Beckman-Coulter, Brea,
California, USA) equipped with two lasers. The forward scatter
(FSC) and side scatter (SSC) signals were measured using a
blue laser (488 nm, 400 mW, Genesis MX488-500 STMOPS,
Coherent, Santa Clara, California, USA). The FSC signal (band-
pass filter 488 ± 5 nm, neutral density filter 1.9) is an optical
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characteristic related to cell size, whereas the SSC signal (trigger
signal, band-pass filter 488 ± 5 nm, neutral density filter 1.9) is
related to cell density. The DAPI fluorescence (band-pass filter
450 ± 32.5 nm) was excited by a UV laser (355 nm, 150mW,
Xcyte CY-355-150, Lumentum, Milpitas, California, USA). The
resulting scatter and fluorescence signals were detected by
photomultiplier tubes (Hamamatsu Photonics, models R928 and
R3896; Hamamatsu City, Japan). The fluidic system was run at 56
psi (3.86 bar) with sample overpressure at a maximum of 0.3 psi
(0.02 bar) and a 70µm nozzle. The sheath fluid consisted of 10×
sheath buffer (19mM KH2PO4, 38mM KCl, 166mM Na2HPO4,
and 1.39M NaCl with bi-distilled H2O) that was diluted to a
0.2× working solution with 0.1µm filtrated bi-distilled H2O.
The instrument was calibrated in the linear and logarithmic
ranges prior to all measurements. Blue fluorescent 1µm beads
[FluoSpheres F8815 (350/440), lot no.: 69A1-1] and 2µm yellow-
green fluorescent beads [FluoSpheres F8827 (505/515), lot no.:
1717426, both from Molecular Probes, Eugene, Oregon, USA]
were used for linear calibration. Blue fluorescent 0.5 and 1µm
beads [both Fluoresbrite BB carboxylate microspheres (360/407),
lot nos.: 552744 and 499344, PolyScience, Niles, Illinois, USA]
and red fluorescent 1µm beads [FluoSpheres F8816 (625/645),
lot no.: 24005W] were used for calibration in the logarithmic
scale and added to every sample to secure instrument stability.
For every sample, ∼105 cells were analyzed. Cell gate definition
is shown in Supplementary Figure S11. The analog current
signal delivered by the photomultiplier tubes was amplified and
converted into a voltage signal within a range of 0–10V in a
preamplifier. This voltage signal was then amplified onto a 4-
decade logarithmic range. The analog-to-digital converter assigns
each event in this signal to one of 1,024 intensity channels
according to the event peak height.

RESULTS AND DISCUSSION

In the present study, the heterogeneity quantitation approach
was developed with considerations of single-cell anabolic activity
derived from nanoSIMS data. The applicability of the suggested
heterogeneity indices was proved for the analysis of (i) cellular
DNA content measured with flow cytometry of DAPI-stained
single cells and (ii) length of single cells acquired with
fluorescence microscopy.

Quantitation of Single-Cell Anabolic
Activity and Evaluation of Activity
Distribution
The two Pseudomonas strains were grown in batch cultures with
defined starting concentrations of 13C-labeled and unlabeled
acetate. Afterwards, SIP–nanoSIMS experiments were performed
to follow the biosynthetic (anabolic) activity and to compare the
metabolic differences within the two monoclonal populations.
Single-cell activity was expressed as relative assimilation (KA,
Equation 1) (Stryhanyuk et al., 2018):

KA =
Rf − Ri

(Ri + 1) ×
(

Dgs ×
(

Rf + 1
)

− Rf
) (1)

where Rf and Ri are the final and initial cellular isotope ratios,
respectively, andDgs is the fraction of heavy isotope in the growth
substrate during incubation.

The distribution of single cells in KA was considered for the
analysis of anabolic heterogeneity within each population. The
applicability of existing dispersion expressions for quantitation of
heterogeneity is limited by the shape of the distribution. When in
a certain population single cells fit a normal distribution in their
anabolic activity, the dispersion in KAi (i ∈ [1, n]) values around
the mean (KA),

mean (KAi) ≡ KA =
∑n

i=1 KAi

n
, (2)

is expressed for a population of n cells as standard deviation (σ ):

σ =

√

∑n
i=1 (KAi − KA)

2

n
. (3)

The 2σ range represents the distribution width (DW) comprising
68.2% of the population distributed equally (±34.1%) around
KA. The probability density function of a normal distribution
reveals the symmetrical bell-shaped profile with the probability
maximum (mode) and the median centered at the mean
value (KA).

The variability inside the population can be thus quantified by
the CV calculated as

CV =
σ

KA

. (4)

In previous studies, the CV has been applied for the evaluation
of population heterogeneity and biological noise (Grover and
Woldringh, 2001; Bar-Even et al., 2006; Newman et al., 2006;
Simpson et al., 2009; Schreiber et al., 2016; Nikolic et al., 2017).
However, the biosynthetic activity of individual cells may deviate
from a normal distribution even in monoclonal populations,
which calls for more comprehensive approaches to evaluate
heterogeneity at the single-cell level.

Quantitation of the Distribution Width for

Heterogeneity Measurement
Even in actively growing populations, the single-cell anabolic
activity distribution cannot always be described with a symmetric
probability density function. When a distribution of single cells
in anabolic activity is asymmetric, the KA is displaced from
the distribution maximum (mode, Figure 1), rendering the CV
(Equation 4) unsuitable. The median value

K̃A = median (KAi) , i ∈ [1, n] , (5)

is more appropriate since it represents exactly the centroid of an

asymmetric distribution rather than the average of its terms (like

KA does). Thus, to express a robust measure of heterogeneity,

considering the distribution asymmetry, the centroid of the
activity distribution derived as K̃A has to substitute the KA

in the denominator of Equation (4). Additionally, to keep the
quantitation of heterogeneity consistent with the CV, half of
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FIGURE 1 | Representative sketch for the derivation of distribution width (DW)

in the case of skewed distribution.

the distribution width (i.e., DW/2) has to be considered in
the nominator, exactly as half of the 2σ range is considered
in the nominator of the CV expression (Equation 4). With
the fulfillment of these two objectives, that is, robustness and
consistency, the HC has been developed. By means of this index,
the anabolic heterogeneity of a population can be expressed with
the DW in KA normalized to the K̃A as follows:

HC =
1

2
×

DW

K̃A

. (6)

The DW can be measured in different ways, for example, as
standard deviation (σ ); median absolute deviation (MAD); and
min–max, interquantile, or interquartile range. With the MAD,
the deviation of a single-cell KAi value from the median centroid
(K̃A) of activity distribution is expressed as

MAD = median
(
∣

∣KAi − K̃A

∣

∣

)

, i = 1, . . . , n. (7)

In the case of normal distribution, the 2 × MAD range (MAD
≈ 0.67449 × σ ) comprises 46% of the population equally
distributed (±23%) around K̃A. With the DW measured as 2 ×
MAD, the HC expression (Equation 6) returns the COD (Bonett
and Seier, 2006):

COD =
MAD

K̃A

. (8)

Thus, as a measure of heterogeneity, COD substantially reduces
sensitivity to the distribution asymmetry.

Expressing the DW in terms of quantiles Q(P) provides the
possibility of tuning the sensitivity of a heterogeneity index to the

distribution asymmetry. The Q(P) quantile splits the distribution

into two parts comprising P% and 100 – P% of a population.
A Q(P) quantile equals the KA value, which is higher than those
values revealed by P% of cells in the population. The percentile
P (%) varies within a range of 0–100%, where 100% corresponds
to the whole population. Thus, quantile Q(50) of KA distribution

equals the median value K̃A. With a set of three quantiles (Q1,Q2,
and Q3; Figure 1),

Q1 ≡ Q(P); Q2 ≡ Q(50); Q3 = Q(100−P),

the DW can be expressed as an interquantile range: 1i−j =
Qj – Qi.

When the percentile P equals 25%, the quantiles Q1, Q2, and
Q3 become Q(25), Q(50), and Q(75), respectively, and are called
quartiles dividing a cell population into four quarters with an
equal cell number. The following measures of DW are expressed
in terms of quartiles:

interquartile range, 11−3 = Q(75) – Q(25);
semi-interquartile deviation, Qd = 0.5× (Q(75) – Q(25)); and
CQD= (Q(75) – Q(25))/(Q(75) + Q(25)).

The expression of DW in quartiles provides a reduced sensitivity
to the distribution asymmetry, since it considers just 50% of the
population within the interquartile range. To tune the asymmetry
contribution into a heterogeneity index, one can expand or
reduce the interquantile range by varying the percentile P-
value. Hence, the maximum sensitivity is achieved with DW
expressed with Q(0) and Q(100) as the [min–max] range. The
calculation of heterogeneity indices with different definitions of
DW is implemented in Supplementary Table S1. However, to
render the HC (Equation 6) consistent with the CV (Equation
4), the interquantile range 11−3 = Q(84) – Q(16) was considered
as DW in Equation (6) for further steps of the heterogeneity
quantitation. In the case of normal distribution, the HC value

HC =
1

2
×

Q(84) − Q(16)

Q(50)
=

11−3

2× K̃A

(9)

equals approximately the CV (Equation 4). Indeed, with a limited
number of single cells, quantiles are defined by real single-cell
values, whereas the calculated mean value does not necessarily
match any experimentally observed one (because it represents the
average of the observed values). For a discrete distribution, the
quantiles Q(16), Q(50), and Q(84) return single-cell activity values
that are not matching exactly the mean and the borders of the 2σ
range (i.e., theQ(16) andQ(84) values are approximately matching
the ±34.1% points around the mean); therefore, CV and HC
values cannot be exactly the same.

HC for Skewed Distributions
The heterogeneity in the anabolic activity of monoclonal
population causes the asymmetry of the KA distribution
profile (Figure 1). For this reason, an asymmetry measure was
considered in the expression of anabolic heterogeneity. The
asymmetry is revealed as a distribution skew toward higher
values (positive skew) or lower values (negative skew). The
skew causes the displacement of the centroid (Q2) from the
maximum (mode), gaining the difference 1 = 12−3 – 11−2

between the interquantile distances (Figure 1). The degree
of distribution asymmetry is measured with skewness (Sk)
expressed in interquantile distances as

Sk = (12−3 − 11−2)

11−3
. (10)
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According to the interquantile range considered in the nominator
of Equation (9), the difference 1 is equal to

1 = 12−3 − 11−2 =
(

Q(84) − Q(50)

)

−
(

Q(50) − Q(16)

)

(11)

Taking Equation (10) into account, 1 can be expressed in terms
of Sk and 11−3 as follows:

1 = |12−3 − 11−2| =
∣

∣Sk
∣

∣× 11−3 (12)

To operate with positive 1 values and thus make Equation (12)
applicable for positively and negatively skewed distributions, the
absolute value of skewness |Sk| was considered.

With the difference 1 (Equation 12), the skewness was taken
into account for the quantitation of heterogeneity. Expression
of DW as the sum of the interquantile range 11−3 and the 1

value allows for the enhancement of the HC sensitivity to the data
points scattered over the distribution tails (Figure 1).

DW = 11−3 + 1

11−3 = Q(84) − Q(16) (13)

The1 expression in Equation (12) allows for rewriting of the DW
(Equation 13) in terms of Sk and 11−3 as follows:

DW = 11−3 +
∣

∣Sk
∣

∣× 11−3 =
(

1+
∣

∣Sk
∣

∣

)

× 11−3 (14)

With the DW expressed in terms of skewness and interquantile
distance (Equation 14), the HC expression (Equation 6) can be
now rewritten as

HC =
1

2
×

DW

K̃A

=
(

1+
∣

∣Sk
∣

∣

)

× 11−3

2×Med
(15)

or

HC =
(

1+
∣

∣Sk
∣

∣

)

× (Q3 − Q1)

2× Q2
. (15′)

The introduction of the Sk weighting factor ε into Equations (15
and 15′) as

HC =
(

1+ ε ×
∣

∣Sk
∣

∣

)

× 11−3

2× Q2
=
(

1+ ε ×
∣

∣Sk
∣

∣

)

× (Q3 − Q1)

2× Q2

(16)

provides the possibility of adjusting the HC sensitivity to the skew
by varying the DW within the 11−3 ± 1 range with ε ∈ [−1;
1]. With ε = 1, the DW = 11−3 + 1 (Figure 1) and Equation
(16) turns to Equation (15). By setting the weighting factor as ε

= −1 (Figure 1), we can narrow down the DW to 11−3 – 1,
and the sensitivity is reduced. With ε = 0, the term ε × |Sk| is
nullified, and Equation (16) turns to Equation (9); even in this
case though, it has to be considered that the skewness affects the
HC value since 11−3 and K̃A values are intrinsically influenced
by the distribution skew.

If theKA distribution is normal (ε × |Sk|= 0,Q2 = KA ,11−3

= Q3 – Q2 = 2σ ), the HC expressed with Equation (16) becomes
approximately equal to CV (Equation 4).

Correction of the HC for the CSE
In the calculation of anabolic activity (KA) from SIP–nanoSIMS
data, the changes in cellular isotopic composition upon
incubation with stable isotope labels are considered at the single-
cell level (Stryhanyuk et al., 2018). During nanoSIMS analysis,
the quantification of cellular isotope composition is based on the
isotope ion counts accumulated in imaging mode for each pixel
within a single cell. Therefore, it is important to evaluate the effect
of CSE of the acquired data on the derived KA values considered
for quantitation of heterogeneity.

The CSE is derived as the square-root of secondary ion counts
(N) (Sprawls, 1995).

CSE =
√
N

Taking as example Carbon (C) isotopes, the calculation of their
ratio (R) considers the counts of 13C− and 12C− isotope ions as

R =
N13C

N12C

and implies the propagation of CSE (Fitzsimons et al., 2000) into
the Counting Statistics Variations of isotope ratios (CSVR).

CSVR =

√

√

√

√

(

∂R

∂N13C

× CSE13C

)2

+
(

∂R

∂N12C

× CSE12C

)2

=

=

√

√

√

√

(

CSE13C

N12C

)2

+
(

N13C × CSE12C

N12C
2

)2

(17)

Thus, the presence of the isotope ratios (Ri and Rf ) in the
expression of KA (Equation 1) implicates the CSE propagation
(Fitzsimons et al., 2000) into the variation of calculated KA

values (CSVKA ).

CSVKA =

√

√

√

√

(

∂KA

∂Rf
× CSVRf

)2

+
(

∂KA

∂Ri
× CSVRi

)2

=

=

√

√

√

√

√

√

√

(

(

Rf+1
)

×CSVRi

(Ri+1)2×
(

Rf−Dgs×
(

Rf+1
))

)2

+
(

(Dgs×(Ri+1)−Ri)×CSVRf

(Ri+1)×
(

Rf−Dgs×
(

Rf+1
))2

)2

(18)

Consequently, the propagation of CSE introduces the term of
Counting Statistics Heterogeneity (CSHKA ) as an error into the
anabolic activity derived from the SIP–nanoSIMS experiment
that can be expressed as:

CSHKA =
CSVKA

K̃A

(19)

The correction for the CSE propagation is especially necessary
when the HC value (Equation 16), derived for the cell anabolism
(KA), approaches the CSHKA term (Equation 19).
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FIGURE 2 | Counting statistics variation CSVKA (Equation 18, dashed line) and counting statistics heterogeneity CSHKA (Equation 19, solid line) calculated for the 13C

isotope fraction Dgs of the growth substrate corresponding to 10 at% (A) and 20 at% (B). Two values of the total carbon ion counts are represented: N = 15 × 103

(thin lines) and N = 5 × 104 (thick lines). The initial isotope ratio Ri = 0.011, corresponding to 1% of 13C cellular abundance, and the CSVRi = 0 are considered.

The CSVKAand the corresponding CSHKA depend on KA

(Figure 2) and are defined with

i) accumulated ion counts (N) for both isotopes,
ii) isotope-labeled substrate content (Dgs) in the

growth substrate.

Considering different CSVKA values for Qi quantiles of a certain
activity distribution, the CSE propagation into the HC can be
expressed more precisely with HC in the following way:

1HC =

√

√

√

√

3
∑

i=1

[

∂HC

∂Qi
× CSV {Qi}

]2

(19′)

where CSV {Qi} are the CSVKA values (Equation 18)
corresponding to Qi quantiles (i = 1, 2, 3) in an experimentally
derived distribution of cellular anabolic activity. With the
denotation of constant term

(

1+ ε ×
∣

∣Sk
∣

∣

)

2
≡ C

in the HC expression (Equation 16), the partial derivatives are
calculated as follows:

∂HC

∂Q1
= −

C

Q2
;

∂HC

∂Q2
= −

C× (Q3 −Q1)

(Q2)
2

;

∂HC

∂Q3
=

C

Q2
.

The correction of HC for the CSE propagation was implemented
via the subtraction of the CSVKA from the dispersion of
experimental data in the following steps:

1) calculation of the CSVKA for KA values corresponding to
Q1 and Q3 quantiles (i.e., CSV {Q1} and CSV {Q3}) with
Equation (18) accounting for the isotope ion counts (N12C

and N13C) and the fraction of labeling isotope (Dgs) in the
growth substrate;

2) calculation of the corrected interquantile range 11−3corr by
subtracting the CSV defined by CSV {Q1} and CSV {Q3}
(derived in the previous step)

1CSV =
√

(CSV {Q1})2 + (CSV {Q3})2

from the interquantile range 11−3 = Q3 − Q1 in the
following way:

11−3corr =
√

(Q3 − Q1)
2 −

[

(CSV {Q1})2 + (CSV {Q3})2
]

(20)

3) calculation of the HCcorr with Equation (16) substituting the
11−3 with the 11−3corr in the numerator and considering the
experimental median Q2 = K̃A in the denominator:

HCcorr =
(

1+ ε ×
∣

∣Sk
∣

∣

)

× 11−3corr

2× K̃A

. (21)
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The HCcorr error due to the CSE propagation into the HCcorr

calculation can be expressed in the following way:

1HCcorr =

√

√

√

√

3
∑

i=1

[

∂HCcorr

∂Qi
× CSV {Qi}

]2

. (21′)

∂HCcorr

∂Q1
=

C

Q2
× (Q1 −Q3)
√

(Q3 −Q1)
2 −

[

(CSV {Q1})2 + (CSV {Q3})2
]

∂HCcorr

∂Q2
= −

C

(Q2)
2
×
√

(Q3 −Q1)
2 −

[

(CSV {Q1})2 + (CSV {Q3})2
]

∂HCcorr

∂Q3
=

C

Q2
× (Q3 −Q1)
√

(Q3 −Q1)
2 −

[

(CSV {Q1})2 + (CSV {Q3})2
]

Figure 2 shows the comparison of CSHKA (solid lines) and
CSVKA (dashed lines) for different experimental conditions
(acquired ion counts N and concentrations of isotope-labeled
growth substrate Dgs). The CSHKA and the CSVKA terms are
enhanced with lower ion counts (N = 1.5 × 104, thin lines) and
lower Dgs (10 at%, Figure 2A) as compared with the case when
higher N and Dgs values are considered, that is, N = 5 × 104

(thick lines) and Dgs = 20 at% (Figure 2B). For KA > 0.5, the
steepness of the CSVKA and CSHKA profiles increases with the
reduction of N and Dgs.

High CSHKA values at KA < 0.5 are due to the division
of CSVKA by a small K̃A value (Equation 19). With the KA

approaching zero, the CSVKA becomes comparable with the DW
and the CSHKA reaches its asymptote. These trends cause a
huge error in HC calculation rendering the correction for CSE
impossible and the HC value unreliable, when small changes
in cellular heavy-isotope enrichment (small Rf − Ri difference
in Equation 1; KA → 0) are considered. Consequently, the
anabolic heterogeneity cannot be expressed in terms of HC when
cellular isotope content is close to its natural abundance (e.g.,
short-time incubation or time prior incubation with isotope-
labeled substrates). Therefore, in this study HC values were not
provided for samples before incubation with 13C-labeled acetate
(hereafter T0).

The increase in CSVKA and CSHKA is steeper when the cellular
isotope-label content (Df ) approaches the Dgs value,

Df =
Rf

(

Rf + 1
) . (22)

In biological systems, the cellular isotope enrichment Df may
approach but not exceed the Dgs because the cells retain
the original unlabeled material along cell division. The only
exception is possible when metabolic reactions reveal an isotopic

fractionation factor smaller than the unit (
Rgs
Rf

= α <

1) (Stryhanyuk et al., 2018). The values of KA, CSVKA , and
CSHKA show a strong increase at higher Df especially when
approaching their asymptote at Df = Dgs . It is therefore
not recommended to quantify the anabolic activity and the
anabolic heterogeneity when the cellular isotope-label content

Df exceeds 0.6 × Dgs (Stryhanyuk et al., 2018). An increase of
Df requires high amount of labeled substrate to be assimilated
when Df approaches the asymptote at Dgs . The Df proximity
to the corresponding KA asymptote causes a strong increase in
∂KA
∂Rf

Equation (18) providing a higher error in KA calculation

as well as an enhancement of the CSE propagation into the
CSVKA . In turn, the increase in CSVKA intensifies the CSHKA

term (Equation 19) of heterogeneity inaccuracy originated from
the CSE.

HC Applicability to NanoSIMS Data
To test the applicability of the derived HC (Equation 16) on
quantitation of anabolic heterogeneity, two Pseudomonas strains
were incubated with 13C-labeled acetate, sampled at different
time points during their exponential growth and analyzed by
nanoSIMS. The acquired isotope distribution maps were used to
calculate the single-cell isotope content Df .

The dependence of KA on Df (Equations 1 and 22) is not
linear (dotted line in Figure 3A, right Y-axis); for example, to
increase the 13C content (Df ) from 7 to 10 at%, the cells have to
assimilate twice (×2.08) more carbon (higher steepness causing
largerKA interval), as compared with the same (3 at%) increase in
Df from 2 to 5 at% (lower steepness causing smaller KA interval).

To illustrate this, the distribution of P. stutzeri cells in their 13C-
fraction and KA (Figures 3A,B) were shown. Due to this non-
linearity, the dispersion of cells (DW) in KA scale (Figure 3B)
does not reproduce the one in Df scale (Figure 3A) although
the same P. stutzeri cells are represented in both Df and KA

plots (Figures 3A,B). In comparison with the Df distribution,
the KA distribution appears more compressed (Figures 3A,B)
in the range of small KA values (Figure 3A, 15min); instead
it is more stretched and better reveals the intra-population
metabolic diversifications between cells with higher KA values
(Figure 3A, 60 min).

To compare the heterogeneity in anabolic activity of
the two strains, the KA distribution of P. putida cells
(Figure 3C) were plotted with the same integration interval
(0.02) as the one used for P. stutzeri histogram plots
(Figure 3B). The histograms display different distribution in
cellular anabolic activity between the two bacterial populations;
however, this representation does not provide any quantitative
measure of the heterogeneity in single-cell activity. For this
reason, the developed HC-computation approach was applied
for quantitation of heterogeneity and used afterwards for
comparison between incubation time points of both strains.

As one would expect from an actively growing culture, the
single-cell KA values increase over the time of incubation with
the isotope-labeled substrate. Meanwhile, the diversity in cellular
anabolic activity causes the broadening of KA distribution; that
is, the DW varies over time. An increase in DW does not
necessary indicate any rise of heterogeneity; namely, the HC
value (Equation 15) is preserved when DW increases or decreases
proportionally to the change in K̃A centroid. The scattering of
single-cell anabolic activity (KA) revealed as DW increase and
skew of KA distribution, is indeed induced by the diversification
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FIGURE 3 | The histograms of Pseudomonas stutzeri cell distribution in their 13C fraction (Df , A) and their relative assimilation KA (B) plotted at three different time

points of incubation with 13C-labeled acetate. The dependence of KA on Df is shown in (A) with the dotted line and right Y-axis-KA. (C) Distribution of Pseudomonas

putida cells in relative assimilation KA. The RGB insets show the overlay of 13C14N−/12C14N− (red), 31P16O−
2 (green), and 12C14N− (blue) acquired with nanoscale

secondary ion mass spectrometry (nanoSIMS) at different time points for both bacterial strains.

in single-cell anabolism; that is, each cell incorporates a different
amount of substrate at that specific time point.

The DW values were derived from the experimental data
according to Equation (14). To account for the CSE, the corrected
interquantile range (11−3corr , Equation 20) was considered in
Equation (14) (instead of11−3). The CSE does depend neither on
the skew nor on the width of the distribution, but is defined by the
CSVKA (Equation 18) depending on KA term, collected isotope-
ion counts (N12C and N13C, Equation 17) and content of heavy
isotope (Dgs) in the growth substrate (Figure 2, dashed lines).
Therefore, to account for CSE, the CSVKA values (CSV {Q1}
and CSV {Q3}) were subtracted from the 11−3 interquantile
range (Equation 20) without taking the skewness into account.
The CSVKA dependence on KA corresponding to the nanoSIMS
applied experimental conditions for both Pseudomonas strains
(N = N12C + N13C = 15 × 103 counts, Dgs = 20 at%) is

shown in Figure 2B with the thin dashed line; thin solid line
(Figure 2B) represents the corresponding CSHKA dependence.
For the CSE correction, the CSVKA values (Equation 18) were
derived from experimental KA values corresponding to Q1

and Q3 quantiles (i.e., CSV {Q1} and CSV {Q3}) in the activity
distributions of both strains at every specific time point. The CSE-
related error 1HC (Table 1) of the uncorrected HC (Equation
16) can be expressed with Equation (19′). Considering the
11−3corr values, the HCcorr and HCcorr (Equations 21 and 21′)
were calculated with ε = 0 to demonstrate numerically the
effect of CSE correction in the resulted heterogeneity index
HCcorr (Table 1).

Despite small CSVKA values (0.01–0.04 for K̃A ∈ [0.15,
0.80]) throughout constant applied nanoSIMS experimental
conditions, the CSE correction results in HCcorr deviating from
the uncorrected HC in different extent for the analyzed strains
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TABLE 1 | Effect of counting statistics error (CSE) correction on the heterogeneity coefficient (HC).

Incubation time

(min)

K̃A HC ± 1HC 11−3 CSVKA
HCcorr ± 1HCcorr CV*

HC 1HC CSV{Q1}

CSV{Q3}

HCcorr 1HCcorr

Pseudomonas putida

60 0.2451 0.9822 0.0878 0.4815 0.0042

0.0322

0.9799 0.0879 0.9728

90 0.4627 0.7434 0.0663 0.6882 0.0046

0.0497

0.7417 0.0663 0.7953

120 0.7291 0.6119 0.0524 0.8923 0.0042

0.0612

0.6104 0.0524 0.6234

Pseudomonas stutzeri

15 0.1847 0.1377 0.0462 0.0509 0.0105

0.0131

0.1301 0.0487 0.3375

30 0.3837 0.1530 0.0367 0.1174 0.0158

0.0225

0.1488 0.0376 0.3437

60 0.7403 0.0886 0.0364 0.1312 0.0313

0.0434

0.0809 0.0398 0.2119

*Coefficient of variation (CV) values were added for comparison with HCcorr value proposed in the present study.

(Table 1). The effect of CSE correction is negligible (0.23–0.25%)
for P. putida whereas it becomes considerable (2.75–8.70%)
for P. stutzeri strain. Such a difference in the correction effect
can be explained by the DW expressed with 11−3corr in the
nominator of HCcorr (Equation 21). The difference between HC
and HCcorr is large when CSVKA (i.e., CSV {Q1} and CSV {Q3}
values) are subtracted with Equation (20) from a relatively
small 11−3 interquantile range, as observed for P. stutzeri
(Figure 3B;Table 1). Instead P. putida revealed strong dispersion
(large 11−3) of single-cell anabolic activity (Figure 3C; Table 1)
values exceeding considerably the CSVKA , thus making the CSE-
correction effect negligible.

The reduction of CSE is possible via optimization of the
SIP–nanoSIMS experimental conditions (Dgs, Df , N12C and
N13C) in order to achieve minimal CSVKA and CSHKA . Increase
of raster density and current of primary ions (PI) improve
the counting statistics. However, the increase of PI current
causes also the reduction in focus quality and may render the
derived isotope-ratio values unreliable when the counting of
major isotopes reaches saturation. Thus, a compromise in SIP–
nanoSIMS conditions has to be found to deliver heterogeneity
values with acceptable errors; that is, HCcorr ± 1 HCcorr (SI,
Supplementary Figures S1, S2).

The HC calculation developed in the present study for
nanoSIMS-derived data, including CSE correction, were
incorporated in the up-to-date version of the supplementary
Excel template (Supplementary Table S1). The developed HC
expression can be applied as a measure of heterogeneity not only
of cellular anabolic activity, but also of any parameter measured
at the single-cell level within a population: for example, length,
volume, fluorescence yield, and gene expression (Nikolic et al.,
2013; Gangwe Nana et al., 2018; Simşek and Kim, 2018; Heyse
et al., 2019). The supplementary Excel template was therefore
extended for HC calculation on the data acquired with other
single-cell-resolved techniques.

Dispersion of Metabolic Activity in
Monoclonal Subpopulations
Different studies dealing with phenotypic heterogeneity have
shown that a population splits in subpopulations with different
functions and/or activities (Simpson et al., 2009; Arnoldini et al.,
2014; Kotte et al., 2014; Lieder et al., 2014; Li et al., 2018;
Simşek and Kim, 2018). The same outcome was found in our
results, in particular for P. putida strain. The histograms of
KA distribution of both strains investigated here (Figures 3B,C)
revealed several peaks (subpopulations) with different centroids
of anabolic activity. For example, for P. putida cells after
60min of incubation (Figure 3C), several subpopulations could
be clearly resolved in the histogram (with K̃A at around
0.03, 0.27, 0.48, 0.76, and 0.95). Even without considering
the outer two subpopulations, the cell number in the first
three subpopulations is comparable, rendering the overall
DW of the entire distribution not representative for the KA

dispersion of the single subpopulations. Also, the consideration
of a single centroid value (K̃A) renders the HC calculation
inappropriate when the cell activity is distributed over several
subpopulations. Thus, a reliable approach for quantitation of
heterogeneity upon multimodal anabolic activity is necessary,
ensuring the elucidation of (i) the activity dispersion in
monoclonal subpopulations and (ii) its propagation into the
entire microbial population.

Empirical approximation can be applied to study the relation
between cellular properties, surrounding environments and
experimentally observed development of heterogeneity in single-
cell functions. Empirical analysis has been employed in allometry,
for example, to describe the relation between animal body mass
and its metabolic rate with the power function according to
Kleiber’s law (Kleiber, 1947). Another example of empirical
approximation is the relation between cell dry mass and its
volume described with a power function (Loferer-Krössbacher
et al., 1998).
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Furthermore, the distribution of single-characteristic values
ranked in their descending order has been also described with
the power function. George K. Zipf had shown (Equation 23)
(Zipf, 1935) that the frequency (f ) of word appearance in a text
of natural language is inversely proportional to the rank (r) of a
word in the word frequency table sorted in frequency descending
order (Powers, 1998),

f (r; s,N) =
1
rs

∑N
n=1

(

1
ns

)
(23)

where N is the number of words in a text.
The power function f (r; s,N) Equation (23) represents

the Zipf ’s law and thanks to the variable power index (s)
is applicable in different fields whenever the power law is
obeyed. George U. Yule had applied the analysis of rank–
frequency distribution to study new genera development
from monotypic genus during evolution (Yule, 1925). Power
law approximation has been employed also in ecological
applications to quantify the relative abundance of species
in different ecosystems (Mouillot and Lepretre, 2000). The
statistical properties of selfish spreading DNA repeats were also
studied with a power-low approach, explaining how the high
abundance of long DNA elements does not depend on the
coded functions but rather on the ability of selfishly spreading
in the host genome (Sheinman et al., 2016). The rank–frequency
distribution of guanine/cytosine nucleotides in mitochondrial
DNA has been approximated with Zipf ’s law to distinguish
families and genera for taxonomic classification (Rovenchak,
2018).

In the present study, we applied the power law approach
(i) to measure the ability of single cells to differentiate from
each other in their anabolic activity and (ii) to account for the
subpopulations inside a monoclonal population. The derivation
of the s index in single-cell rank–activity distribution allowed for
quantitation of anabolic heterogeneity as explained below.

Differentiation Tendency in Cellular Anabolic Activity
The development of metabolic heterogeneity was resolved with
the rank–activity distribution of single cells plotted in double-
logarithmic scale. The analyzed cells were ranked according to
their anabolic activity (KA) sorted in descending order; the cells
with a low r show higher anabolism as compared to those at high
r ranges.

The rank–activity plot of P. putida cell at 60-min time
point (Figure 4, open circles) shows the distribution of single
cells along multiple steps. Each step shows a specific slope
describing the tendency of the cells to differentiate in their
anabolic activity. This differentiation tendency of single cells
causes the population heterogeneity and can be measured for
each subpopulation by the steepness of the corresponding
slope in the rank–activity distribution. In the present study,
common trend in the activity differentiation, that is, fitting
a single slope, was considered as criterion for assignment of
single cells to a certain subpopulation. The KA distribution
slope revealed in the double-logarithmic coordinates plot

FIGURE 4 | Rank–activity distribution (bottom X-axis) of Pseudomonas putida

single cells after 60min of incubation with an isotope-labeled growth

substrate. The relative assimilation of each single cell is represented in the

rank–activity plot with hollow circles. For comparison, the corresponding

histogram from Figure 3 was overlaid (top X-axis).

(log (KA) ; log (r)) can be described with s exponent of a power
function as:

KA ∝ C × r−s; C ≡ constant

log (KA) = log (C) − s× log (r) (24)

predicting the anabolic activity (KA) of single cells with their rank
r in the cells series sorted in KA descending order.

The KA stays constant (KA = C ) with the power index
s = 0 (Equation 24) describing the case in which cells grow
without differentiation in their anabolism and their heterogeneity
is approaching zero. Higher power index values s indicate a
steeper slope of rank–activity distribution, implying an increase
in the differentiation of anabolic activity and a heterogeneity gain.
Thus, the power index s was considered as a measure of anabolic
heterogeneity and is referred hereafter as DTI (s).

Quantitation of Differentiation Tendency in Anabolic

Activity
Rank distributions of real experimental data, following a power
law, show usually a single slope in the range of intermediate
r values, but its profile in the range of low and high r
values shows a considerable deviation from a single slope.
Numerous modifications of the Zipfian function (Yule, 1944;
Mandelbrot, 1953; Simon, 1955; Lavalette, 1996) have been
suggested for the improvement of experimental data fit at
either low or high r values. Poor fit accuracy and lack of
meaningful parameters’ interpretation limit the application of
power law functions for approximation of experimental data. In
the present study, the expression of the Zipfian function Equation
(25), previously suggested by Voloshynovska for the analysis of
word frequencies in texts (Voloshynovska, 2011), was adopted
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for the approximation of the rank–activity distribution of our
experimental data (Figure 4):

KA

(

r; q, s,N
)

= C ×
(

N ×
[

r + q
]

(

N −
[

r + q
]

+ 1
)

)−s

; C ≡ constant.

(25)

The r+ q term, suggested byMandelbrot, provides the possibility
to improve the Zipfian fit in the low-rank range (small r and high
KA values). Lavalette’s term ( N

N−r+1 ) facilitates a more accurate
fit of rank–activity distribution in the high r range (high r
approaching N and low KA values) and takes explicitly the size
(N) of a population (or a subpopulation) into account.

In the case of cell rank–activity distribution, the s in the
power exponent (Equations 24 and 25) stays invariant to linear
normalization and to population size (Voloshynovska, 2011),
allowing therefore for the following:

i) comparison of heterogeneity in subpopulations with
different K̃A centroids;

ii) quantitation of differentiation tendency in anabolic activity
of subpopulations with low cell abundance;

iii) resolution of subpopulations possessing close median
values; and

iv) elucidation of differentiation in anabolic activity even
after a short incubation with stable-isotope-labeled
growth substrates.

Importantly, the CSE propagation does not influence the slope
of rank–activity distribution as it does on the DW considered
in the HC expression (Equation 6). Therefore, DTI is less
sensitive to the CSVKA variation (Equation 18) as long as Df

is kept well below Dgs and a sufficient number of isotope
ion counts is accumulated during the data acquisition with
nanoSIMS; otherwise, highCSVKA value smears the rank–activity
distribution and may enhance the uncertainty in the slope
determination, lowering the accuracy of the experimental data fit
(Figure 4) considered below.

For a unimodal anabolic activity, the rank–activity
distribution was expected to show a single slope,
namely, without a subpopulation outcome. To underpin
this assumption, simulated normal distributions
(Supplementary Figures S3A, S4) were approximated with
the Zipfian function (Equation 25). Normal distributions
were simulated, keeping the mean value fixed and changing
the σ values; then DTI and CV values were calculated for
each of the distribution, revealing the same trend in σ

(Supplementary Figure S3B). This behavior of DTI provided
proof of its suitability as a heterogeneity index under unimodal
activity. Moreover, the Zipfian approximation delivers the slope
values s = 0.1624 ± 0.0006 for 1,000 cells, s = 0.1631 ± 0.0011
for 200 cells, and s = 0.1619 ± 0.0082 for 50 cells, proving
the invariance of s (DTI) to the population size, as shown in
Supplementary Figure S5.

For the instance in which the population is split in multiple
subpopulations (multimodal distribution, Figure 4), the rank–
activity distribution was implemented here with the KA(r; q, s,

N) expression (Equation 25) represented as a combination of
subpopulation activities KAi (i ∈ [ 1,m]):

KA

(

r; q, s, d, n
)

=
m
∑

i
di≤r<di+1

(di ≤ r < di+1)× Ci ×

×
(

ni ×
[∣

∣r − di + qi
∣

∣+ 1
]

(

ni −
[

r − di + qi + 1
]

+ 1
)

)−si

(26)

m: number of subpopulations;
di: rank of cells with the highest activity in a subpopulation

(i ∈ [ 1,m]);
Ci: scaling constant of the activity in a subpopulation (i ∈

[ 1,m]);
ni: number of cells in a subpopulation (i ∈ [ 1,m]);
qi: Mandelbrot’s parameter for a subpopulation (i ∈ [ 1,m]);
si: slope of rank–activity distribution in a subpopulation (i ∈

[ 1,m]);
r: rank (r ∈ [ 1,N]);
N: total number of cells in the whole population (N =

∑m
i= 1 ni).

The approximation of an experimental rank–activity distribution
with KA(r; q, s, d, n) in this multicomponent function (Equation
26) provides a set of slope values si, each of them characterizing
the DTI in the anabolic activity of a subpopulation. In order to
obtain a unique value, able to describe how the differentiation
in anabolic activity of single subpopulations is propagated
into the entire monoclonal population, the CDTI (S) was
introduced. The CDTI was calculated as the distance in the
m-dimensional Euclidean space considering si values of m
subpopulations as differentiation propagation vectors using the
following expression:

S =

√

√

√

√

m
∑

i=1

(γi × si)
2 (i ∈ [1,m] ) .

The coefficients γi were introduced to weight the contribution
of each subpopulation into the cumulative differentiation. The
weighting term γi is expressed as a logarithm of a cell number (ni)
in a subpopulation relative to the logarithm of the total number
of cells in the whole population (N).

γi =
log (ni)

log (N)
(i ∈ [1,m])

Taking the weighting term into account, the CDTI was expressed
in the following way:

S =

√

√

√

√

m
∑

i=1

(

log (ni)

log (N)
× si

)2

(i ∈ [1,m]) . (27)

The propagation of the fit errors 1si into the calculated CDTI
(Equation 27) results in 1S expressed as

1S =

√

∑m

i=1

(

∂S

∂si
× 1si

)2

=

√

√

√

√

∑m
i=1

[

γi2 × si × 1si
]2

∑m
i=1 (γi × si)

2
. (28)
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FIGURE 5 | Heterogeneity indices derived for Pseudomonas putida after

different incubation times. (A) Comparison of the HCcorr (Equation 21)

calculated with different ε values; error bars represent the 1HCcorr (Equation

21′). (B) Cumulated differentiation tendency index (CDTI) trend of entire

populations (represented as S ± 1S; Equations 27 and 28); error bars show

the ±1S intervals. (C) CDTI calculated (Equations 27 and 28) for cell

subpopulations revealing weak differentiation tendency (WDT) and strong

differentiation tendency at low/high KA (low/high SDT).

The CDTI calculations (S and 1S) developed in the present
study were implemented in the supplementary Excel template
(Supplementary Table S2).

Power Law Fit of Rank–Activity Distribution Derived

From NanoSIMS Data
The rank–activity distributions of P. putida cells after
different incubation times were approximated with
the multicomponent Zipfian function (Equation 26;
Supplementary Figures S6A, S7). First, DTI (si ± 1si)
values were derived as fitting parameters for all the revealed
subpopulations; then the CDTI (S ± 1S) values (Equations 27
and 28; Supplementary Table S2) were calculated and compared
with the corresponding HCcorr ones (Figure 5).

Even when calculated with ε ∈ [−1; 1] (Equation 21), the
HCcorr (Figure 5A) did reveal neither a clear correlation nor a
common trend with the corresponding CDTI (Figure 5B) for

P. putida. To clarify this discrepancy, the rank–activity plot
was overlaid with the corresponding histogram (Figure 4). The
representation of KA distribution with a rank–activity plot allows
for distinction between cells with close KA values, providing a
single-cell resolution, which is not achievable with a histogram
plot. The profiles of rank–activity distribution (Figure 4;
Supplementary Figures S7, S9) show the cells dispersed into
two main groups. In general, the cells in the lower-rank
range (high KA values) are fitting moderate slopes, whereas
those in the high-rank range show considerably steeper slopes.
Thus, the population is clearly split into two cell–activity
trends: (i) weak differentiation tendency (WDT) and (ii) strong
differentiation tendency (SDT). The SDT cells (steeper slopes)
can also be observed in the lower-rank range (high KA values)
as revealed by P. putida populations at time points of 90 and
120min (Supplementary Figure S7). The SDT cells showing
high anabolic activity (high KA values) are metabolically different
from those showing low anabolic activity (low KA values).
Therefore, high-SDT cells (high KA values) were differentiated
from low-SDT cells (low KA values), and the CDTI values were
calculated separately for the corresponding SDT subpopulations
of P. putida at 90- and 120-min time points (Figure 5C). At a time
point of 60min, P. putida populations did not show high-SDT
cells; consequently, the CDTI values were calculated for WDT
and low-SDT cells. Considering the CDTI calculated separately
(Figure 5C), the SDT subpopulations reproduced the descending
trend of the HCcorr derived with ε ≤ 0 (Figure 5A), providing the
major contribution to the heterogeneity of the entire population
(CDTI, Figure 5B).

The activity of P. stutzeri single cells (Figure 3B), contributing
to the main peak in the histogram, was considered to be
unimodal. Those cells were ascribed to the WDT subpopulation,
and their rank–activity distribution was initially approximated
with the single-component Zipfian function (Equation 25),
delivering DTI as s ± 1s values. However, this approximation
provided considerably high relative errors (1s/s × 100
[%]; Supplementary Figure S8). Consequently, the rank–activity
distributions of entire P. stutzeri populations were approximated
(Supplementary Figures S6B, S9) with the multicomponent
Zipfian function (Equation 26), and the CDTI values were
derived as S ± 1S (Supplementary Table S2) according to
Equations 27 and 28 (Figure 6B). The low-SDT and WDT
subpopulations were recognized in the rank–activity distribution,
and the corresponding CDTI values were calculated separately
(Figure 6C). The increase in CDTI from 15- to 30-min
time points is driven by low-SDT subpopulations (Figure 6C,
triangles), which correspond to the single cells showing low KA

values in the histogram (Figure 3A). Those cells are included into
the HCcorr calculation when ε ≥ 0 (Figure 6A), resulting in the
HC trend following the one revealed by CDTI (Figure 6B) for
the entire P. stutzeri population. Hence, the SDT subpopulations
were shown to contribute mostly to the overall heterogeneity
in anabolic activity of P. putida and P. stutzeri. The CDTI
trends over time of both Pseudomonas strains are compared in
Supplementary Figure S10.

As mentioned in Correction of the HC for the CSE, the
calculation of HC on SIP–nanoSIMS data is unreliable for T0
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FIGURE 6 | Heterogeneity indices derived for Pseudomonas stutzeri after

different incubation times. (A) Comparison of the HCcorr (Equation 21)

calculated with different ε values; error bars represent the 1HCcorr (Equation

21′). (B) Cumulated differentiation tendency index (CDTI) trend of entire

populations (represented as S ± 1S; Equations 27 and 28); error bars show

the ±1S intervals. (C) CDTI calculated (Equations 27 and 28) for cell

subpopulations revealing weak differentiation tendency (WDT) and strong

differentiation tendency at low KA (low SDT).

when small changes in cellular heavy-isotope enrichment (small
Rf – Ri difference in Equation (1); KA → 0) are considered
and cellular heavy-isotope content is close to the natural
abundance. Instead, rank–activity plot in double-logarithmic
coordinates resolves also the low-abundance subpopulations
(i.e., a slope can be defined with three cells already), allowing
for calculation of CDTI and therefore the quantitation of
heterogeneity prior to labeling or at a very short incubation time.
The results of multicomponent Zipfian fit of rank–activity for
both strains at T0 are presented in Supplementary Figure S6.
The corresponding S values (Supplementary Table S2) were
introduced into the CDTI plots for both strains (Figures 5B,
6B; Supplementary Figure S10) to elucidate the development
of heterogeneity, expressed as CDTI, starting from T0. Thus,
at T0, both Pseudomonas populations show already anabolic
heterogeneity, revealing multimodality; afterwards, each species
develops distinct tendency in heterogeneity according to a strain-
constitutive strategy.

Method Applicability
To demonstrate the broad applicability of the suggested
heterogeneity indices, HC and DTI/CDTI were derived for two
different datasets: (i) the distribution of DAPI-stained single
cells of P. putida acquired with flow cytometry and (ii) the
distribution of Escherichia coli single-cell length upon different
growth conditions reported by Nikolic et al. (2017).

Heterogeneity Quantitation on Flow Cytometry Data
The P. putida cells were analyzed with flow cytometry at eight
time points upon cultivation in batch for 26 h. The cellular
DNA content was measured as DAPI fluorescence intensity and
visualized in dot plots (Figure 7A; Supplementary Figure S11)
together with the cell-size-related FSC intensity. The cells
were distributed within a subpopulations’ pattern that changed
dynamically during cultivation. The boundaries between the
five subpopulations G1, G2, G3, G4, and Gx were defined
with this pattern according to the local minima in the DAPI
fluorescence intensity histogram (Figure 7B) at inoculation (0 h).
The distribution of cells along this histogram represents the
different chromosome numbers per cell that can occur during
different states of cell growth. During the cell cycle, cells
increase in size (frequently, but not always) while duplicating
their DNA, and consequently, their FSC intensity increases
(Müller, 2007).

The observed changes in cellular DNA contents result in
heterogeneous distributions that can be described by the HC
index and the CDTI. For this purpose, the flow cytometric raw
data in FCS 3.0 format (Seamer et al., 1997) were treated as
described in Supplementary Figure S11. In short, the values
in logarithmic scale were translated into equally distributed
1,024 channels. In a next step, only the range of channels
that represented cells was plotted. Finally, the cells were
ranked according to their DAPI fluorescence intensity, and
the multicomponent Zipfian function (Equation 26) was
fitted to the resulting rank–distribution curves (Figure 7).
The changes in the Zipfian slope (Figure 7C) matched the
established subpopulation segregation, deduced from the dot
plots (Figure 7A) and shown by the corresponding histograms
(Figure 7B). The heterogeneity in cellular DNA content was
expressed with the HC index (despite the multimodality)
and the CDTI calculated (Supplementary Table S2) with
the results of multicomponent Zipfian approximation. The
development over the 26-h growth curve of both indices is
represented in Figure 8.

For the initial and final growth time points, the HC was highly
dependent on the ε value, which can be used to adjust the index
sensitivity to the distribution skew. The HC decreased from the
time of inoculation, when the population is constituted by cells
with varying chromosome numbers, to the 1-h time point with
most cells containing only one chromosome. During cell growth,
the HC showed the heterogeneity boost due to an increasing
number of cells harboring two, four, and more chromosomes.

Interestingly, the HC values do not change much with
the variation of ε values during the exponential phase.
The ε value weights the asymmetry (skew) contribution
in the HC. The reduced effect of ε can be considered
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FIGURE 7 | Heterogeneity dynamics of Pseudomonas putida population during growth over 26 h. (A) DAPI fluorescence intensity (related to DNA content) vs. forward

scatter (FSC) intensity (related to cell size) dot plots of the 0-, 2-, 6-, and 24-h samples after data transformation (details about the data transformation and dot plots of

the remaining samples in Supplementary Figures S11, S12). (B) Histograms of DAPI fluorescence intensity distribution used to define the boundaries between the

subpopulations G1–Gx, which correspond to the chromosome number in the cells. (C) Cells ranked according to their fluorescence intensity (open circles) together

with the multicomponent Zipfian fit (solid red line).
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FIGURE 8 | Development of the Pseudomonas putida culture heterogeneity

over the 26-h growth expressed as the heterogeneity coefficient (HC) with

different ε values (Equation 16; A) and cumulated differentiation tendency

index (CDTI, B). In (B), CDTIG1−Gx for the entire population and CDTIG1−G4 for

cells in G1 to G4 subpopulations are represented as S ± 1S (Equations 27

and 28); because of small 1S values (1S/S ≤ 0.001), the magnified ±1S ×
500 intervals are shown with the error bars.

as an evidence for a negligible skewness. In the case of
multimodality, a small skewness value may be achieved with
the centroid (median, Q2), located equidistant between two
quantiles (Q1 and Q3), even though a single Q2 value is
not representative in the case of a multimodal distribution.
Finally, at the 24-h time point, with the population in the
stationary phase, the HC values differentiate according to
the chosen ε values again. In the present study, the error
in graded fluorescence intensity was estimated to be 2 of
1,024 channels (<0.5%) and therefore neglected upon the
HC calculations.

The HC describes the general dynamic of heterogeneity
during the population growth, but its explanatory power is
restricted in case of subpopulation segregation displayed by the
P. putida culture. In this case, the CDTI is more suitable for the
heterogeneity quantitation since it accounts for multimodality.
The CDTIG1−Gx was initially calculated for the entire population
with all slope values derived from the Zipfian fit (Figure 8B,
rectangles). In order to avoid overweighting the influence of

low-probability events in Gx that likely comprise cell aggregates
(0 h, 6.60%; 1 h, 0.45%; 2 h, 0.18 %; 4 h, 4.44%; 6 h, 6.80%;
8 h, 9.49%; 24 h, 6.00%; and 26 h, 3.28%), the CDTIG1−G4

(Figure 8B, circles) was additionally calculated for the cells in
the clearly segregated subpopulations G1–G4. The CDTIG1−G4

value increased from 0 to 1 h when cells started to duplicate
their chromosomes after a short lag phase. At 2 h, most
cells have doubled their DNA content and subsequently start
the duplication resulting in (i) the majority of cells having
a single chromosome and (ii) heterogeneity decrease. In the
exponential growth phase, the population showed increasing
CDTIG1−G4 at 4 and 6 h with higher chromosome numbers and
uncoupled DNA synthesis. The confinement of cell distribution
in the G1–G4 subpopulations resulted in the reduction of
CDTIG1−G4 at 8 h when the culture gets into the stationary
phase. In the advanced stationary phase at 24 h, the cell
distribution pattern is very similar to the one upon inoculation
(0-h time point). This pattern similarity is supported by
the close CDTIG1−G4 values derived for 0- and 24-h time
points. The restarting cell activity after the acetate feeding at
24 h was captured by the slight increase of CDTIG1−G4 at
26 h. Thus, the CDTIG1−G4 (Figure 8B, circles) describes the
dynamics of the population heterogeneity, whereas the HC
(Figure 8A) represents its general trend missing the resolution
of subpopulations.

Heterogeneity Quantitation on Cell Length

Distribution
The heterogeneity quantitation was also applied to cell length
distributions from a published dataset (Nikolic et al., 2017). In
their work, E. coli cells, grown in the presence of two different
carbon sources, did not specialize in a bimodal fashion but rather
followed unimodality, consuming both substrates simultaneously
at different rates. The highest degree of heterogeneity of
the monoclonal population (measured with CV) was found
during co-feeding with glucose (Glc) and arabinose (Ara) under
carbon limitation as compared with the growth with one single
carbon source under nitrogen limitation (Nikolic et al., 2017).
This behavior was a consequence of different gene expression
and transcription levels as well as different rates of single-
cell growth in chemostat. Nutrient-dependent changes in the
cultivation environment influence the growth rate, which in turn
influences the cell size (Chien et al., 2012; Westfall and Levin,
2018). Bacterial cells have to find a compromise between the
maintenance of a certain DNA amount and their cytoplasmic
size in order to keep the DNA-to-cell mass ratio constant upon
different growth rates. However, when external conditions start
to be unfavorable, while cells continue to duplicate their DNA
via multiple duplication forks, the mechanism of division via
the FtsZ ring and other intracellular molecules is inhibited,
thus resulting in a larger size of cells (Chien et al., 2012).
The data on cell length provided by Nikolic et al. (2017),
confirmed these experimental observations. This dataset was
analyzed (Figure 9) to elucidate the heterogeneity in cell size
upon different conditions reported in their study (Nikolic et al.,
2017). The derived CV, HC index, and DTI are shown in
Figure 10. The highest median value of cell length (Figure 10A,
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FIGURE 9 | The distribution of single cells in their length represented for the different growth conditions reported in Nikolic et al. (2017) with histograms and

rank–length plots.
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FIGURE 10 | Changes in the single-cell length heterogeneity of Escherichia

coli upon the different growth conditions reported in Nikolic et al. (2017). (A)

The coefficient of variation (CV) together with the median of cell length [error

bars represent the ±median absolute deviation (MAD) interval, Equation (7)].

(B) The heterogeneity coefficient (HC) (Equation 16) calculated with different ε

values. (C) The Zipfian slope [differentiation tendency index (DTI)] of the

rank–length distributions as s ± 1s (Equation 25); because of small 1s errors

(1s/s ≤ 0.001) obtained with the single-component Zipfian approximation, the

magnified ±1s × 100 intervals are shown with the error bars.

circles) was found with the “3µM Ara + 3µM Glc” substrate
composition, which represents the strongest carbon limitation.
The HC value calculated with−1 ≤ ε ≤ 0 (Figure 10B) followed
the CV trend (Figure 10A, rectangles), as expected for unimodal
distribution. The approximation of rank–length distributions
with the single-component Zipfian function delivered the slope
values (s, DTI; Figure 10C), bringing two interesting outcomes:
(i) the heterogeneity of population in cell size upon “3µM Ara
+ 3µM Glc” is not much higher than that upon “10µM Ara +
10µM Glc” as revealed with HC (ε = 0; Figure 10B) although
this difference was overestimated with the CV (Figure 10A) and
(ii) the length of single cells showed a unimodal distribution
confirmed by small 1s (and high goodness of fit), which is
in agreement with the unimodality reported in Nikolic et al.
(2017).

Guidelines on the Heterogeneity
Quantitation
The summary of the approaches (HC and DTI/CDTI) developed
in this study for heterogeneity quantitation is provided in
Table 2. An accurate quantitation of cellular anabolic activity
requires a reliable data acquisition with single-cell resolution. The
aspects described for the SIP–nanoSIMS experiment (step 1 in
Table 2) are, in general, relevant for experiments implying data
acquisition in counting mode.

Each step in Table 2 contains a link to the corresponding
section, equation, or figure in the main text or in SI. The
calculation of HC including the CSE correction is implemented
in the Excel template (Supplementary Table S1). The results of
nanoSIMS data processing with the LANS software together with
other input parameters (like Dgs, Di, and N) have to be pasted
into the appropriate green-marked fields, and the Excel template
calculates the outputs including KA, HC, and HCcorr values. If
the analyzed population of single cells follows unimodal anabolic
activity, heterogeneity can be measured with HC or HCcorr.

Unimodal rank–activity distribution can be also
approximated with the single-component Zipfian function
expressing the heterogeneity with the Zipfian slope as s ± 1s.
The approximation of multimodal rank–activity distribution
with single-component Zipfian delivers poor fit accuracy,
resulting in large 1s values. In such a case, the rank–activity
distribution has to be approximated with the multicomponent
Zipfian function, and heterogeneity is measured with CDTI
(S ± 1S). The CDTI calculation was also implemented in the
corresponding Excel template (Supplementary Table S2). In
this study, the OriginPro 2019 software was used for Zipfian
approximation of rank–activity distributions.

When heterogeneity has to be quantitated on a set of
epifluorescence microscopy data, the error in the HC and
DTI/CDTI indices may arise from the following factors: (i)
non-linearity of fluorescence signal detection; (ii) contribution
of fluorescence background; (iii) presence of contaminants
and extracellular substances. These factors may modulate the
fluorescence intensity affecting the resulting HC and DTI
values. Both indices are influenced by background subtraction
while the DTI remains invariant to linear normalization and
cell number.

CONCLUSIONS

In the present study, indices to measure metabolic heterogeneity
were subjected to a comprehensive consideration. The
expression of HC was developed for the quantitation of
heterogeneity within a single-cell dataset. The adjustment of
HC sensitivity to the distribution asymmetry was discussed and
implemented in HC expression. When calculated with the same
“sensitivity settings,” HC allows for heterogeneity comparison
among different datasets. Importantly, the implemented HC
expression returns the CV value if applied on datasets that
reveal normal distribution. For the HC calculated from the
nanoSIMS data, the correction for CSE was implemented. The
influence of experimental conditions on CSE propagation
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TABLE 2 | Summary of heterogeneity quantitation approaches.

Heterogeneity quantitation steps Tools applied

1. Acquisition of data with a single-cell resolution technique

• Stable isotope probing (SIP) with nanoscale secondary ion mass spectrometry (nanoSIMS) (SIP–nanoSIMS) experiment (as a

specific case)

1.1. SIP: the dynamic range for cellular isotope enrichment (Df ) is defined by isotope label content in the growth substrate (Dgs);

relative assimilation with acceptable error (KA ± 1KA) is achieved with Df ≤ 0.6 × Dgs (§3.1.3)

1.2. nanoSIMS: maximal precision of single-cell isotope content and pixel-average ion counts per cell can be achieved with the

optimization of nanoSIMS conditions (SI §1, Supplementary Figures S1, S2). Generally valid for data acquisition in

counting mode

• Look@NanoSIMS (LANS)

software package for

nanoSIMS

data processing

2. Calculation of the heterogeneity coefficient (HC; §3.1)

2.1. Transfer of single-cell-resolved data into the template table

Specific case: Calculation of single-cell relative assimilation (KA ± 1KA) with corresponding isotope ratio values (Ri , Rf )

derived from nanoSIMS data (Equation 1)

• Excel template

(Supplementary Table S1)

2.2. Calculation of HC (Equation 16; §3.1.2)

2.3. Evaluation of counting statistics heterogeneity (CSH) for the applied conditions of, for example, SIP–nanoSIMS (Equations

17–19; §3.1.3)

2.4. IF the CSH value approaches HC,

THEN the HCcorr ± 1HCcorr (Equations 21 and 21′; §3.1.3) corrected for counting statistics error has to be considered

3. Quantitation of Differentiation Tendency [derivation of differentiation tendency index (DTI)/cumulative DTI (CDTI); §3.2]

3.1. Plot of rank distribution with single-cell values in double-logarithmic scale • OriginPro 2019

3.2. Approximation of rank–activity distribution with single-component Zipfian (Equation 25; §3.2.2)

3.3. Evaluation of the rank–activity distribution slope (DTI, s ± 1s) and the accuracy of single-component Zipfian fit

3.4. IF a poor accuracy of the approximation with single-component Zipfian or large error (1s) of slope fit is achieved, THEN

3.4.1. Approximation of rank–activity distribution with multicomponent Zipfian (Equation 26; §3.2.2)

3.4.2. Calculation of the CDTI (S ± 1S; Equations 27 and 28; §3.2.2)

• Excel template

(Supplementary Table S2)

into the calculated HC was discussed, and appropriate
recommendations for a SIP–nanoSIMS experiment setup
were made.

Anabolic heterogeneity of monoclonal populations can be
also measured with the slope s of a rank–activity distribution,
characterizing the tendency of cells to differentiate in their
activity within several subpopulations. The DTI (s) is derived
for each subpopulation as an exponent of the Zipfian power
law approximation function. The CDTI (S) is derived from
DTI values of a subpopulation set and measures the anabolic
heterogeneity of the entire population. The power exponent s
(DTI) is invariant to linear normalization and to the number
of cells in a subpopulation/population. Both HC and DTI can
be used as heterogeneity indices when a population shows
unimodal anabolic activity. If the anabolic activity becomes
multimodal, the DTI of each subpopulation (si) has to be first
derived with multicomponent Zipfian approximation, and
thereafter, the calculation of CDTI (S) delivers a measure of
anabolic heterogeneity of the entire monoclonal population.
Besides SIP–nanoSIMS, the applicability of both developed
indices was shown on flow cytometry and epifluorescence
microscopy datasets. The HC and DTI/CDTI were proven to
be robust indices for quantitative and comparative analyses
of heterogeneity in single-cell-resolved studies. Thus, these
indices are not restricted to particular techniques, have
a broad range of applications, and measure phenotypic
heterogeneity in all its aspects: metabolic, physiological,
and morphological.
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