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In Appalachian ecosystems, forest disturbance has long-term effects on microbially
driven biogeochemical processes such as nitrogen (N) cycling. However, little is known
regarding long-term responses of forest soil microbial communities to disturbance in
the region. We used 16S and ITS sequencing to characterize soil bacterial (16S) and
fungal (ITS) communities across forested watersheds with a range of past disturbance
regimes and adjacent reference forests at the Coweeta Hydrologic Laboratory in
the Appalachian mountains of North Carolina. Bacterial communities in previously
disturbed forests exhibited consistent responses, including increased alpha diversity
and increased abundance of copiotrophic (e.g., Proteobacteria) and N-cycling (e.g.,
Nitrospirae) bacterial phyla. Fungal community composition also showed disturbance
effects, particularly in mycorrhizal taxa. However, disturbance did not affect fungal
alpha diversity, and disturbance effects were not consistent at the fungal class level.
Co-occurrence networks constructed for bacteria and fungi showed that disturbed
communities were characterized by more connected and tightly clustered network
topologies, indicating that disturbance alters not only community composition but also
potential ecological interactions among taxa. Although bacteria and fungi displayed
different long-term responses to forest disturbance, our results demonstrate clear
responses of important bacterial and fungal functional groups (e.g., nitrifying bacteria
and mycorrhizal fungi), and suggest that both microbial groups play key roles in the long-
term alterations to biogeochemical processes observed following forest disturbance in
the region.

Keywords: soil, microbial community, forest management, qPCR, 16S, ITS

INTRODUCTION

Globally, land use change has modified 75% of ice-free terrestrial ecosystems (Ellis, 2011), with
conversion of forests to managed states (e.g., agriculture, timber plantations) being one of earth’s
dominant land conversions (Vitousek et al., 1997; Foley et al., 2005; Rudel et al., 2005). Although
∼50% of Earth’s land surface was forested in prehistoric times, approximately 40% of that forest
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cover has been lost and much of the remaining forest subjected
to various forms of disturbance, especially within the past two
centuries (Millenium Ecosystem Assessment, 2005). The extent
of anthropogenic forest conversion continues to accelerate in
the 21st Century (Drummond and Loveland, 2010; Hansen
et al., 2010; Watson et al., 2014), highlighting the need
to characterize impacts of forest disturbance on terrestrial
biodiversity and ecosystem functions. Understanding these
impacts is particularly critical from a biogeochemical perspective,
as forested ecosystems are central components of Earth’s
elemental cycles and provide ecosystem services that support
human well-being, including storage of carbon (C), regulation
of nutrient cycles, and provisioning of clean drinking water
(Millenium Ecosystem Assessment, 2005). These biogeochemical
processes and associated ecosystem services are primarily driven
by soil microorganisms, which perform a variety of essential
functions including litter decomposition and several C- and
nitrogen (N)-cycling processes (Fierer, 2017), thus emphasizing
the need for studies investigating effects of forest disturbance on
soil microbial communities.

Forest disturbances influence multiple factors that can affect
terrestrial microorganisms, including vegetation characteristics
(i.e., plant biomass and species composition) as well as several
soil physicochemical properties. For example, disturbance alters
forest soil C and N stocks (Guo and Gifford, 2002; Foote
et al., 2015; James and Harrison, 2016), both of which are
known drivers of microbial community structure (e.g., Eilers
et al., 2010; Ramirez et al., 2012). Several previous studies have
directly assessed effects of forest disturbances on soil microbial
communities: timber harvest (Kohout et al., 2018; Mushinski
et al., 2018a,b), conversion to agriculture (Jangid et al., 2011;
Rodrigues et al., 2013; Zhou et al., 2018), and prescribed fire
(Oliver et al., 2015; Shen et al., 2016) can all alter bacterial
and/or fungal communities. Additionally, a recent global
meta-analysis showed consistent bacterial community changes
in previously disturbed forests, including increased relative
abundance of r-selected bacterial phyla (e.g., Proteobacteria) with
past disturbance (Zhou et al., 2018). Although these prior studies
suggest that forest soil microbial community shifts in response to
disturbance are likely to occur, no studies to our knowledge have
fully characterized long-term (i.e., several decades) responses
of both soil bacterial and fungal communities to several
different past disturbances (e.g., timber harvest, agricultural
conversion, and timber plantation conversion) simultaneously in
temperate forests.

Understanding disturbance responses of soil microbial
communities is particularly important in forests of the
Appalachian region of the Eastern United States, where
approximately 70% of land area is forested (Simon et al., 2005)
and nearly all forested ecosystems in the region have experienced
past disturbances from human activities, including commercial
logging and/or conversion to agriculture (Gragson and Bolstad,
2006). Further, forest disturbance is known to have long-term
effects on biogeochemical cycling in these ecosystems; previous
studies from the region have shown impacts of disturbance
on watershed-scale N-cycling (Vitousek et al., 1979; Peterjohn
et al., 1996; Swank and Vose, 1997), with previously disturbed

forested watersheds often exporting N at elevated rates for several
decades following disturbance (Webster et al., 2016). Some prior
studies in the region assessed long-term effects of disturbance on
soil microbial N-cycle functions, finding elevated nitrification
rates (Montagnini et al., 1986; Keiser et al., 2016) and elevated
abundance of nitrifying microorganisms (Lin et al., 2017) in
previously disturbed forests. However, though one previous
study documented effects of previous logging and conversion
to agriculture on PLFA-determined soil microbial community
structure in the Appalachians (Fraterrigo et al., 2006), relatively
little is known regarding long-term disturbance impacts on
bacterial and fungal communities in the region.

To address questions of long-term soil microbial responses to
past forest disturbance, we characterized soil bacterial and fungal
communities from four previously disturbed forested watersheds
as well as adjacent reference forests at the Coweeta Hydrologic
Laboratory in the Appalachian mountains of North Carolina.
Because bacterial community structure is driven primarily by
soil physicochemical variables (Fierer and Jackson, 2006) and
because these variables (e.g., soil NO−3 ) respond similarly to
different disturbances in the region (e.g., Keiser et al., 2016),
we predicted that bacterial communities would display generally
consistent responses across different past disturbances. More
specifically, we predicted higher relative abundance of bacterial
taxa associated with N-cycling processes in previously disturbed
forests (i.e., nitrifiers) and that elevated soil inorganic-N in
disturbed forests would promote higher relative abundance of
r-selected (i.e., copiotrophic) soil bacterial taxa. In contrast,
because fungal communities are often closely coupled to plant
communities (Bonfante and Anca, 2009; Peay et al., 2013),
and because different forest conversions have unique effects on
plant communities, we predicted fungal responses to be site-
specific. For example, we predicted pine conversion to increase
abundance of ectomycorrhizal (ECM) fungi, while disturbances
that promote arbuscular mycorrhizal (AM) hosts (e.g., red maple
and tulip poplar) to increase abundance of AM fungi.

MATERIALS AND METHODS

Site Description and Soil Sampling
We conducted this study at the Coweeta Hydrologic Laboratory,
a USDA Forest Service experimental forest located in the Blue
Ridge physiographic province in the Appalachian Mountains
of southwestern North Carolina (latitude 35◦03′ N, longitude
83◦25′ W). Within the Coweeta Basin, we selected four forested
watersheds that experienced whole-watershed disturbances
associated with forest management experiments conducted by
the USDA Forest Service at different times during the 20th
Century. All disturbed watersheds are currently forested and have
not been manipulated since disturbances occurred approximately
four to eight decades ago (Table 1). Previous disturbances
included clear-cutting, commercial clear cut-cable logging,
conversion to pasture, and conversion to pine monoculture
(Table 1 and Figure 1). Adjacent to each previously disturbed
watershed is a reference watershed (Figure 1) that has not been
disturbed since the time period 1919–1923, when ∼20% of the
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basal area of the entire Coweeta Basin was cut and harvested
(Elliott and Vose, 2011). Detailed information, including size,
aspect, and dominant vegetation of each watershed can be found
in Supplementary Table S1. Within each of the eight watersheds,
we established six 4 m × 4 m plots (48 plots total) at 40 m
intervals along a 200-m stretch of the main stream channel.
All plots were located 5 m upslope from the stream itself. We
sampled near-stream environments because these areas support
high rates of microbial biogeochemical processes (Knoepp and
Clinton, 2009) and because spatially consistent sampling across
watersheds of varying sizes (Supplementary Table S1) enabled
cross-watershed comparisons. In June 2018, at the height of the
growing season, we surveyed all woody vegetation and sampled
five soil cores (from four plot corners and plot center) from
each plot. Soil samples included the top 10 cm of mineral
soil and did not include O-horizon material. This sampling
depth generally includes the entire A horizon in low elevation
watersheds (Knoepp and Swank, 1994) and coincides with the
depth of sampling in many research studies in the Coweeta
Basin (e.g., Knoepp et al., 2018; Osburn et al., 2018). We
composited samples by plot, sieved composited samples (4 mm),
and stored subsamples at −20◦C (for DNA extraction) or 4◦C
(for measurement of soil properties) until further processing.

Soil Properties
Soil pH was measured in a 1:1 soil:DI H2O mixture using
a Hach Sension+ pH meter (Hach Company, Loveland, CO,

TABLE 1 | Names and disturbance histories of watersheds sampled in this study.

Name Disturbance history

Cable logged Commercially clear-cut and cable-logged in 1977

Clear cut All woody vegetation cut in 1963, no products removed

Pasture conversion Clear-cut and planted to grass in 1958, limed and fertilized
in 1959, fertilized in 1965, grass herbicided 1966–1967

Pine conversion All woody vegetation cut in 1940, re-growth cut annually
until 1955, white pine planted in 1956

All references Undisturbed since at least 1923

United States). Soils were extracted for 1 h with 2 M KCl (1:5
soil:solution ratio) and extracts were analyzed for NH+4 and
NO−3 using a Lachat QuikChem flow injection analyzer (Hach
Company, Loveland, CO, United States). Microbial Biomass C
and N were determined using a modified chloroform extraction
method (Fierer and Schimel, 2003) and extracts were measured
for dissolved organic carbon (DOC), total dissolved N, and
microbial biomass C and N on an Elementar vario cube TOC/TN
(Elementar Americas Inc., Mt. Laurel, NJ, United States). Soil
subsamples were air dried, milled, and analyzed for total C
and total N using an Elementar vario MAX cube (Elementar
Americas Inc., Mt. Laurel, NJ, United States). Microbial activity
was assessed via substrate-induced respiration (SIR) (Bradford
et al., 2008). Gravimetric water content was measured by mass
loss after oven drying at 105◦C for 24 h and all soil properties are
presented on an oven-dried basis.

FIGURE 1 | Map of disturbed-reference watershed pairs at the USDA Forest Service Coweeta Hydrologic Laboratory sampled for this study.
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DNA Extraction and qPCR
DNA was extracted from ∼0.25 g fresh soil using the Qiagen
DNeasy PowerSoil kit (Qiagen, Valencia, CA, United States) and
extracts were quantified using a Qubit 2.0 Fluorometer (Thermo
Fisher Inc., Waltham, MA, United States). We estimated bacterial
and fungal abundance by qPCR amplifying the 16S rRNA and
ITS regions, respectively. For 16S rRNA qPCR we used the
EUB 338/515 primer set while for ITS qPCR we used the
ITS1f/5.8s primers (Fierer et al., 2005). Each qPCR reaction
contained 10 µl Quantitect SYBR green master mix (Qiagen,
Valencia, CA, United States), 2 µl of 1:10 diluted DNA template
(∼1–4 ng DNA), 0.25 µM forward and reverse primers, and
nuclease-free H2O to 20 µl. For both genes, thermal cycling
conditions were as follows: 15 min at 95◦C followed by 40
cycles of 15 s at 94◦C, 30 s at 55◦C, and 30 s at 72◦C.
Standard curves were generated by amplifying serial dilutions
of the target regions cloned into plasmids, with amplification
efficiencies ranging from 87 to 92% and R2 values >0.99. All
amplifications were performed in triplicate and amplification
specificity was assessed using melt curve analysis. 16S and
ITS gene copy numbers were corrected for dry soil mass and
fungal:bacterial ratios (ITS:16S) were calculated by dividing
fungal gene copy numbers by bacterial gene copy numbers
(Fierer et al., 2005).

16S and ITS Sequencing and
Bioinformatic Analysis
We characterized bacterial and fungal communities by
amplifying and sequencing the V4 16S rRNA region and
the ITS1 region, respectively. We amplified the V4 region using
the 515F/806R primer pair (Apprill et al., 2015; Parada et al.,
2016) and the ITS region using the ITS1F/ITS2 primer pair
(Bellemain et al., 2010). We amplified samples in triplicate
and PCR reactions contained 10 µl Thermo Fisher Platinum
II Hot Start PCR Master Mix (Thermo Fisher Inc., Waltham,
MA, United States), 1 µl undiluted DNA template (∼5–20 ng
DNA), 0.2 µM forward and reverse primer, and nuclease-
free H2O to 25 µl. We also amplified negative controls for
each barcoded PCR primer to detect possible contamination.
Thermal cycling conditions for 16S amplification were 2 min
at 94◦C followed by 35 cycles of 45 s at 94◦C, 60 s at 50◦C,
and 90 s at 72◦C, with a 10 min final extension at 72◦C.
Conditions for ITS amplification were 2 min at 94◦C followed
by 35 cycles of 30 s at 94◦C, 30 s at 52◦C, and 30 s at 68◦C,
with a 10 min final extension at 68◦C. After amplification,
we pooled triplicate PCR amplicons, visualized amplicons
and negative controls on an agarose gel, and purified them
using the Qiagen QIAquick PCR Purification Kit (Qiagen,
Valencia, CA, United States). We quantified purified amplicons
(see above) and pooled 16S and ITS amplicons separately in
equimolar ratios. Amplicons were sequenced on the Illumina
MiSeq platform using 250 bp paired-end reads. Due to poor
quality scores for the ITS forward reads, we only processed
and analyzed the reverse reads. Raw sequence reads were
deposited in NCBI’s BioProject database under accession
number PRJNA548911.

We processed raw sequence reads using the QIIME2 pipeline
(Bolyen et al., 2018). After demultiplexing, we joined paired-ends
(16S only), denoised sequences, and removed chimeras using
DADA2 (Callahan et al., 2016). We then used VSEARCH (Rognes
et al., 2016) to cluster processed sequences into 97% OTUs and
removed OTUs only appearing in one sample. After processing,
we retained 2,511,186 sequences and 794,909 sequences for 16S
and ITS, respectively. For downstream statistical analyses, we
randomly selected 12,754 16S sequences and 7,038 ITS sequences
from each sample to account for differences in sequencing
depth. One sample was excluded from ITS sequence analysis
due to insufficient sequencing depth. After random sampling, we
retained 2,560 16S OTUs and 1,419 ITS OTUs for further analysis.

We assigned taxonomy to sequences using a naïve-Bayes
classifier (Pedregosa et al., 2011) trained on the Greengenes
and UNITE databases for 16S and ITS, respectively (Abarenkov
et al., 2010; McDonald et al., 2012). To assess potential
bacterial life history shifts induced by disturbance, we
categorized bacterial phyla as copiotrophic (i.e., r-selected,
Proteobacteria + Bacteroidetes) or oligotrophic (i.e., K-selected,
Acidobacteria + Actinobacteria) similar to the approach used by
Zhou et al. (2018), and calculated copiotroph:oligotroph ratios
for each sample. For functional analysis of fungal communities,
we parsed fungal OTUs into functional guilds using FUNGuild
(Nguyen et al., 2016). Similar to previous studies (e.g., Veach
et al., 2017), we only analyzed sequences assigned to a single
guild with a confidence of “probable” or “highly probable.”

Statistical Analysis
All statistical analyses were performed in R (R Core Development
Team, 2017) using the “phyloseq,” “vegan,” “emmeans,” and
“MASS” packages (McMurdie and Holmes, 2013; Lenth et al.,
2019; Oksanen et al., 2019; Ripley et al., 2019). For all statistical
analyses, P < 0.05 was considered statistically significant while
P < 0.1 was considered marginally significant, and all plots
were considered independent replicates. We determined 16S and
ITS alpha (i.e., Shannon) diversity using the “estimate_richness”
function in the phyloseq package and identified differentially
abundant OTUs across disturbed and reference forests using
the “exactTest” function in the edgeR package (Robinson
et al., 2010). To determine disturbance effects on Shannon
diversity, copiotroph:oligotroph ratios, and relative abundance of
phyla/classes/guilds, we used two-way ANOVAs with disturbance
and watershed pair as factors in the models. Although we
focus on main effects of disturbance from the ANOVAs,
using watershed pair as a factor allowed us to determine
pairwise differences between watersheds within each disturbed-
reference pair using the emmeans package (“emmeans” and
“contrast” functions), though these pairwise differences should
be interpreted with caution, as individual disturbances were not
replicated. Where necessary, we log-transformed variables in
order to meet assumptions of normality of residuals. When log
transformation failed to normalize residuals, we verified ANOVA
results using generalized linear models (“glm” function with
gamma distribution and log-link function, MASS package).

We visualized 16S and ITS community structure using
Non-Metric Multidimensional Scaling (NMDS, “metaMDS”
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function, vegan package) with Bray–Curtis distance matrices
(untransformed) and added key soil variables to the ordinations
using the “envfit” function (vegan package). We determined
effects of disturbance on 16S and ITS community structure
using PERMANOVA (“adonis2” function, vegan package). We
also used PERMANOVA to determine pairwise differences
between watersheds in each disturbed-reference pair, with
P-values adjusted using the Benjamini–Hochberg method to
control for false discovery rate (Benjamini and Hochberg, 1995).
We used variation partitioning (Peres-Neto et al., 2006) to
determine relationships between microbial communities, soil
properties, and vegetation communities, and used distance-based
redundancy analysis (“dbrda” function, Bray–Curtis distances,
vegan package) to test the statistical significance of each partition.

To investigate responses of potential microbial community
interactions to disturbance, we constructed bacterial and fungal
co-occurrence networks for reference and disturbed forests
separately by grouping communities from all 24 samples from
each treatment. Similar to Shi et al. (2016), to ensure robustness
of correlations used to construct networks, we only included
OTUs that occurred in a minimum of 10 samples for each
treatment. Spearman’s rank correlations were used to calculate
interaction strength among OTUs and network metrics were
calculated using all significant OTU correlations (P < 0.01 and
|ρ| > 0.5). For visualization purposes, we constructed random
networks using code modified from Williams et al. (2014)
available at https://github.com/ryanjw/co-occurrence. We then
used the igraph package (Csardi and Nepusz, 2006) to calculate
degree centrality, closeness centrality, and betweenness centrality,
all of which were normalized for each respective network. We
also used igraph to calculate clustering coefficients for each node
in each network. We identified differences in network topology
(degree centrality, closeness centrality, betweenness centrality,
and clustering coefficients) between disturbed and reference
communities using Kruskal–Wallis tests, similar to the approach
taken by Ma et al. (2016), while proportion of negative edges
was compared using Z-tests. Although statistical comparisons
were performed on the full networks including all significant
correlations, for purposes of visualization, our bacterial network
diagrams only include correlations with |ρ| > 0.7.

RESULTS

Soil Properties and Plant Communities
Disturbed forest soils were characterized by ∼41% higher
NH+4 concentrations, ∼12% higher SIR, significantly higher pH,
and ∼900% higher NO−3 concentration relative to reference
forest soils (all ANOVA P < 0.05, Supplementary Table
S2). In contrast, reference soils had ∼29% higher DOC
concentrations,∼18% higher microbial biomass C,∼11% higher
C:N ratios, and ∼19% higher DOC:TDN ratios (all ANOVA
P < 0.05, Supplementary Table S2) relative to disturbed soils.
Vegetation surveys revealed distinct plant communities between
reference and disturbed forests and also showed a significant
disturbance × watershed pair interaction (both PERMANOVA
P < 0.001, Supplementary Figure S1), indicating unique

effects of particular disturbance history on forest vegetation
communities. In general, our vegetation analysis reflects known
disturbance effects on woody vegetation previously described
from Coweeta (i.e., increased abundance of species such as
red maple and tulip poplar, see Supplementary Table S1)
(Elliott and Vose, 2011).

Bacterial and Fungal Abundance,
Copiotroph:Oligotroph Ratios, and α

Diversity
Bacterial (16S) gene copy abundance was marginally higher in
disturbed watersheds (ANOVA P = 0.07, Supplementary Figure
S2A), while fungal (ITS) gene copy abundance was not affected
by disturbance (ANOVA P = 0.54, Supplementary Figure S2B).
ITS:16S gene copy ratios were ∼23% higher in reference than
in disturbed soils (ANOVA P < 0.001, Figure 2A), which was
driven primarily by large differences between reference and
disturbed forests in the pasture conversion and pine conversion
watershed pairs (Supplementary Figure S2C). ITS:16S gene
copy ratios were negatively correlated with soil pH and
positively correlated with soil DOC (Figure 2E). Disturbed soils
had ∼29% higher bacterial copiotroph:oligotroph ratios than
reference soils (ANOVA P < 0.001, Figure 2B), a pattern that
was consistent across all four disturbed-reference watershed
pairs (Supplementary Figure S3). Copiotroph:oligotroph ratios
were positively correlated with soil pH, NO−3 , and NH+4 , and
negatively correlated with soil C:N ratios (Figure 2E).

Bacterial Shannon diversity was significantly higher in
disturbed forest soils (ANOVA P < 0.001, Figure 2C), which
was generally consistent across all four past disturbances, but was
most prominent in the pasture conversion disturbed-reference
pair (Supplementary Figure S4A). Bacterial Shannon diversity
was positively correlated with soil pH, NO−3 , and NH+4 , and
negatively correlated with soil DOC and C:N ratios (Figure 2E).
Fungal Shannon diversity was not significantly different between
disturbed and reference forest soils (ANOVA P = 0.24, Figure 2D
and Supplementary Figure S4B) but was positively correlated
with soil pH (Figure 2E).

Bacterial and Fungal β Diversity Patterns
NMDS visualization of bacterial communities using Bray–Curtis
distances showed clear, statistically significant separation of
communities based on past forest disturbance (Figure 3A,
PERMANOVA P = 0.001). Additionally, all pairwise comparisons
between disturbed-reference watershed pairs were significant
(PERMANOVA, all adjusted P < 0.05). NMDS axis 1 was
negatively correlated with soil C:N and DOC and positively
correlated with soil NO−3 , NH+4 , and pH (Figure 3A). Variation
partitioning showed soil chemistry accounting for 37% of
observed variation in bacterial communities, 29% of which was
independent of vegetation communities (Figure 3C). Vegetation
communities accounted for 16% of observed variation in
bacterial communities, 8% of which was independent of soil
chemistry (Figure 3C). All partitions were statistically significant
(distance-based redundancy analysis, all P < 0.01).
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FIGURE 2 | Effects of disturbance on ITS:16S gene copies (A), bacterial Copiotroph:Oligotroph ratios (B), 16S Shannon Diversity (C), and ITS Shannon Diversity
(D). P-values are overall disturbance effects from two-way ANOVA. Correlogram (E) visualizes Spearman rank correlation coefficients between microbial variables
from panels A to D and key soil variables (only statistically significant correlations shown, P < 0.05).

Similar to bacteria, NMDS visualization of fungal
communities using Bray–Curtis distances showed statistically
significant separation of communities based on past disturbance
(Figure 3B, PERMANOVA P = 0.001). Pairwise comparisons
were significant for the clear-cut, pine conversion, and pasture
conversion watershed pairs (PERMANOVA, all adjusted
P < 0.05), while the cable-logged watershed and its reference
were marginally different (PERMANOVA adjusted P = 0.065).
Similar to bacteria, fungal NMDS axis 1 was negatively correlated
with soil C:N and DOC and positively correlated with soil NO−3 ,
NH+4 , and pH (Figure 3B). Variation partitioning for fungal
communities showed soil chemistry accounting for 11% of
observed fungal community variation and vegetation accounting
for 9% of observed variation (Figure 3D) and all partitions were
statistically significant (distance-based redundancy analysis,
all P < 0.001).

Bacterial Phyla, Fungal Classes, and
Fungal Guilds
Aggregated across all samples, bacterial communities were
dominated by the phyla Acidobacteria and Proteobacteria,
which accounted for ∼65% of sequences (Figure 4A). Relative
abundance of several bacterial phyla displayed disturbance
effects, with Acidobacteria and Planctomycetes ∼20 and

12% higher in reference soils, respectively (ANOVA, both
P < 0.01, Figure 4B). In contrast, Proteobacteria, Chloroflexi,
Actinobacteria, and Nitrospirae had ∼11, 23, 39, and 280%
higher relative abundance in disturbed soils, respectively
(ANOVA, all P < 0.05, Figure 4B). Pairwise comparisons
within disturbed-reference watershed pairs indicated that
these patterns were consistent across all disturbances for
Acidobacteria, Proteobacteria, and Nitrospirae (Supplementary
Table S3). In contrast, disturbance effects for Planctomycetes
and Chloroflexi were driven primarily by large differences
in the pine conversion watershed pair, while effects for
Actinobacteria were driven primarily by the clear-cut watershed
pair (Supplementary Table S3).

Fungal communities were dominated by class
Agaricomycetes, which had marginally higher relative
abundance in reference forest soils (∼17% higher, ANOVA
P = 0.07, Figure 4D) and comprised >63% of sequences
(Figure 4C). Other fungal classes with significant disturbance
effects include Geminibasidiomycetes and Mucoromycotina,
which had 73 and 85% higher relative abundance in reference
soils, respectively, while Sordariomycetes and Eurotiomycetes
had 67 and 150% higher relative abundances in disturbed
soils, respectively (ANOVA, all P < 0.05, Figure 4D).
However, pairwise comparisons within disturbed-watershed
pairs revealed that disturbance effects for each class were
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FIGURE 3 | NMDS ordinations of 16S (A) and ITS (B) community structure at the OTU level. P-values shown are overall disturbance effects from PERMANOVA.
Vectors display correlations of key soil variables with NMDS axes from envfit. Panels C and D display variation partitioning results for 16S (C) and ITS (D)
communities. Values shown are adjusted R2-values for each respective partition, and all partitions shown are statistically significant (distance-based redundancy
analysis P < 0.01). Adjusted R2-values < 0 not shown (i.e., middle partition on panel D).

driven primarily by only one watershed pair, with differences
in Agaricomycetes, Sordariomycetes, and Eurotiomycetes
driven by large differences in the pasture conversion pair
(Supplementary Table S4) and differences in Mucoromycotina
and Geminibasidiomycetes driven by large differences in the
cable-logged pair (Supplementary Table S4).

Analysis of fungal sequences using FUNGuild resulted
in ∼46% of sequences confidently identified to a single
functional guild (Figure 4E). Sequences identified as arbuscular
mycorrhizae (AM) had ∼83% higher relative abundance in
disturbed soils, while Ectomycorrhizae had∼52% higher relative
abundance in reference soils (ANOVA, both P< 0.05, Figure 4F).
Pairwise comparisons within disturbed-reference watershed pairs
showed that this pattern was consistent for both groups of
mycorrhizae across all disturbances except for pine conversion,
which showed the reverse patterns (i.e., higher Ectomycorrhizae
and lower AM with pine conversion, Supplementary Table
S5). Additionally, animal pathogens showed higher relative
abundance with pasture conversion while endophytes showed
higher relative abundance with pine conversion (ANOVA, both
P < 0.05, Figure 4F and Supplementary Table S5).

Differentially Abundant OTUs
EdgeR identified 298 bacterial OTUs as differentially abundant
between disturbed and reference sites, ∼69% of which belonged

to Acidobacteria and Proteobacteria (Figure 5A). Phylum-level
analysis of these OTUs showed largely the same pattern as the
full OTU dataset (Figures 4B, 5C), but disturbance effects for
all phyla were significant (ANOVA, all P < 0.01, Figure 5C),
indicating that differentially abundant bacterial taxa exhibit
generally consistent disturbance responses at the phylum level.
Additionally, though the pasture conversion and clear cut
watershed pairs showed the largest pairwise differences, patterns
of relative abundance were consistent across all watershed pairs
for all phyla (Supplementary Table S6), indicating consistent
phylum-level responses to different past disturbances.

EdgeR identified 196 fungal OTUs as differentially abundant
between disturbed and reference sites, ∼90% of which belonged
to class Agaricomycetes (Figure 5B). Class-level analysis of these
OTUs showed that only Agaricomycetes, Sordariomycetes,
Eurotiomycetes, and Motierellomycetes had significant
disturbance effects (all P < 0.05, Figure 5D), and similar to
the full OTU dataset, effects for each respective class were driven
primarily by a single watershed pair (Supplementary Table S7),
indicating that fungal disturbance responses were not consistent
at the class level or across different past disturbances.

Co-occurrence Networks
Network analysis of bacterial communities showed distinct
network topologies between reference and disturbed forest soils
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FIGURE 4 | Pie charts display relative abundance of bacterial phyla (A), fungal classes (C), and fungal guilds (E) aggregated across all OTUs in all samples. Only
phyla/classes comprising >1% of sequences and guilds comprising >0.9% of sequences are shown. Heat maps in panels B, D, and F show scaled Z-scores for
relative abundances for each bacterial phylum (C), fungal class (D), and fungal guild (F) across each watershed. CC, clear-cut; CL, cable-logged; Pas, pasture
conversion; Pine, pine conversion. Symbols represent statistical significance at the following levels: ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05, ‡P < 0.1. P-values are the
main effects of disturbance from two-way ANOVA. Dendrograms on heat maps reflect similarity of relative abundance patterns of taxa across watersheds
(complete-linkage clustering) and do not reflect phylogenetic relationships.

(Figures 6A,B). The disturbed network had more nodes (546
vs. 451) and edges (14,174 vs. 6,216) compared with reference
communities (Figures 6A,B and Table 2), while the reference
network had a higher proportion of negative edges than the
disturbed network (0.15 vs. 0.09, Z-test P < 0.001, Table 2).
The disturbed network had more connections per node (65%
higher degree centrality), nodes that were closer on average to
all other nodes in the network (10% higher closeness centrality),
and nodes that were more tightly clustered together (20% higher
clustering coefficient) than nodes in the reference network (all

Kruskal–Wallis P < 0.001, Table 2). Also, the disturbed network
had 28% lower betweenness centrality (Kruskal–Wallis P< 0.001,
Table 2), indicating that nodes are less likely to bridge the shortest
path between two nodes than nodes in the reference network.

Topologies were also distinct between reference and disturbed
communities for fungal co-occurrence networks (Figures 6C,D).
Similar to the bacterial networks, the disturbed fungal network
had more nodes (61 vs. 55) and edges (279 vs. 95) than the
reference network (Table 2). However, there was no difference
in the proportion of negative edges between the disturbed and
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FIGURE 5 | Pie charts display relative abundance of bacterial phyla (A) and fungal classes (B) aggregated across edgeR-identified differentially abundant OTUs.
Only phyla/classes comprising >1% of sequences are shown. Heat maps in panels C and D show scaled Z-scores for relative abundances for each bacterial
phylum (C) and fungal class (D) for differentially abundant OTUs across each watershed. CC, clear-cut; CL, cable-logged; Pas, pasture conversion; Pine, pine
conversion. Asterisks represent statistical significance at the following levels: ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05. P-values are main effects of disturbance from
two-way ANOVA. Dendrograms on heat maps reflect similarity of relative abundance patterns of taxa across watersheds (complete-linkage clustering) and do not
reflect phylogenetic relationships.

reference networks (Z-test, P = 0.45, Table 2) for fungi. Also
similar to the bacterial networks, the disturbed fungal network
had more connections per node (305% higher degree centrality),
nodes that were closer to other nodes in the network (676%
higher closeness centrality), and nodes that were more tightly
clustered than in the reference network (all Kruskal–Wallis
P < 0.05, Table 2). However, unlike the bacterial networks,
the disturbed fungal network had 531% higher betweenness
centrality (Kruskal–Wallis, P = 0.034, Table 2), indicating that
nodes are more likely to bridge the shortest path between two
nodes than nodes in the reference network.

DISCUSSION

Bacterial Responses Are Consistent
Across Different Disturbance Histories
Disturbance alters forest soil properties (e.g., increases NO−3
and pH, Supplementary Table S2) and processes (e.g., increases
N-cycling rates) (Keiser et al., 2016), which we predicted

would be associated with consistent long-term responses of soil
bacterial communities across several different past disturbances.
Our results are consistent with this prediction, as reference
and disturbed bacterial communities were distinct in terms
of community composition (Figure 3A), Shannon diversity
(Figure 2B), copiotroph:oligotroph ratios (Figure 2C), and
ITS:16S ratios (Figure 2A). Similar results were presented
in a recent global meta-analysis of bacterial response to
forest degradation (Zhou et al., 2018). Additionally, bacteria
exhibited clear disturbance responses at high taxonomic levels
(Figure 4B), and taxonomic analysis of differentially abundant
OTUs revealed consistent patterns, with all dominant bacterial
phyla (>1% of sequences) showing significant disturbance effects
(Figure 5C and Supplementary Table S6). Importantly, the
phylum Nitrospirae, a bacterial group involved in N-cycling
processes (nitrite-oxidation, commamox), displayed particularly
strong disturbance responses, with nearly threefold higher
relative abundance in disturbed soils (Figure 4B). Bacterial co-
occurrence networks also showed clear disturbance responses,
with the disturbed network exhibiting more clustering, more
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FIGURE 6 | Co-occurrence networks constructed for bacterial communities in reference watersheds (A), disturbed watersheds (B) and fungal communities in
reference watersheds (C), and disturbed watersheds (D). Color of nodes is indicative of bacterial phylum (A,B) or fungal class (C,D). Edge color is indicative of
positive (blue), or negative (red) correlations. Size of nodes is proportional to relative abundance of the OTU represented.

TABLE 2 | Network metrics calculated for 16S and ITS co-occurrence networks
constructed for reference and disturbed soils.

Network metric Reference Disturbed

Bacteria Nodes 451 546

Edges 6,216 14,174

Prop. negative edges 0.148∗∗∗ 0.087

Degree centrality 0.047 (0.066) 0.077 (0.104)∗∗∗

Betweenness centrality 0.003 (0.004)∗∗∗ 0.002 (0.003)

Closeness centrality 0.399 (0.067) 0.441 (0.07)∗∗∗

Clustering coefficient 0.37 (0.14) 0.45 (0.18)∗∗∗

Fungi Nodes 55 61

Edges 95 279

Prop. negative edges 0.284 0.333

Degree centrality 0.037 (0.074) 0.15 (0.167)∗∗∗

Betweenness centrality 0.002 (0.029) 0.013 (0.03)∗

Closeness centrality 0.057 (0.039) 0.441 (0.127)∗∗∗

Clustering coefficient 0.27 (0.5) 0.43 (0.23)∗

For degree centrality, betweenness centrality, closeness centrality (all normalized),
and clustering coefficient, values displayed are medians followed by interquartile
ranges. Asterisks indicate significantly higher values at the following significance
levels: ∗P < 0.05, ∗∗∗P < 0.001. Proportion of negative edges was compared
between reference and disturbed soils using Z-tests, while all other metrics were
compared using Kruskal–Wallis tests.

connections among OTUs, and a lower proportion of negative
correlations among OTUs (Figures 6A,B and Table 2) relative
to the reference network. Thus, our network analyses suggest

that disturbance affects not only the taxa present in soil
bacterial communities but also alters potential ecological
interactions among bacterial taxa. For example, reductions in
negative correlations in the disturbed network may reflect fewer
competitive interactions between bacterial taxa due to relaxation
of nutrient limitation with increased inorganic-N availability.
Overall, our results suggest that disturbance of forests in the
Appalachian region fundamentally alters bacterial community
structure and ecological interactions over decadal time scales and
that these changes are consistent across a range of disturbance
types, including agricultural conversion, conversion to timber
plantation, and commercial clear-cutting.

The observed bacterial community metrics were strongly
correlated with several soil properties (e.g., pH, inorganic-N,
C:N ratios, Figure 2E), with soil chemistry accounting for
37% of observed variation in bacterial community structure
(Figure 3C), consistent with previous studies demonstrating
that soil physicochemical properties are the primary drivers
of soil bacterial communities (e.g., Fierer and Jackson, 2006;
Lauber et al., 2008, 2009). The differences in soil properties
observed in this study are likely linked to vegetation changes
that occur during forest succession following disturbance.
Early successional forests in this region are often dominated
by N-fixing black locust (Robinia pseudoacacia) (Elliott and
Vose, 2011), which likely contributed to increased inorganic-N
levels and lower soil C:N in disturbed watersheds. Vegetation
differences may also be responsible for soil pH shifts, as
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previously disturbed watersheds in this study were associated
with reduced abundance of species with acidic leaf litter such
as rosebay rhododendron (Rhododendron maximum) and oaks
(Quercus spp.) and increased abundance of species with higher
pH litter such as red maple (Acer rubrum) and tulip poplar
(Liriodendron tulipifera) (Supplementary Figure S1), which over
long time scales may have contributed to increased soil pH. In
addition to vegetation changes, the pasture conversion watershed
was limed in 1959, likely explaining the relatively high soil pH
(∼5.75) and clear disturbance effects on bacterial communities
we observed for this site, including the highest observed bacterial
Shannon diversity of all examined watersheds (Figure 2B).

Although bacterial responses to disturbance were largely
consistent, we also observed some responses that varied among
watersheds with different past disturbances. For example,
changes in Chloroflexi and Planctomycetes were only observed
in the pine conversion pair, while changes in Actinobacteria were
only observed in the clear-cut pair (Figure 4B). These context-
dependent effects may be related to unique effects of specific
disturbances on plant communities observed in this study (e.g.,
conversion to pine monoculture, Supplementary Figure S1), as
vegetation accounted for a significant proportion of variation
in bacterial communities, 8% of which was independent of soil
chemistry (Figure 3C). Although some prior studies have not
found strong correlations between vegetation and soil bacterial
communities (e.g., Fierer and Jackson, 2006; Jangid et al., 2011),
our results suggest that these relationships may indeed exist
and therefore vegetation should be considered when assessing
responses of soil bacteria to environmental change.

Fungal Responses Vary Among Different
Disturbance Histories
Fungal communities also showed evidence of long-term
responses to past forest disturbance, with distinct fungal
community composition between reference and disturbed
soils (Figure 3B). Similar to bacteria, disturbed and reference
fungal communities displayed distinct co-occurrence patterns,
with the disturbed network displaying higher clustering and
more connections among fungal OTUs (Figures 6C,D and
Table 2). However, other fungal community metrics did not
have consistent disturbance responses; fungal Shannon diversity
was not different between reference and disturbed soils and
disturbance responses were not consistent at the class level
for the full OTU dataset (Figure 4C and Supplementary
Table S4) or for differentially abundant OTUs (Figure 5D
and Supplementary Table S7). The inconsistent responses we
observed for fungi at the class level likely reflect the diversity
of life strategies that occur within fungal classes. Another
potential explanation for the observed responses is that fungal
communities have high fidelity to plant communities (Bonfante
and Anca, 2009; Peay et al., 2013), and watersheds with different
past disturbances sampled for this study displayed unique plant
communities (Supplementary Figure S1). Indeed, vegetation
communities accounted for a significant proportion (9%) of
observed variation in fungal communities (Figure 3D) and other
studies in temperate forests have also noted the importance of

vegetation in structuring fungal communities (e.g., Goldmann
et al., 2015). Analysis of fungal functional guilds also reflects the
importance of vegetation in structuring fungal communities; our
disturbed sites had lower abundance of tree species that host
ECM fungi such as oaks (i.e., Quercus montana, Supplementary
Figure S1), and our disturbed fungal communities indeed
displayed lower relative abundance of ECM fungi (Figure 4F),
with the exception of conversion to white pine (Pinus strobus)
(Figure 4F), which is a known ECM host. Additionally, tree
species that host AM, such as red maple (A. rubrum) and tulip
poplar (L. tulipifera), were more abundant in our previously
disturbed sites, and these communities featured higher relative
abundance of AM fungi (Figure 4F), with the exception of
conversion to pine (Figure 4F).

Soil properties also likely played a role in structuring
fungal communities; soil chemistry accounted for a significant
proportion of variation (11%) in fungal community composition
(Figure 3D), and previous studies have found nutrient status
(e.g., soil C:N) to be an important driver of soil fungal
communities (Lauber et al., 2008). Although it is likely that both
soil physicochemical properties and vegetation are important
in structuring fungal communities, we were able to explain
much less variation in fungal communities (∼20% of variation
explained, Figure 3C) relative to bacterial communities (∼45%
of variation explained, Figure 3D), suggesting that factors
we did not consider, such as soil phosphorus, herbaceous
vegetation, and elevation may be important in determining
fungal community structure, as has been shown in other studies
from temperate forests in the Appalachian region (Veach et al.,
2017). Additionally, variation partitioning analysis of fungal
guilds increased the proportion of explained variation in fungal
communities (∼40% of variation explained, Supplementary
Figure S5), highlighting the potential usefulness of trait-based
approaches for describing fungal communities in addition to
taxonomy-based approaches.

Community Shifts Contribute to Altered
N-Cycling After Disturbance
In addition to documenting community shifts, our results cast
new light on the role of soil microbial communities in long-
term biogeochemical responses to disturbances that have been
observed in Appalachian forests (e.g., Webster et al., 2016).
Existing frameworks such as the mycorrhizal-associated nutrient
economy (MANE) (Phillips et al., 2013) have been used to predict
temperate forest N-cycling rates using known tree-mycorrhizal
associations (ECM vs. AM), informed by differences in nutrient
acquisition pathways of ECM vs. AM fungi. This framework
predicts that forests dominated by trees with AM symbionts
(e.g., maple, tulip poplar) will feature rapid N-cycling rates
and soil N pools dominated by inorganic-N. These predictions
are generally consistent with our results for mycorrhizal fungi
(Figure 4F) and vegetation communities (Supplementary Figure
S1), and with previous studies on soil N-cycling (e.g., Keiser
et al., 2016) from the region. However, our results suggest that
the MANE framework and associated trees/mycorrhizae are part
of a complex system of feedbacks in Appalachian forests that
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also includes land use history, forest successional dynamics, and
soil bacterial communities. In these ecosystems, N-fixing black
locust often dominates plant communities following disturbance
(Elliott and Vose, 2011), increasing soil inorganic-N and likely
promoting increased abundance of copiotrophic bacterial taxa
(Ramirez et al., 2012; Figure 2B). Some bacterial copiotrophs
have been linked to elevated N-mineralization rates in soil
(Fierer et al., 2007), which may contribute to persistently
elevated inorganic-N pools even after successional declines
of N-fixers. Higher inorganic-N facilitates N-acquisition by
AM fungi, potentially promoting dominance of their maple
and poplar hosts in disturbed sites, and the high pH litter
of these tree species likely leads to higher pH in disturbed
soils over long time scales. Increased soil pH further alters
soil bacterial communities, including increased abundance of
bacterial nitrifiers such as ammonia-oxidizers (Stempfhuber
et al., 2015; Lin et al., 2017) and nitrite oxidizers (i.e., Nitrospirae,
Figure 4B), likely resulting in elevated nitrification rates in soil
(Norman and Barrett, 2014; Keiser et al., 2016) and persistently
increased rates of nitrate export from these previously disturbed
watersheds (Swank and Vose, 1997; Webster et al., 2016).
The long-term responses we observed may not be universal
across temperate forests, as other studies have reported different
long-term forest N-cycle disturbance responses; for example,
a previously disturbed forest in the northern Appalachians
displayed reduced N-cycling rates relative to a reference forest
(Goodale and Aber, 2001). However, similar N-cycle responses to
forest disturbance have been documented in several forests across
the continental United States (Vitousek et al., 1979), suggesting
that similar microbial community responses may be expected
across temperate forest ecosystems, at least in the short term.

CONCLUSION

Overall, our results show different long-term responses of
bacterial and fungal communities to forest disturbance in
Appalachian forests of the Eastern United States. A similar study
from the region also showed distinct responses of bacteria and
fungi along a forest recovery chronosequence following mine
reclamation (Sun et al., 2017), further suggesting that different
microbial groups will respond differently to environmental
change. Additionally, we noted striking differences in co-
occurrence network characteristics between both bacterial and
fungal communities in reference and disturbed soils. For
both groups, disturbed communities showed more connected,
clustered, and overall more complex networks (Figure 6 and
Table 2). Although co-occurrence patterns do not necessarily
imply ecological relationships (Faust and Raes, 2012), our
networks suggest the possibility of fundamentally altered
microbial community interactions following disturbance. For
example, the more complex networks observed in disturbed
soils suggest these soils are potentially characterized by more
microbial interactions and overall higher biological activity
(Karimi et al., 2017), which is supported by direct assays of
microbial activity from these sites (i.e., higher SIR for disturbed
soils, Supplementary Table S2). Additionally, our networks show

more potential negative interactions for fungi vs. bacteria and for
reference bacteria vs. disturbed bacteria. Previous studies have
suggested that negative ecological interactions (i.e., competition)
increase microbial community stability under environmental
change (Coyte et al., 2015), suggesting that fungal communities
will be more resilient to perturbations (i.e., drought, warming)
than bacterial communities, similar to observations in a grassland
ecosystem (De Vries et al., 2018), and that reference bacterial
communities will be more resilient than disturbed bacterial
communities. Evaluating these hypotheses should be a priority
for future research, as temperate forests are already experiencing
stresses associated with climate change (i.e., increased drought
frequency and severity) (Burt et al., 2018), likely altering
the structure and biogeochemical functions of soil microbial
communities and potentially threatening the critical ecosystem
services they provide for the region.
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