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Memory formation, guided by microbial ligands, has been reported for innate immune
cells. Epigenetic imprinting plays an important role herein, involving histone modification
after pathogen-/danger-associated molecular patterns (PAMPs/DAMPs) recognition by
pattern recognition receptors (PRRs). Such “trained immunity” affects not only the
nominal target pathogen, yet also non-related targets that may be encountered later
in life. The concept of trained innate immunity warrants further exploration in cancer
and how these insights can be implemented in immunotherapeutic approaches. In
this review, we discuss our current understanding of innate immune memory and we
reference new findings in this field, highlighting the observations of trained immunity in
monocytic and natural killer cells. We also provide a brief overview of trained immunity in
non-immune cells, such as stromal cells and fibroblasts. Finally, we present possible
strategies based on trained innate immunity that may help to devise host-directed
immunotherapies focusing on cancer, with possible extension to infectious diseases.

Keywords: trained immunity, macrophages, dendritic cells, inflammation, cancer, pathogens, immune responses,
immunotherapy

BACKGROUND

Monocytic cells including macrophages and dendritic cells (DCs), granulocytes and natural
killer (NK) cells, which feature a spectrum of innate immune cells, constitute the quintessential
first line of host innate immune defense and appear to undergo epigenetic reprograming
during an antimicrobial immune response (Nakayama et al., 2011; Abbas et al., 2014; Saeed
et al., 2014; Vono et al., 2017). The permanent polarization of certain subsets of these cells –
triggered by pathogen-driven inflammation – leads to the development of molecular signatures
forming an “immunological matrix.” This “trained immunity” does not resemble immunological
memory of adaptive immune cells, i.e., T and B cells, but rather pre-programing of cells that
will respond with similar effector molecules to subsequent challenge driven by recognition of
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pathogen-/danger-associated molecular patterns (PAMPs/
DAMPs) by pathogen-recognition receptors (PRRs), such as
Toll-like receptors (TLRs) (Gourbal et al., 2018). Stroma-
associated mesenchymal stromal cells (MSC) and fibroblasts,
which can also harbor pathogens (Das et al., 2013; McCormack
et al., 2013; Beamer et al., 2014; Khan et al., 2017), are equipped
with the capacity to present antigens to T cells via the human
leukocyte antigen (HLA) class I and class II pathways during
inflammation (Ilangumaran et al., 2002; Romieu-Mourez et al.,
2007; Morandi et al., 2008; Das et al., 2013; Crowley et al., 2018;
Hamada et al., 2019), and have been discussed to possess trained
immunity characteristics (Hamada et al., 2019).

There are several examples of the clinical use of attenuated
microorganisms in immunotherapy, such as the attenuated
Mycobacterium bovis Bacille Calmette-Guerín (BCG) strain
as an adjuvant for treatment of non-muscle-invasive bladder
cancer (Pettenati and Ingersoll, 2018). BCG induces upregulation
of cytokine production, e.g., granulocyte-macrophage colony-
stimulating factor (GM-CSF), interleukin-15, tumor-necrosis
factor (TNF), expression of MHC class II on urothelial cells
and activation of APCs associated with clinically relevant
host responses (Ikeda et al., 2002; Mitropoulos, 2005; Bisiaux
et al., 2009; Pettenati and Ingersoll, 2018). Clinical studies in
Guinea-Bissau have shown that the tuberculosis (TB) vaccine
BCG induces cross-protective immune responses among infants
in low-resource settings concomitant with a high level of
exposure to different infectious agents (Jensen et al., 2015).
This is clinically significant, since exposure to a variety of
infectious agents early in life in countries with high pathogen
transmission rates has been postulated to protect against
immunological diseases later in adulthood (MacGillivray and
Kollmann, 2014), with a crucial role for PAMP-driven shaping
of innate immune responses. Further to the unmistakable
role of adaptive immunological memory in immunity, the
role of trained immunity in innate immune cells demands
attention. In line with this, BCG-primed hematopoietic stem
cells (HSCs) – which gave rise to epigenetically modified
macrophages – were shown to induce superior recall responses
against virulent Mycobacterium tuberculosis (Mtb) challenge
in a mouse model (Kaufmann et al., 2018). Inflammation
and HSC plasticity as well as development is similar to
immuno-physiological processes occurring in the bone marrow
during disease, i.e., TNF-α and IFN-α upregulation and HSC
differentiation, G-CSF and IL-1β expression leading to HSC
proliferation (Pietras, 2017).

Trained innate immunity may in part be responsible for local
fine-tuning and immunomodulation within the bone marrow
(and other tissue compartments), where long-term memory
T-cell populations can be found in healthy adults (Okhrimenko
et al., 2014). Alternatively, initial stimulation of myeloid cells
by fungal cell wall-derived β-glucan has been shown to promote
superior control of subsequent infection with bacterial pathogens
(Quintin et al., 2012; Arts et al., 2018a; Rusek et al., 2018). The
role of trained immunity in the context of immunomodulation
in cancer was also recently reviewed (Netea et al., 2017),
expanding the biological relevance of trained immunity. In this
review/viewpoint, we summarize known information concerning

trained immunity and discuss relevant observations in view of
personalized cancer immunotherapy, particularly on adaptive
T-cell responses directed against cancer cells.

INNATE IMMUNE CELLS AND
IMMUNOLOGICAL MEMORY

Macrophages and Dendritic Cells
Priming of human monocytes and monocyte-derived
macrophages with LPS, an integral component of bacterial
endotoxin (TLR4 ligand), or zymosan, a polysaccharide which
belongs to the fungal cell wall (TLR2 and Dectin-1 ligand), has
been shown to be cross-reactive (LPS- or -zymosan-primed
monocytes can react to either stimulus), albeit with a dependence
of the dose of the stimulus (Madej et al., 2017). Importantly,
IL-1β production by macrophages initially primed by LPS or
Escherichia coli is markedly reduced following re-exposure,
although in monocytes re-exposure to E. coli, but not LPS,
produced much higher amounts of IL-1β (Madej et al., 2017).
This observation strongly hinted at the exposure of monocytic
cells to one type of pathogen affording immune reactivity
to another, i.e., bacteria vs. fungi. The immune tolerance
induced by LPS could, in part, explain T-cell dysfunction
in sepsis syndrome – which is reversible by exogenous IL-7
administration in patients (Francois et al., 2018). A study in
mice showed that trained immunity in DC driven by protective
vaccination against Cryptococcus neoformans, an opportunistic
fungal pathogen of the lungs (Kanjanapradit et al., 2017),
allowed the trained DCs to generate stronger pro-inflammatory
responses against bacterial pathogens in vitro, suggesting an
effect of trained immunity (Hole et al., 2019).

There is also evidence of Plasmodium falciparum (Pf )-induced
trained immunity in adherent cells from peripheral blood
mononuclear cells (PBMCs) – most likely macrophages – which
undergo H3K4 trimethylation leading to their subsequent ability
to produce high amounts of IL-6 an TNF-α in response to
TLR1/2 stimulation with Pam3CSK4 in a manner dependent
on hemozoin or Pf -infected erythrocytes (Schrum et al., 2018).
TLR1 and 2 recognize peptidoglycan, a quintessential component
of the bacterial cell wall, and can engage NF-κB activation for
pro-inflammatory cytokine signaling, as shown in the context
of antimycobacterial immune responses (Takeuchi et al., 2002).
As such, TLR1/2-sensisitized macrophages may have a role in
the interaction with bacterial pathogens and possibly promote
their clearance.

Studies have shown that oxidized low-density lipoprotein
particle (oxLDL)- or β-glucan-stimulated macrophages shift
to the glycolytic pathway, which promotes polarization to an
inflammatory M1 phenotype and induces expression of pro-
inflammatory cytokines, such as IL-1β and TNF-α, among
others (Biswas, 2015; Groh et al., 2017). Both cytokines have
pro- as well as anti-tumor properties in cancer immunology,
i.e., priming of T-cell responses and tumor elimination vs.
induction of chronic, cancerogenic inflammation (Maeurer et al.,
1996; Balkwill, 2009; Gross et al., 2017; Bent et al., 2018;
Mantovani et al., 2018). Simultaneously, accumulation of lipids
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in trained macrophages has been linked to the pathogenesis of
atherosclerosis (Groh et al., 2017), raising the question of how
much fatty acid metabolism is allowable before it contributes to
a different pathology. The shift to aerobic glycolysis in cancer
cells fuels their uncontrolled growth, while lactate appears to
favor disease dissemination (Jiang, 2017), both of which have also
been noted to be necessary for BCG-induced trained immunity
in human monocytes (Arts et al., 2016). The implication of this
for immunomodulation in cancer requires further assessment.

Subclinical doses of LPS have also been shown to prime and
modulate monocyte responses in an interferon regulatory factor
5 (IRF5)-dependent manner, where TIR-domain-containing
adapter-inducing interferon-β (TRIF) and TRIF-related adaptor
molecule (TRAM), but not Myd88 are involved, following
TLR4 activation (Yuan et al., 2016; Geng et al., 2017).
Indeed, IRF5-mediated M1 macrophage responses following
LPS exposure appear to be necessary for clearing bacterial
infections, concomitant with production of reactive oxygen
and nitrogen intermediates (Hedl et al., 2018), both of which
are necessary in controlling infections but can also promote
oncogenesis. The TLR4/TRIF/TRAM pathway is also a currently
investigated biological target in cancer immunotherapy (Awasthi,
2014; Guney Eskiler et al., 2019). Agonists of TLR7 have
also been found to induce immune tolerance in monocytes at
higher doses, while more intense TLR3 stimulation promoted
an exacerbated inflammatory response (Geng et al., 2017). Both
TLRs recognize RNA structures, suggesting pathogen-derived
nucleic acids as a potent inducer of trained immunity, with RNA-
based cancer vaccine adjuvants having been shown to induce
tumor rejection and anti-viral responses without or with only
minimal off-target toxicity (Seya et al., 2015; Zhu et al., 2017;
Ziegler et al., 2017). In addition to TLRs, other PRRs such as
melanoma-differentiation antigen 5 (MDA-5) and retinoic acid-
inducible gene I (RIG-I), largely involved in antiviral defense,
have also been implicated in mediating tumor-cell apoptosis,
DC priming and potentiation of anti-cancer cytotoxic T-cell
activation (Wu et al., 2017).

A recent review by van der Heijden et al. (2018) appraised
the role and significance of epigenetic modifications in innate
immune cells to establish trained immunity (van der Heijden
et al., 2018). Infection with Mtb, an intracellular pathogen which
prefers to reside in alveolar macrophages, has been shown to
induce epigenetic changes in the host cell, i.e., modification of
histones 3 and 4 acetylation patterns to promote its prolonged
survival (Esterhuyse et al., 2015; Moores et al., 2017; Singh
et al., 2017). Furthermore, Mtb also triggers the synthesis of
host microRNA species to modulate immune responses to its
benefit (Iannaccone et al., 2014; Huang et al., 2015; Kumar et al.,
2015; von Both et al., 2018). Whether Mtb-infected macrophages
(and DCs) can modulate immune responses associated with
cancer or other infections remains yet to be explored. One
study has shown that infection of macrophages with Mtb
H37Rv, a virulent, laboratory-adapted strain, upregulated PD-L1
expression which lead to increased Treg infiltration into lymph
nodes and exacerbated disease in NSCLC-bearing mice (Zhou
et al., 2017). It is important to be able to visualize how Mtb
exposure of monocytic cells in humans may predispose them to

either control or succumb to exacerbated inflammation, which
may promote cancer in some individuals, and warrants thorough
investigation due to the worrying global burden of TB (World
Health Organization [WHO], 2018).

Another interesting point is the impact of microbial products
in affecting tumor-associated macrophages (TAM), which
have been reported as pro-tumoral, promoting angiogenesis,
tumor-invasion, metastasis, and fine-tuning tumor-associated
inflammation (Esposito et al., 2004; Qian and Pollard, 2010;
Szebeni et al., 2017). The TAMs can be originated from
circulating monocytes that will enter the tissue and differentiate
into macrophages, bone-marrow-derived macrophages
(BMDMs) or can result from an accumulation of tissue-
resident macrophages (TRMs) (Pathria et al., 2019). Indeed,
there is a crescent number of reports correlating TAMs with
higher tumor grade and shorter survival for breast cancer,
renal cell carcinoma, glioblastoma, pancreatic cancer, head
and neck cancer, and lymphoma (Zhang et al., 2013, 2018;
Pedersen et al., 2014; Tiainen et al., 2015; Wang et al., 2015; Hu
et al., 2016; Atanasov et al., 2018; Gartrell et al., 2018; Sorensen
et al., 2018; Pathria et al., 2019). The relationship between
TAMs and the tumor invasiveness and ability to metastasis is
suggested to be related to epithelial-mesenchymal transition
(EMT) (Su et al., 2014; Fu et al., 2015; Ravi et al., 2016). Indeed,
Fu et al. (2015) showed that EMT hotspots in hepatocellular
carcinoma were associated with TAMs infiltration (Fu et al.,
2015). However, TAMs and invasiveness are certainly affected
by other factors, e.g., N-cadherin and Snail (Helm et al., 2014;
Lin et al., 2019).

Nevertheless, the reacquisition of proinflammatory
characteristics in macrophages, so called repolarization,
was associated with increased survival in mice and patients with
different cancer types and may be a future approach for cancer
therapy (Kaneda et al., 2016b; Pathria et al., 2019). Two recent
studies reported that the inhibition of phosphatidylinositol-
3-kinase (PI3K) by genetic depletion or pharmacological
inhibition, lead to proinflammatory expression in TAMs, with a
downstream effect in T-cell activation (Kaneda et al., 2016a,b).
The authors also identified that a downstream effect would
be to promote NF-kB phosphorylation and DNA binding
activity, therefore increasing proinflammatory gene expression
associated to such pathway. Another effect is the activation of
Bruton’s tyrosine kinase (BTK), which inhibition by ibrutinib
stimulates macrophage polarization, myeloid cell infiltration
reduction and increase in CD8 + T cells infiltration in murine
pancreatic ductal adenocarcinoma (PDAC) (Gunderson et al.,
2016). Another molecule associated to the composition of
tumor microenvironment effects is the growth arrest specific
6 (Gas6), since it interacts with TAM receptors Mer (Lew
et al., 2014), with the downstream effect of PI3K, ERK, and
NK-kB pathway activation. Interestingly, overexpression of
Gas6 was described in a wide variety of cancers, such as
melanoma, schwannoma, glioblastoma, and PDAC (Ito et al.,
2002; Hutterer et al., 2008; Song et al., 2011; Demarest et al.,
2013; Ammoun et al., 2014). There are other molecules that
may be targeted to address the TAMs repolarization, such
as receptor-interacting serine/threonine kinase 1 (RIPK1) or
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Janus kinase 2/signal transducer and activator of transcription
3 (Jak2/Stat3). The first one is increased in TAMs in human
PDAC and its inhibition will repolarize TAMs and increase MHC
class II, TNF-α and INF-γ expression besides reducing tumor
growth (Wang et al., 2018). Besides, RIPK1 inhibition will also
activate CD8 + T cells, increase differentiation of CD4 + T cells
toward a Th1 phenotype and may have a synergic action with
anti-PD-1 antibody (Wang et al., 2018). Regarding Jak2/Stat3,
inhibition of Stat3 also leads to repolarization of TAMs and
increases infiltration of cytotoxic T lymphocytes (CTLs), which
could also be achieved by targeting Jak2 (upstream activator)
(Pathria et al., 2015). TAMs may also express a molecule named
macrophage receptor with collagenous structure (MARCO),
involved in the recognition of PAMPs and TLRs linking
innate immune responses in the tumor – microenvironment
to pathogens (Mukhopadhyay et al., 2011; Kissick et al.,
2014). Indeed, TLR agonists polarize macrophages toward a
proinflammatory phenotype, therefore also having a possible
role for cancer therapy. The downside of such agonists is
the concomitant expression of PD-L1 in macrophages, which
could be blocked by the synergistic use of anti-PD-1 antibodies
(Kaneda et al., 2016a,b).

NK Cells
Recent translational studies using human material have shed
more light on the molecular changes in “memory-like” NK
cells and ways to identify them. Hypomethylation of AT-rich
interaction domain 5B (ARID5B) and co-expression of CD57,
NKG2C, and reduced CD56 mark an “adaptive” subset of NK
cells (Cichocki et al., 2018). Viral infection of NK cells induces
the expression of natural cytotoxicity receptors (NCRs), such as
NKp46, NKp44 [a HLA-DP401 ligand, which is also associated
with tumor recognition (Odunsi et al., 2007; Straetemans et al.,
2012; Laheurte et al., 2016; Lu et al., 2017; Niehrs et al., 2019)]
and NKp30 as well as the NKG2D receptor, which binds to
the non-classical HLA class I-associated molecules MICA/B on
tumor cells (Cantoni et al., 2015). Particularly, human CMV
infection may also drive the expansion of adaptive NK-cell
populations phenotypically characterized as FcεRγ−, tyrosine
kinase SYK−, EAT-2− and master transcription factor PLZFlow,
with reduced IL-12 and IL-18 responsiveness connected to
PLZF downregulation (Schlums et al., 2015). CMV-experienced
FcγRIII/CD16+ NKG2C+ memory-like NK cells also undergo
Syk DNA hypermethylation, but retain responsiveness to
antibody-mediated cell expansion via CD16 binding upon
exposure to CMV-infected target cells (Lee et al., 2015). As in
mice, memory-like, intrahepatic NKG2C+ CD49a+ DX5− NK
cells co-expressing CD25 and IgG-like receptor, have also been
described in humans (Peng et al., 2013; Marquardt et al., 2015).
A recent translational study showed that “trained,” intrauterine
NK-cell populations with epigenetic modifications in the IFN-γ
and VEGF-A and high propensity to produce these cytokines
following stimulation loci might play an important role in
successful placentation (Gamliel et al., 2018). Functional studies
in mice revealed that virus-induced memory-like NK cells, after
contraction, go on to reside in lymphoid and non-lymphoid

organs and are able to facilitate enhanced viral control following
adoptive transfer (Sun et al., 2009). Thus, tissue-derived NK
cells may have specific trained immunity features which are of
biological relevance not only in cross-protective immunity but
also tissue physiology.

The generation of memory-like NK cells has also been
demonstrated by exposing them to a combination of IL-12, IL-15
and IL-18, referred to as cytokine-induced memory-like (CIML)
NK cells, resulting in a population of effector cells which also
exhibits superior control of K562 leukemia cells (Leong et al.,
2013; Rosario et al., 2014). It is important to note that these
cytokines are also produced by macrophages and DCs as a first-
line immune armament during infection (Abbas et al., 2014). As
such, additionally to pathogen-derived stimuli, the local cytokine
milieu may also promote immunological memory in NK cells
in tissue. Taking these observations into consideration, how
pathogen-driven formation of immunological memory in NK
cells would affect tumor immunosurveillance warrants formal
testing using appropriate models and may be very significant for
clinical immunotherapy.

NON-IMMUNE CELLS AND TRAINED
IMMUNITY

Trained immunity in non-immune cells has been appreciated and
extensively reviewed elsewhere (Hamada et al., 2019). Regulation
of trained immunity in MSCs by microRNA expression
and DNA methylation has been demonstrated following LPS
exposure, where pro-inflammatory cytokine expression was
maintained even in the absence of stimulus (Liu et al.,
2015). Fibroblasts are highly specialized cells required for
immune signaling during infection and tissue repair following
inflammation-induced cell damage, making them a potential
drug target to ameliorate chronic inflammation (Flavell et al.,
2008). Their expression of TLRs and close interaction with
surrounding and infiltrating immune cells places fibroblasts at an
important axis linking trained immunity and immunopathology
(Miteva et al., 2014). For instance, sustained activation of the
Twist1-Prrx1-TNC PFL in cancer-associated fibroblasts (CAFs)
perpetrates fibrotic lesions during idiopathic pulmonary fibrosis
(Lederer and Martinez, 2018; Yeo et al., 2018). Tissue fibrosis,
impairment of organ function and immune-suppression are also
reminiscent of pulmonary TB (Dheda et al., 2005) and solid
tumors (Jiang et al., 2016), hinting at similar mechanism at
play. Intestinal stromal cells have been previously described
to provide long-lasting pro-inflammatory immune responses
against pathogens further to recruiting immune cells to the
site of infection (Owens, 2015). Transformed cells, stromal cells
and fibroblasts also provide a rich source of growth factors,
pro-tumorigenic and immune-suppressive cytokine production
that facilitates tumor progression (Todoric and Karin, 2019).
Suitable disease models and well-defined clinical samples are
necessary to address the role of trained non-immune cells in
the cross-reactive immune responses in infectious diseases and
malignant transformation.
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CAN TRAINED IMMUNITY BE
EXPLOITED FOR THERAPEUTIC
PURPOSES?

While trained immunity may induce unwanted, pathological
inflammation and, therefore, constitutes an avenue of
pharmacological intervention (Mourits et al., 2018; Mulder
et al., 2019), its utility in shaping the repertoire of antigen-
specific/antigen-experienced immune cells may be useful
against different diseases indicates an element of “in-built
adjuvanticity.” In a recently reported phase 1 clinical study,
BCG-vaccinated individuals given a dose of P. falciparum
were shown to afford better control of malaria, concomitant
with early activation of granzyme B+ NK cells and HLA-
DR+ monocytes (Walk et al., 2019). Non-vaccinated controls
did not show similar results, suggesting that BCG-driven
innate immune activation leads to cross-protection against a
protozoan parasite, in keeping with a previous finding describing
pro-inflammatory, adherent innate immune cells responses
due to plasmodium-triggered, trained immune responses
(Schrum et al., 2018). In another study, Arts et al. (2018b)
reported that BCG vaccination would induce a genome-wide
epigenetic reprograming of monocytes. Epigenetic changes due
to BCG vaccination involved G protein-coupled receptors and
protein kinases, and several signaling pathways involved in
cytokines and chemokines production, such as the PI3K/AKT
(phosphatidylinositol 3-kinase) pathway, epidermal growth
factor receptor (EGFR), fibroblast growth factor (FGF), and
vascular endothelial growth factor (VEGF) signaling pathways.
The translation of this epigenetic reprograming was a higher
pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-6)
of PBMCs from vaccinated, as compared to placebo-treated
individuals, emphasizing the impact of trained immunity.
Besides, these immune changes would also confer a higher
protection to an unrelated infection (yellow fever virus), due
to a higher production of IL-1β, and as a trained immunity
response (Arts et al., 2018b). Another interesting aspect
was described by Buffen et al. (2014), reporting that BCG
induced trained immunity in monocytes with an unrelated
stimulus, measured by increase of IL-6 and TNF-α cytokines,
would not occur when autophagy was blocked. Indeed, both
pharmacological inhibition of autophagy or single nucleotide
polymorphisms (SNPs) in the autophagy genes (ATG2B and
ATG5) reduced the trained immunity effect of BCG, due
to the blocking of epigenetic reprograming of monocytes
at H3K4 trimethylation (Buffen et al., 2014). Besides, the
authors also describe an increase rate of recurrence and
progression of non-muscular invasive bladder cancer patients
after intravesical instillations of BCG in patients who exhibited
SNP in the autophagy gene ATG2B. This observation supports
the importance of the genetic background in non-specific
effects of BCG in trained immunity and argues for genetic
analyses of tissue material from patients undergoing BCG
installation. Other pathogens affect as well immune cells. C.
neoformans was shown to produce prostaglandin E2 (PGE2)
to suppress T-cell activation for promoting its own growth

and survival in macrophages (Evans et al., 2019). PGE2 has
several important anti-inflammatory effects encompassing
the TNF/IL-6/IL-17 axis and IL-8 production by inducing
epigenetic modifications (Venza et al., 2012; Adamik et al., 2013;
Harizi, 2015). Whether microbe-trained PGE2 production by
memory-like monocytic cells may have a biologically relevant
role in ameliorating chronic inflammation has to be elucidated.
IFN-γ- and LPS (TLR4)-primed macrophages, although capable
of superior phagocytosis of apoptotic lymphoma cells compared
to non-primed macrophages, were skewed toward an M2
(anti-inflammatory phenotype) and exhibited pro-tumor
effects in vivo (Voss et al., 2017) in a preclinical (murine)
model. It is, however, unknown whether TLR activation
driven by factors in the tumor microenvironment (such as
bacteria or fungal commensals, please see below) can promote
trained immunity and, if so, whether such innate immune
memory help control transformed cells and/or pathogens
(see Figure 1).

PERSONALIZED CANCER
IMMUNOTHERAPY

Natural killer cell-mediated immune reactivity – particularly in
hematological malignancies and in combination with chimeric
antigen receptor (CAR) expression – forms a central structure
in cancer immunotherapy (Bjorklund et al., 2018; Tang
et al., 2018). A highly favorable characteristic of NK cells
pertinent to clinical use is that they are obtainable from
allogeneic sources for therapy, can mediate graft-versus-leukemia
(GvL) responses (Locatelli et al., 2018) and are amenable
to in vitro conditioning to acquire memory-like properties
(Iliopoulou et al., 2010; Liang et al., 2017). NKG2A, the
NK cell/CD8+ T cell-expressed interaction partner for HLA-
E on targets cells, represents a new immune checkpoint
molecule which has already shown therapeutic potential in
several preclinical cancer models (Tognarelli et al., 2018;
van Montfoort et al., 2018; Creelan and Antonia, 2019).
NK-cell exposure to CMV induces NKG2A upregulation
albeit not compromising the cells’ ability to produce IFN-
γ (Petersen et al., 2010). NKG2A+ memory-like NK cells
may, therefore, be clinically beneficial for cellular therapy of
patients with HLA-Ehi malignancies (de Kruijf et al., 2010;
Benevolo et al., 2011; Gooden et al., 2011; Lin et al., 2011;
Bjorklund et al., 2018). CMV may also imprint on anti-
cancer directed immune responses, which may be of clinical
relevance, since CMV as well as EBV-reactive T- and B-cells
infiltrate into tumor lesions (Meng et al., 2018; Lerias et al.,
2019). Reprograming of tumor-associate T-cells by epigenetic
targeting of CD8 + tissue resident memory (Trm) cells and
tumor infiltrating T-lymphocytes (TIL) may also promote
tumor control, in part by increasing “mitochondrial fitness”
(Li et al., 2019).

Modulation of histone methylation using pharmacological
agents has been proposed as a potential host-directed strategy
to capitalize on trained innate immunity to provide immune
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FIGURE 1 | Possible immunological processes potentiated by trained innate immunity against infections and cancer. The schematic represents some of the cardinal
immune mechanisms at play in establishing trained immunity in monocytic cells, including macrophages and DCs. Bacteria-/fungi-exposed monocytes or
macrophages (in response to bacterial LPS or fungal zymosan detected by pathogen recognition receptors TLR4 and Dectin-1, for example) can cross-react to
either pathogen type with the production of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, IL-18, IL-12, and IL-23) which are necessary for T-cell activation. Myd88
and/or TRIF/TRAM-mediated IRF5 activity appears to play an important role herein, along with epigenetic modification (largely involving methylation patterns) of
histone 3 at position lysine 4 (H3K4). Antigen presentation via the HLA class I and class II (HLA-DR is shown in the schematic) and the inflammatory tissue
environment would promote priming and expansion of T helper, cytotoxic T lymphocyte (CTL) and TCR γδ T-cell populations. These T cells can eliminate infected
cells and control the spread of the pathogen, and possibly react to dysplastic cells which may develop due to inflammation-driven genetic aberrations. Similarly,
there may also be a direct effect of the innate immune cells – trained by exposure to pathogens – to produce an inflammation-driven response to future infections as
well as cancer cells. The latter may express both classes of HLA molecules, only the TCR γδ ligands MICA/B (which also binds to NKG2D on NK cells as well as γδ T
cells), a combination of the two or HLA class II alone in the event of mutational events leading to HLA class I loss. Ongoing inflammation in tissue leads to the
production of several cytokines and growth factors (e.g., TGF-β, EGF, IL-6, IL-10, and VEGF) by infected cells, dysplastic tissue and cells in the stromal compartment
(activated stem cells, fibroblasts), potentially exerting a pro-tumor effect and impairing the host’s anti-tumor response. The cytokine microenvironment and the
possible infection with virus, such as CMV, may also promote the development of memory NK cells in tissue. Mo, monocyte; Mf, macrophage; DC, dendritic cell;
HLA, human leukocyte antigen; LPS, lipopolysaccharide; IRF5, interferon regulatory factor 5; IFN-γ, interferon gamma; TNF-α, tumor necrosis factor alpha; GrzB,
granzyme B; perf, perforin; TLR, Toll-like receptor; TRIF, TIR-domain-containing adapter-inducing interferon-β; TRAM, TRIF-related adaptor molecule; Me, methyl
group; TGF-β, transforming growth factor beta; EGF, epidermal growth factor; VEGF, vascular endothelial growth factor; NK, natural killer cell.

protection (Mulder et al., 2019; Rodriguez et al., 2019). Among
the crucial host proteins involved in histone methylation is lysine
demethylase 6B (KDM6B), also known as Jumonji Domain-
containing 3 (JMJD3). LPS activation of macrophages, a cardinal
early event in sepsis, leads to downstream mobilization of
several KDM6B targets, especially those associated with pro-
inflammatory responses (De Santa et al., 2009). A similar

effect is true for serum amyloid protein A (SAA)-driven
inflammatory responses in macrophages (Yan et al., 2014),
which is linked to the pathogenesis of rheumatoid arthritis
and potentially cancer as well as metastasis (Liu, 2012; Zhou
et al., 2018; Lee et al., 2019). KDM6B expression is linked
to better prognosis in patients with neuroblastoma (Yang
et al., 2019) and stabilization of the tumor suppressor protein
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p53 in glioblastoma stem cells (Ene et al., 2012) while
its loss has been shown to promote pancreatic cancer-cell
aggressiveness (Yamamoto et al., 2014). Thus, the role LPS-
triggered “training” of macrophages via its effect on KDM6B
warrants further elucidation in the context of personalized
cancer medicine.

Conversely, with respect to helminth infections, KDM6B
along with IRF4 triggers the anti-inflammatory reprograming
of macrophages (M2 phenotype), downstream of which
manifests in Th2 cytokine release and antibody production
(Satoh et al., 2010). These observations hint at the pleiotropic
nature of KDM6B engagement in modulating host macrophage
function as an essential therapeutic target to protect against
a myriad of extrinsic (pathogen-associated) and intrinsic
(host-associated) insults. Interestingly, amino acids 1110-
1120 of KDM6B contain a strong 8 amino-acid match
with selected residues between positions 251–265 in the
influenza A virus (H1N1) hemagglutinin (HA) protein
(derived from the California/New York strains of the
2009 pandemic flu), which provides a small hint about
molecular mimicry and the possibility of TCR binding.
Further studies are necessary to understand how pre-
programing of KDM6B activity affects disease outcome in
infectious diseases.

The microbiome has an important role in promoting
trained immunity due to effect in development of the
immune system, host control of chronic infections (e.g.,
TB), and clinical responses to immune checkpoint blockade
in cancer for developing next-generation personalized
cancer immunotherapies (Nash et al., 2017; Cassone,
2018; Gupta et al., 2018; Fessler et al., 2019). Indeed, gut
microbial/non-microbial ligands are essential for the adaptative
immunity during secondary infection/pathogenic exposures,
being involved in the production of immunomodulatory
metabolites, such as short-chain fatty acids or secondary
bile acids, regulating innate immune cells metabolism and
functions (Kitahara et al., 2001; Tremaroli and Backhed,
2012; Levy et al., 2016; Rooks and Garrett, 2016; Jia et al.,
2018). Importantly, commensals in the gut are involved
in the production of immunomodulatory metabolites that
comprise short-chain fatty acids (SCFAs) such as butyrate,
acetate, and propionate (50–52). Further, commensals such
as Bacteroides, Lactobacillus, and Bifidobacteria species
synthesize secondary bile acids that are derived from the
metabolism of primary bile acids (53–55). Binding of these
bioactive molecules to the receptors on the innate cells
regulate their metabolism and functions (Negi et al., 2019).
Cancer associated microbiomes have recently been linked
to clinical outcomes in pancreatic cancer: The mycobiome
(fungal components of the microbiome) has been shown
to accelerate pancreatic cancer, via a carbohydrate moiety
on Malassezia that activates the complement pathway
(Aykut et al., 2019). In contrast, the tumor microbiome
characterized by Saccharolpolyspora, Pseudoxanthomonas,
Bacillius clausii and Streptomyces species has been associated
with long-term survival for patients with pancreatic cancer

(Riquelme et al., 2019). Future studies will show the impact of
these bacterial/fungal species and their metabolites on immune
cell programing.

Cancer antigens are released into the external environment
usually by dying cells or packaged in exosomes (Wolfers
et al., 2001). This may (i) facilitate training of immune
cells and help them respond to a future infection or other
cancer indications or (ii) activate immune cells subsets which
are pre-wired – by a previous infection or exposure to
autoantigens – to exhibit enhanced phagocytic functions,
cytokine production capacity and unleash strong anti-tumor
T-cell responses (Netea et al., 2017). Indeed, the durable
changes after training of innate myeloid cells, involve the
increase of expression and release of cytokines associated
to a long-term regulation of gene transcription through
epigenetic mechanisms (Foster et al., 2007; Quintin et al.,
2012; Netea et al., 2017). More specific effects of trained
immune cells is, for example, the switch from oxidative
phosphorylation to glycolysis in trained monocytes (Cheng
et al., 2014). Besides, trained monocytes also show the
accumulation of fumarate in the Krebs cycle, inhibiting
the KDM5 family of H3K4 demethylases, therefore ensuring
the maintenance of the H3K4me3 open chromatin mark
(Sun et al., 2015).

Dendritic cells -based vaccination constitutes a major area
of targeted personalized immunotherapy, with naturally
occurring circulating DCs with certain pre-programed
characteristics being considered of value for therapeutic
applications (Bol et al., 2019). Herein, trained immunity in
DCs – such as that shown in response to anti-C. neoformans
vaccination (Hole et al., 2019) – warrants investigation in
the context of tailored anti-cancer immune responses. The
DC vaccines involve the ability of these cells to act as an
antitumoral effector in both CTLs and NK cells, in order
to eradicate malignant cells (Kirkwood et al., 2012). There
are several types of DC-vaccines, being the most frequently
used the reinfusion of ex vivo derived DC pulsed with
tumor-associated antigens (TAAs) or tumor cell lysates and
stimulated with TNF-α, IL-1β, IL-6, and prostaglandin E2
(PGE2) (Lee et al., 2002; Koski et al., 2008; Anguille et al.,
2014). The DC-based immunotherapy efficiency may be
enhanced using immune checkpoint inhibitors, such as anti
PD-1 or anti-CTLA-4 antibodies (Mastelic-Gavillet et al.,
2019). Carreno and colleges described the vaccination of
three stage III resected melanoma patients who received
mature autologous DCs pulsed with peptides derived from
mutated antigens, with a previous treatment with CTLA-4
blockade. Interestingly, besides the identification of peptide-
specific T cell responses, after vaccination blood samples
showed a more diverse TCR repertoire (Carreno et al., 2015).
DC vaccines can also be considered to be combined with
chemotherapy, since it is reported that chemotherapy may
deplete specific cell types, such as Tregs and myeloid derived
suppressor cells (MDSCs) and modulate the immune system
to a more pro-inflammatory state (Kershaw et al., 2013;
Bracci et al., 2014).
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CONCLUSION

With increasing evidence emerging from basic and translational
studies, trained immunity warrants further dissection for its
capacity to offer powerful and durable anti-cancer immune
responses – and potential reprograming of “non-productive”
to “productive” (i.e., anti-cancer or pathogen-directed) immune
responses. A large repertoire of innate immune and non-
immunes cells enriches the repertoire of responders to insults
of various origins and nature, and their interplay in shaping
immunity. Combining biomarker information from various
clinical studies and drug trials will increase the possibilities
for designing treatment strategies. Trained immunity-based
approaches will inevitably enhance T-cell responses in conferring

host protection and facilitating long-term adaptive memory
responses against pathogens or transformed cells.
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