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Poultry husbandry is important for the economic health of Pakistan, but the Pakistani
poultry industry is negatively impacted by infections from Escherichia coli. We performed
Illumina whole genome sequencing on 92 E. coli isolates obtained from the livers
of deceased chickens originating in five Pakistani geographical regions. Our analysis
indicates that the isolates are predominantly from the B1 and A clade and harbor a
diverse number of antibiotic resistance and virulence genes, with no linkage between
phylogeny and antibiotic resistance gene presence but some association between
phylogeny and virulence gene and SNP presence for the B1 and E phylogroups. The
colistin resistance gene mcr-1 and the quinolone resistance gene qnrS1 were both
found in 13/92 isolates. Alarmingly, 82/92 of the E. coli strains characterized in this
study are multidrug resistant with 100% (92/92) resistance to lincomycin, 81.5% (75/92)
to streptomycin, 79.3% (73/92) to ampicillin and 66.3% (61/92) to ciprofloxacin. These
results provide a high-resolution analysis of poultry-associated E. coli isolates in an area
with a high endemic burden of antibiotic resistance. Surveillance of antibiotic resistance
in poultry associated E. coli isolates is an important pillar of the One Health concept to
integrate analysis of potential pathogens in human, animal, and environmental niches.

Keywords: antibiotic resistance, genomics, E. coli, poultry, global health

INTRODUCTION

The poultry industry is an important component of Pakistan’s gross domestic product (Hussain
et al., 2015). However, the Pakistani poultry industry faces several environmental conditions that
threaten continued economic output, livestock health, and human health, including pathogen
Escherichia coli (Hussain et al., 2015; Manges, 2016). E. coli is particularly relevant to human
health, as E. coli can cause a diverse array of infections, exist as a gut commensal, and
is often antibiotic resistant through horizontally acquired antibiotic resistance genes (ARGs)
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(Croxen and Finlay, 2009). In poultry, these infections often
manifest as colibacillosis, which can lead to many health
abnormalities, often resulting in chicken death (Dho-Moulin
and Fairbrother, 1999). Numerous studies have investigated
pathogenicity of avian associated E. coli isolates and identified
factors such as iss (serum survival), ibeA (cell invasion), sitA (iron
acquisition), and iroN (iron acquisition), which are associated
with increased virulence in both chickens and humans (Mellata
et al., 2003; Sabri et al., 2006; Cieza et al., 2015; Sarowska
et al., 2019). Unlike the strong associations identified between
human uropathogenic E. coli and the B2 E. coli phylogroup,
previous analysis of European E. coli from birds has not identified
genetic signatures strongly associated with any single phylogroup
(Cordoni et al., 2016).

Given the economic importance of the domestic poultry
industry to Pakistan and the frequent identification of ARGs
emanating from the central Asian region (CDDEP, 2017), a
comparative phenotypic and genotypic analysis of multidrug-
resistant E. coli from poultry infections throughout Pakistan
is warranted. Total consumption of antimicrobials by chickens
in Asia is expected to increase by 129% between 2010 and
2030, driven in large part by increasing chicken consumption
in India and Pakistan concomitant with population growth and
poor antibiotic stewardship (Hussain et al., 2015; Van Boeckel
et al., 2015). Although policies have recently been introduced to
encourage restricted antibiotic use in food animals in Pakistan,
challenges to regulation and surveillance remain such that
accurate estimates of antibiotic usage in poultry rearing are
elusive (Rahman and Mohsin, 2019). The types of antibiotics
used might be inferred from the multi-drug resistance profiles
identified in E. coli isolates by previous studies, alarmingly with
high prevalence to antibiotics of clinical importance (Idrees et al.,
2011; Akhtar et al., 2016; Azam et al., 2019). However, these
studies have been limited by the geographic range of their isolates
and lack of whole genome sequencing and analysis.

Because antibiotic resistance transmission rates in poultry-
associated bacteria may be high in Pakistan due to poultry
rearing conditions, constant antibiotic selection, and horizontal
gene transfer, it is important to closely monitor the landscape
of antibiotic resistance in the Pakistan poultry industry as a
whole using genomic methods. To address the knowledge gap on
ARG burden in E. coli from chickens in Pakistan, we collected
E. coli isolates from the livers of chicken in five regions of
Pakistan and performed Illumina whole-genome sequencing.
We then analyzed the population structure, identified relevant
gene presence, and assayed for phenotypic antibiotic resistance
in these isolates, with the primary goals of identifying any
associations between virulence or resistance determinants and
phylogroup, or between phylogroup and geographic region.

MATERIALS AND METHODS

E. coli Cohort
A total of 1,219 liver samples from culled layer and broiler
chickens that had poor birth growth and reduced appetite but not
otherwise symptomatic for colibacillosis were collected from the

National Reference Laboratory for Poultry Diseases in Pakistan
via federal and provincial sentinel surveillance laboratories under
a national surveillance program from 2015 to 2017. As the
National Reference Laboratory for Poultry Disease does not
handle live animals for experimentation, ethics approval was not
sought or obtained for this study. The chickens originated in
the Pakistani provinces of Balochistan, Sindh, Punjab, Khyber
Pakhtunkhwa, and the federally administered Islamabad Capital
Territory. Whole liver samples were cultured in nutrient broth
(Sigma-Aldrich, St. Louis, MO, United States) at 37◦C for 24 h.
A loopful of the overnight culture was then plated onto eosin-
methylene blue agar and grown at 37◦C for 24 h. Suspected E. coli
isolates were identified using the API 20E assay (bioMérieux,
Durham, NC, United States), and glycerol stocks were generated.
Frozen cultures were sent to Washington University in St.
Louis for further analysis. Isolates were plated onto blood agar
and E. coli identification was confirmed with the MALDI-TOF
VITEK MS IVD v2.3.3 (bioMérieux, Durham, NC, United States)
mass spectrometry system (Richter et al., 2013).

Illumina Whole-Genome Sequencing
Frozen stocks of E. coli isolates were plated onto blood agar
using four-quadrant streaking and ∼10 morphologically similar
colonies from the fourth quadrant were used as input for the
QIAamp BiOstic Bacteremia DNA Kit (Qiagen, Germantown,
MD, United States). A total of 0.5 ng of genomic DNA per isolate
was used to create sequencing libraries with the Nextera Kit
(Illumina, San Diego, CA, United States) (Baym et al., 2015). The
libraries were pooled together at equimolar concentrations and
sequenced on a NextSeq 500 to obtain 25–183X coverage of each
genome with 2 bp × 150 bp reads. The reads were demultiplexed
by barcode and Illumina adaptors and contaminating sequences
were removed with Trimmomatic v.38 (Bolger et al., 2014) and
Deconseq v.4.3 (Schmieder and Edwards, 2011), respectively. The
processed reads were used to construct de novo assemblies of
each genome with SPAdes v3.13.0 (Bankevich et al., 2012). The
assembly metrics of the scaffolds.fasta files were assessed with
QUAST v4.5 (Gurevich et al., 2013) and open reading frames
identified with Prokka v1.12 (Seemann, 2014). A total of 92
genomes with less than 300 contigs were chosen for downstream
genomic and phenotypic analysis (Supplementary Table S1).

In silico Analysis
To obtain phylogroup information for each E. coli genome,
we gathered 11 publicly available genomes from known
E. coli phylogroups and identified open reading frames using
Prokka (Supplementary Table S2) (Schreiber et al., 2017;
Hutton et al., 2018). The gff files from Prokka for the
phylogroup reference strains and the genomes sequenced
in this study were used as input for Roary v3.12.0 to
construct a core-genome alignment of the 2,755 core-genes
with PRANK v1.0 (Loytynoja, 2014; Page et al., 2015). The
core-genome alignment file was converted into an approximate
maximum likelihood tree with FastTree v2.1.10 and the resulting
newick file was uploaded to iToL1 (Letunic and Bork, 2007;

1https://itol.embl.de/
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Price et al., 2010). In parallel, we identified in silico antibiotic
resistance determinants for acquired antimicrobial genes using
ResFinder v4.0 and for E. coli single nucleotide polymorphisms
with PointFinder v4.0 (Kleinheinz et al., 2014; Zankari et al.,
2017). Additionally, we identified known virulence genes with
VirulenceFinder v1.5 and Enterobacteriaceae plasmid replicons
with PlasmidFinder v4.0 (Carattoli et al., 2014; Kleinheinz
et al., 2014). Hypergeometric tests were used to determine the
significant enrichment of isolate groups within phylogenetic
clades or dendrogram clusters, with Bonferroni correction for
multiple hypothesis testing.

Antibiotic Susceptibility Testing
Phenotypic antibiotic resistance assessment was performed
using a protocol similar to those previously described for
various Enterobacteriaceae on a variety of antibiotics relevant
to human and veterinary use (Potter et al., 2018a,b). Briefly,
the phenotypic antibiotic resistance of E. coli isolates was
assayed through growth on Mueller-Hinton agar in the presence
of antibiotic-laden Kirby-Bauer disks in accordance with
Clinical Laboratory and Standards Institute requirements
for human derived isolates and also for veterinary derived
isolates (Supplementary Tables S3, S4) (CLSI, 2018). The
interpretation of zone of clearance was used to create a
heatmap with hierarchical clustering for each isolate in
pheatmap (R studio). ComASPTM (Liofilchem) was used
exactly in concordance with manufacturer’s instructions
to quantify colistin resistance in isolates with identified
in silico resistance determinants. Disk diffusion values for
ceftriaxone/ceftiofur and ciprofloxacin/norfloxacin were
plotted as XY coordinates in Prism v8.0 and linear regression
analysis was performed using default conditions to quantify
the R2 value.

RESULTS

Of the 92 genomes that were used for full genomic and
phenotypic analysis, 41.3% (38/92) originated in Punjab and 26%
(24/92) came from Islamabad. The remainder of the isolates
originated from Khyber Pakhtunkhwa (14%; 13/92), Balochistan
(12%; 11/92), and Sindh (7%; 7/92) (Figure 1). Phylogenetic
reconstruction of the similarity between the E. coli within our
cohort and with known phylogroup strains indicates that there
is not a clear association between phylogroup and geographic
region, although we note isolates from Balochistan fell exclusively
in the B1 Clade (Figure 2). Overall, 53.2% (49/92) of the cohort
are in the B1 Clade. The rest of the isolates are in Clade A (22/92),
B2 (11/92), E (9/92), and F (1/92). The most abundant sequence
types were ST115 (16/92) in B1 and ST117 (9/92) in phylogroup
B2 (Figure 2A).

To identify a genotypic basis for phenotypic antibiotic
resistance, following Illumina whole-genome sequencing, we
applied ResFinder to identify acquired ARGs and PointFinder
to locate relevant SNP resistance determinants in the assembled
genomes. Consistent with previous reports on genomic analysis
of E. coli isolates, we identified a mosaic of antibiotic resistant

FIGURE 1 | Escherichia coli cohort originates from five regions in Pakistan.
Map depicting the four provinces of Pakistan and the Islamabad Capital
Territory from which isolates were obtained. Number of isolates are shown
adjacent to the provinces, and colors correspond to isolate prevalence.

determinants and virulence genes within our cohort with no
clear association between ARG composition, phylogroup, and
region source, other than the identification of all isolates from
Balochistan as members of the B1 phylogroup (p < 0.01,
hypergeometric test) (Figure 2A). In total, we identified 49
unique ARGs and 5 previously validated antibiotic resistance-
conferring SNPs (Figure 2B) (Zankari et al., 2017). The median
number of ARGs per isolate was 7 and the median prevalence
for each ARG was 8. We found that 17/49 of the ARGs are
predicted to have activity against aminoglycosides, 11/49 against
folate-synthesis inhibitors, 6/49 against β-lactams, 5/49 against
amphenicols, and 5/49 against lincosamides. In addition, we
identified 3 tet ARGs (76 isolates), and the quinolone resistance
gene qnrS1 (13 isolates). PointFinder identified amino acid
changes in GyrA (D87G 4/92 isolates, D87N 44/92 isolates,
D87Y 3/92 isolates, and S83L 53/92 isolates), ParC (E84A 1/92
isolates, S80I 51/92 isolates, S80R 3/92 isolates), ParE (I464F 2/92
isolates), and PmrB (V161G 1/92 isolates). The aminoglycoside
ARGs include representatives of the aac, aadA, and aph families.
Notably, no known carbapenem resistance genes were identified
within this E. coli cohort. The most prevalent β-lactamase was
blaTEM−1B (found in 66/92 isolates). The class A β-lactamases
blaCTX−M−15 and blaCTX−M−1 were found in 1/92 and 12/92
isolates. The only non-class A β-lactamase present was blaCMY−2,
which was found in a single isolate. The most conserved gene,
mdf(A), conferring multidrug resistance, was found in 92/92
of the E. coli isolates, indicating that it is a core-gene within
this cohort (Edgar and Bibi, 1997). mdf(A) was the sole ARG
in 7/92 of the isolates. Despite this conservation, the other
lincosamide ARGs, lnu(F) (1/92), mef(B) (2/92), mph(A) (7/92),
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FIGURE 2 | Escherichia coli genomes are predominantly in B1 and A phylogroup with a mosaic of antibiotic resistance determinants and virulence genes.
(A) Population structure of the E. coli cohort depicting the phylogroup, MLST, and region obtained. Presence absence of antibiotic resistance determinants (B),
virulence genes (C), and plasmid replicons (D) identified using ResFinder, PointFinder, VirulenceFinder, and PlasmidFinder on the cohort.
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and mph(B) (3/92) were at or below the median ARG prevalence.
The colistin ARG mcr-1 was found in 13/92 of the E. coli
isolates. The prevalence of mcr-1 was much higher than SNPs
in genes associated with colistin resistance as only 1/92 isolates
contained the V161G amino acid change in PmrB. When
hierarchically clustered on ARG presence (k = 5), no segregation
of isolates by region or phylogroup is observed, except for an
enrichment of B2 isolates (p < 0.01) in a cluster characterized
by a high ARG load that includes blaTEM−1B, tet(A), and
mdf(A), as do most of the isolates, but also aadA2, aadA1,
sul3, and cmlA1 (Figure 3A). When hierarchically clustered on
antibiotic resistance-conferring SNPs, the isolates are segregated
into two major clades, one with a preponderance of SNPs in
gyrA and parC, and a clade of isolates most of which carry
no SNPs (Figure 3C). B2 isolates are enriched in the latter
clade (p < 0.001).

We applied VirulenceFinder on the sequenced E. coli cohort
to annotate genes putatively involved in poultry infections
(Figure 2C). We identified 21 virulence genes and found that
the median number of virulence genes per isolate was four. Only
2/92 of the isolates had no known virulence genes identified.
Consistent with their previously identified roles in E. coli
virulence, the serum survival gene iss was found in 78.2% (72/92)
of the isolates, the iron acquisition gene iroN was in 60.9% (56/92)
of the cohort, and the long polar fimbriae gene lpfA was in 59.8%
(55/92) of the cohort. When hierarchically clustered on virulence
gene presence (k = 5), we again observed no segregation of the
isolates by geographic region (Figure 3B). However, the B2 and
E isolates were each enriched in their own clusters (p < 1E-9 and
p < 0.01, respectively) characterized by different virulence gene
profiles. While the larger B1 phylogroup was more distributed
across the clusters, there was one cluster that was exclusively
comprised of B1 isolates (p < 0.001). Together these data indicate
that the phylogroups segregate better by virulence gene presence
than ARG presence; the lack of segregation by geographic region
suggests that chicken-borne E. coli strains are readily transmitted
across Pakistan.

We applied PlasmidFinder using the Enterobacteriaceae
database on our E. coli cohort to identify known plasmid
replicons (Figure 2D). 90/92 isolates had plasmid replicons
identified, with a maximum of 7 in EC_10, EC_44, and EC_67,
and a median of 4. 26 different replicons were identified, among
which members of the IncF plasmid replicon family were the
most prevalent (12/26). IncFIB(AP001918) and IncFII were the
most prevalent among the isolates with 65/92 and 41/92 identified
within the cohort, respectively.

To assess the effect of ARG burden on phenotypic antibiotic
resistance, we performed antimicrobial susceptibility testing
using the Kirby-Bauer Disk Diffusion method and the Clinical
Laboratory and Standards Institute (CLSI) interpretative criteria
from the M100 (Edition 29) and VET01 (Edition 5) for
Enterobacteriaceae on a variety of antibiotics relevant for
human and veterinary use. Using the definition of multidrug-
resistant (MDR) as non-susceptibility to at least one agent
in three or more antimicrobial classes, and extensively drug
resistant (XDR) as susceptibility to at least one agent in
only one or two classes assayed, we found that 82/92 are

MDR but only 1/92 are XDR (Figure 4) (Magiorakos et al.,
2012). Consistent with the presence of mdf(A) in all the
genomes, all isolates were resistant to the lincosamide antibiotic
lincomycin. Hierarchal clustering on the antibiotics with CLSI
interpretive criteria (using 1 for resistant, 0 for intermediate,
and −1 for susceptible) with a cluster cutoff just below the
second node of the dendrogram resulted in seven clusters
(k = 7) (Figure 4). The first cluster (from left to right)
was characterized by susceptibility to β-lactams. There was
widespread resistance to quinolones and the aminoglycoside
streptomycin across all clusters, while the two rightmost
clusters were characterized by additional resistance to the
β-lactams cefazolin, ceftriaxone, and ceftiofur. There was no
significant association between any cluster and any region or
phylogroup, unlike the associations detected between clusters
formed on genetic features and phylogroup (Figure 3). Given
problems using disk diffusion testing for colistin resistance,
we performed a broth minimum inhibitory concentration
(MIC) assay using the ComASPTM colistin test on all mcr-
1 positive isolates, the pmrB SNP isolate 55, quality control
strain E. coli ATCC 25922, and the mcr-1 positive E. coli AR
Bank #0350 from the CDC and FDA Antibiotic Resistance
Isolate Bank (Table 1). All mcr-1 positive isolates had MIC
values of 4 or 8 µg/mL but the pmrB SNP isolate 55 had an
MIC of 0.25 µg/mL. This cohort demonstrated 100% in vitro
susceptibility to meropenem, imipenem, cefotetan, piperacillin-
tazobactam, and amikacin. We found strong association between
phenotypic resistance within the 3rd generation cephalosporin
ceftriaxone and ceftiofur (R2 = 0.9004) and quinolones
ciprofloxacin and norfloxacin (R2 = 0.8897) (Supplementary
Figure S1). One isolate (EC_44) was discordant for the 3rd

generation cephalosporins and tested as resistant to ceftriaxone
but intermediate to the veterinary antibiotic ceftiofur and
contained blaCMY−2 and blaTEM−1B. While there are not
CLSI interpretative criteria for norfloxacin, one isolate (EC_72)
without any identified quinolone resistance determinants tested
as ciprofloxacin susceptible but had a comparatively low disk
diffusion radius to norfloxacin.

DISCUSSION

Antibiotics are widely used in the poultry industry of developing
nations for the prevention of disease and growth promotion
(CDDEP, 2017). Despite growing concern over the selective
pressure this contributes to antimicrobial resistance and the
potential for this to expand the reservoir for the dissemination
of MDR pathogens, global annual consumption of antimicrobials
by food animals is expected to increase by 67% between 2010
and 2030 (Van Boeckel et al., 2015). To our knowledge, this
study represents the first use of next-generation sequencing
and bioinformatics techniques in combination with phenotypic
susceptibility testing to assess the extent of antibiotic resistance
in poultry E. coli isolates from multiple provinces of Pakistan.

Given that chicken infections by E. coli can be explained by
atypical environmental conditions leading to increased stress-
related immunosuppression, some groups argue that the concept
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FIGURE 3 | Escherichia coli phylogroups segregate better by virulence gene presence than ARG or SNP presence. Heatmaps depicting isolates as rows and ARGs
(A), virulence genes (B), or SNPs (C) as columns. Rows and columns are hierarchically clustered by Euclidian distance. Region, phylogroup, or expected phenotypic
resistance conferred by ARGs are portrayed as metadata, as indicated.
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FIGURE 4 | Escherichia coli isolates are predominantly (82/92) MDR. Heatmap depicting each isolate as a column and each row as an antibiotic. Columns are
hierarchically clustered by Euclidian distance. Region and phylogroup are portrayed as metadata.

TABLE 1 | Colistin susceptibility testing results.

Isolate Putative resistance
determinant

Colistin MIC
(µg/mL)

EC_07 mcr-1 8

EC_10 mcr-1 4

EC_12 mcr-1 4

EC_25 mcr-1 4

EC_38 mcr-1 4

EC_44 mcr-1 8

EC_50 mcr-1 4

EC_51 mcr-1 4

EC_55 pmrB mutation 0.25

EC_62 mcr-1 4

EC_67 mcr-1 4

EC_68 mcr-1 4

EC_79 mcr-1 4

EC_98 mcr-1 8

E. coli ATCC 25922 None 0.5

E. coli AR Bank #0350 mcr-1 4

of avian pathogenic E. coli has no strong basis (Hoerr, 2010;
Shini et al., 2010; Collingwood et al., 2014). This is consistent
with our analysis that did not find any common genetic signature
associated with chicken-borne E. coli isolates (Zhu Ge et al.,
2014; Paudel et al., 2016). To understand if the chicken-
borne E. coli isolates within our cohort have an identifiable
population structure, we applied Roary and FastTree to the
core-genome of the E. coli cohort and a selection of reference

phylogroup strains to construct a phylogenetic tree. Our results
indicate that a majority of the isolates belong to the B1
or A clades. It is possible that a greater extent of genetic
signatures related to phylogroup may be identified with the
more stringent criteria of sequencing isolates derived from active
chicken infections, and not just birds with failure to grow.
These findings are similar to those describing E. coli from
bovine mastitis in Ireland, which also predominantly yielded
B1 and A clade genomes (Keane, 2016). An analysis of avian
associated E. coli isolates from several countries in Europe found
variation within each country but that A1 and B2 phylogroups
were the most prevalent, indicating that on a continental scale
geographic location may affect E. coli background (Cordoni
et al., 2016). A broader analysis of European avian associated
E. coli isolates came to similar results with B2 and A as the
dominant phylogroups (Mora et al., 2013). Since there was
not a control chicken gut arm of our study, it is possible
that the B1 and A clade isolates we found are also found
as commensals in a greater proportion of the chickens. We
found that the phylogroups are represented evenly in the
different regions of Pakistan, except for the finding that all
Balochistan isolates were B1. This may be simply due to the
low sample size from that region (11 isolates), but the fact
that we did observe multiple phylogroups in the similarly
sized isolate sets from Sindh and Khyber Pakhtunkhwa, and
that most of Balochistan is geographically separated from the
rest of Pakistan by the Sulaiman and Brahui ranges (southern
offshoots of the Hindu Kush Himalayan Region), suggest the
possibility that phylogenetic segregation of chicken-associated
E. coli at the scale of Pakistan’s geography may be detected
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in a larger collection of isolates. The B2 isolates repeatedly
segregated when the isolates were hierarchically clustered by
ARG, virulence gene, or SNP presence, as well as phenotypic
resistance, reflecting the longer branch lengths of these isolates
in the phylogeny in Figure 2A compared to most of the cohort.
The phylogroups segregated better by virulence gene presence
than ARG presence, possibly reflecting the increased mobility
of ARGs. We found that IncFIB plasmid replicons were the
most prevalent in our cohort. An analysis of E. coli in the
United States found that IncFIB plasmids were significantly
more present in E. coli suspected as avian pathogens or from
retail poultry than compared to human and avian commensals
(Johnson et al., 2007, 2008).

Of greatest concern from our analysis of the ARG content
within the cohort was the presence of the mobilizable colistin
ARG, mcr-1, in 14% (13/92) of the isolates, all of which displayed
phenotypic resistance to colistin. Initially discovered in E. coli
obtained from swine farms in China, it has since been identified
in a wider cohort of bacteria including in a cohort of avian
associated E. coli isolates from Egypt and China, although at
a much lower prevalence of 1% (12/1220 isolates) (Liu et al.,
2016; Barbieri et al., 2017). A wider analysis of E. coli from
chickens in 13 Chinese provinces found that mcr-1 was detected
in 4% (58/1136) of the genomes (Yang et al., 2017), while an
analysis of 100 E. coli chicken isolates from Faisalabad, Pakistan
found an mcr-1 prevalence of 8% (Lv et al., 2018). An E. coli
isolate from a poultry farm in Tunisia was found to harbor
both blaCMY−2 and mcr-1 and exhibited resistance to several
other antibiotic classes (Maamar et al., 2018). blaCMY−2 was
identified once in our cohort and that isolate did not have mcr-
1 but it did have the pmrB V161G mutation which has been
previously shown to confer colistin resistance, but did not in
our study (Delannoy et al., 2017). Similar to previous analyses of
E. coli isolates from poultry, iss was the most common virulence
gene identified in our cohort (Keane, 2016). Deletion of iss
from an isolate significantly perturbed E. coli growth in serum
(Huja et al., 2015).

We found that 82/92 isolates are MDR using the definition
of MDR as non-susceptibility to at least one agent in three or
more antimicrobial classes (Magiorakos et al., 2012). This result is
similar to analysis of avian associated E. coli isolates from Nepal,
which determined that 94% (47/50) of their cohort was MDR
(Subedi et al., 2018); and from Hebei, China which had 100%
(87/87) MDR (Li et al., 2015). One analysis of avian associated
E. coli from the Punjab region in Pakistan found almost universal
resistance to ampicillin (98.6%) while we found 79.3% (73/92)
(Azam et al., 2019). In Egypt, one analysis of 116 avian associated
E. coli isolates found 100% (116/116) resistance to ampicillin
(Awad et al., 2016). A study of retail poultry products from
the United States found that E. coli originating from turkey
products had an ampicillin resistance rate (62%) higher than
E. coli originating from chicken products (20%) (Davis et al.,
2018). Thankfully a number of clinically relevant antibiotics
(meropenem, imipenem, cefotetan, piperacillin-tazobactam, and
amikacin) had no phenotypic resistance observed. This result
is consistent with a previous report of environmental E. coli
isolates from Japan, described by the authors as harboring a

virulence gene profile similar to isolates associated with avian
infections, which were 100% susceptible to carbapenems and
aminoglycosides (Hayashi et al., 2019).

A limitation of this study was that with short Illumina
reads, we were unable to unequivocally implicate ARGs or
virulence genes as present on mobilizable plasmids. As we did
not sequence isolates originating from the intestinal contents
of these chickens, we are not able to discuss the similarity
and differences between the liver-borne isolates and those
from commensal sites. Additionally, we do not have access
to a chicken model of infection to demonstrate links between
comparative pathogenicity of the strains and their virulence
gene mosaic. Given the limitation of clinical breakpoints some
isolates that possess genetic determinants of resistance may test
phenotypically susceptible. Since we tested multiple antibiotics
in the same antibiotic classes there is not always a clear
relation between phenotypic resistance and genotypic presence
of a resistant determinant. As we used disk diffusion to
assess antimicrobial susceptibility instead of quantitative broth
microdilution (except in cases of mcr-1 positive isolates) we are
not able to report MIC values. In summation, we assembled
a cohort of chicken associated E. coli isolates obtained from
multiple provinces in Pakistan. Genomic analysis of these isolates
identified that most of the cohort are in the B1 and A clades
and harbor a mosaic of ARGs and virulence genes which may
complicate treatment in a human infection.

DATA AVAILABILITY STATEMENT

All genomes sequenced in this study have been uploaded to the
NCBI WGS database associated with BioProject PRJNA522294.

AUTHOR CONTRIBUTIONS

MR and RP sequenced the isolates, performed the in silico
analysis, and wrote the manuscript. AF performed the in silico
analysis and helped to write the manuscript. MW carried out
the culture work and susceptibility testing. AR, AA, NS, and
MA collected and stored the samples. AD helped to write the
manuscript and generate the figures. C-AB, NA, and GD devised
the study.

FUNDING

This work was supported in part by an International Research
Support Initiative Program (IRSIP) award of the Higher
Education Commission (HEC) of Pakistan to MR, and an
Awards through the National Institute of Allergy and Infectious
Diseases, and the Eunice Kennedy Shriver National Institute
of Child Health & Human Development, of the National
Institutes of Health under award numbers R01AI123394 and
R01HD092414 to GD. RP received support from an NIGMS
training grant through award T32 GM007067 (PI: James
Skeath) and the Bayer/Monsanto Excellence Fund graduate
fellowship. AF received support from the Chancellor’s Graduate

Frontiers in Microbiology | www.frontiersin.org 8 January 2020 | Volume 10 | Article 3052

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-03052 January 8, 2020 Time: 19:39 # 9

Rafique et al. Escherichia coli From Domestic Chickens

Research Fellowship Program at Washington University in
St. Louis. AD received support from the Institutional Program
Unifying Population and Laboratory-Based Sciences Burroughs
Welcome Fund grant to Washington University. The content is
solely the responsibility of the authors and does not necessarily
represent the official views of the funding agencies.

ACKNOWLEDGMENTS

We thank The Edison Family Center for Genome Sciences
& Systems Biology staff Eric Martin, Brian Koebbe, Jessica
Hoisington-López, and MariaLynn Crosby for their technical
support and sequencing expertise.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2019.03052/full#supplementary-material

FIGURE S1 | Strong concordance between disk diffusion relationships. Scatter
plots depicting the disk diffusion relationship for the 3rd generation cephalosporins
ceftriaxone and ceftiofur (A) and quinolones ciprofloxacin and norfloxacin (B).

TABLE S1 | Genomes analyzed in this study.

TABLE S2 | Publicly available genomes used in this study.

TABLE S3 | Antimicrobial susceptibility testing information.

TABLE S4 | Full antimicrobial susceptibility testing results.

REFERENCES
Akhtar, F., Rabbani, M., Muhammad, K., Younus, M., Ghafoor, A., Sheikh, A. A.,

et al. (2016). Comparative antibiotic resistance profile of the multidrug resistant
E. coli isoalted from commercial and backyard poultry. J. Anim. Plant Sci. 26,
1628–1632.

Awad, A., Arafat, N., and Elhadidy, M. (2016). Genetic elements associated with
antimicrobial resistance among avian pathogenic Escherichia coli. Ann. Clin.
Microbiol. Antimicrob. 15, 59. doi: 10.1186/s12941-016-0174-9

Azam, M., Mohsin, M., Sajjad-Ur-Rahman, and Saleemi, M. K. (2019). Virulence-
associated genes and antimicrobial resistance among avian pathogenic
Escherichia coli from colibacillosis affected broilers in Pakistan. Trop. Anim.
Health Prod. 51, 1259–1265. doi: 10.1007/s11250-019-01823-3

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S.,
et al. (2012). SPAdes: a new genome assembly algorithm and its applications
to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi: 10.1089/cmb.2012.
0021

Barbieri, N. L., Nielsen, D. W., Wannemuehler, Y., Cavender, T., Hussein, A., Yan,
S. G., et al. (2017). mcr-1 identified in avian pathogenic Escherichia coli (APEC).
PLoS One 12:e0172997. doi: 10.1371/journal.pone.0172997

Baym, M., Kryazhimskiy, S., Lieberman, T. D., Chung, H., Desai, M. M., and
Kishony, R. (2015). Inexpensive multiplexed library preparation for megabase-
sized genomes. PLoS One 10:e0128036. doi: 10.1371/journal.pone.0128036

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.
1093/bioinformatics/btu170

Carattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen, M., Lund, O., Villa,
L., et al. (2014). In silico detection and typing of plasmids using PlasmidFinder
and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58,
3895–3903. doi: 10.1128/AAC.02412-14

CDDEP (2017). Situation Analysis Report on Antimicrobial Resistance in Pakistan:
Findings and Recommendations for Antibiotics Use and Resistance. Washington,
DC: Global Antibiotic Resistance Partnership.

Cieza, R. J., Hu, J., Ross, B. N., Sbrana, E., and Torres, A. G. (2015). The IbeA
invasin of adherent-invasive Escherichia coli mediates interaction with intestinal
epithelia and macrophages. Infect. Immun. 83, 1904–1918. doi: 10.1128/IAI.
03003-14

CLSI (2018). Performance Standards for Antimicrobial Disk Susceptibility Tests.
Wayne, PA: Clinical and Laboratory Standards Institute.

Collingwood, C., Kemmett, K., Williams, N., and Wigley, P. (2014). Is the concept
of avian pathogenic Escherichia coli as a single pathotype fundamentally flawed?
Front. Vet. Sci. 1:5. doi: 10.3389/fvets.2014.00005

Cordoni, G., Woodward, M. J., Wu, H., Alanazi, M., Wallis, T., and La Ragione,
R. M. (2016). Comparative genomics of European avian pathogenic E. Coli
(APEC). BMC Genomics 17:960. doi: 10.1186/s12864-016-3289-7

Croxen, M. A., and Finlay, B. B. (2009). Molecular mechanisms of Escherichia coli
pathogenicity. Nat. Rev. Microbiol. 8, 26–38. doi: 10.1038/nrmicro2265

Davis, G. S., Waits, K., Nordstrom, L., Grande, H., Weaver, B., Papp, K., et al.
(2018). Antibiotic-resistant Escherichia coli from retail poultry meat with

different antibiotic use claims. BMC Microbiol. 18:174. doi: 10.1186/s12866-
018-1322-5

Delannoy, S., Le Devendec, L., Jouy, E., Fach, P., Drider, D., and Kempf, I. (2017).
Characterization of colistin-resistant Escherichia coli isolated from diseased pigs
in france. Front. Microbiol. 8:2278. doi: 10.3389/fmicb.2017.02278

Dho-Moulin, M., and Fairbrother, J. M. (1999). Avian pathogenic Escherichia coli
(APEC). Vet. Res. 30, 299–316.

Edgar, R., and Bibi, E. (1997). MdfA, an Escherichia coli multidrug resistance
protein with an extraordinarily broad spectrum of drug recognition. J. Bacteriol.
179, 2274–2280. doi: 10.1128/jb.179.7.2274-2280.1997

Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality
assessment tool for genome assemblies. Bioinformatics 29, 1072–1075. doi: 10.
1093/bioinformatics/btt086

Hayashi, W., Tanaka, H., Taniguchi, Y., Iimura, M., Soga, E., Kubo, R., et al. (2019).
Acquisition of mcr-1 and cocarriage of virulence genes in avian pathogenic
Escherichia coli isolates from municipal wastewater influents in Japan. Appl.
Environ. Microbiol. 85:e01661-19. doi: 10.1128/AEM.01661-19

Hoerr, F. J. (2010). Clinical aspects of immunosuppression in poultry. Avian Dis.
54, 2–15.

Huja, S., Oren, Y., Trost, E., Brzuszkiewicz, E., Biran, D., Blom, J., et al. (2015).
Genomic avenue to avian colisepticemia. MBio 6:e01681-14. doi: 10.1128/mBio.
01681-14

Hussain, J., Rabbani, I., Aslam, S., and Ahmad, H. A. (2015). An overview of
poultry industry in Pakistan. Worlds Poul. Sci. J. 71, 689–700. doi: 10.1017/
s0043933915002366

Hutton, T. A., Innes, G. K., Harel, J., Garneau, P., Cucchiara, A., Schifferli,
D. M., et al. (2018). Phylogroup and virulence gene association with clinical
characteristics of Escherichia coli urinary tract infections from dogs and cats.
J. Vet. Diagn. Invest. 30, 64–70. doi: 10.1177/1040638717729395

Idrees, M., Shah, M. A., Michael, S., Qamar, R., and Bokhari, H. (2011).
Antimicrobial resistant Escherichia coli strains isolated from food animals in
Pakistan. Pak. J. Zool. 43, 303–310.

Johnson, T. J., Wannemuehler, Y., Johnson, S. J., Stell, A. L., Doetkott, C., Johnson,
J. R., et al. (2008). Comparison of extraintestinal pathogenic Escherichia coli
strains from human and avian sources reveals a mixed subset representing
potential zoonotic pathogens. Appl. Environ. Microbiol. 74, 7043–7050. doi:
10.1128/AEM.01395-08

Johnson, T. J., Wannemuehler, Y. M., Johnson, S. J., Logue, C. M., White,
D. G., Doetkott, C., et al. (2007). Plasmid replicon typing of commensal and
pathogenic Escherichia coli isolates. Appl. Environ. Microbiol. 73, 1976–1983.
doi: 10.1128/aem.02171-06

Keane, O. M. (2016). Genetic diversity, the virulence gene profile and antimicrobial
resistance of clinical mastitis-associated Escherichia coli. Res. Microbiol. 167,
678–684. doi: 10.1016/j.resmic.2016.06.011

Kleinheinz, K. A., Joensen, K. G., and Larsen, M. V. (2014). Applying the
ResFinder and VirulenceFinder web-services for easy identification of acquired
antibiotic resistance and E. coli virulence genes in bacteriophage and
prophage nucleotide sequences. Bacteriophage 4:e27943. doi: 10.4161/bact.
27943

Frontiers in Microbiology | www.frontiersin.org 9 January 2020 | Volume 10 | Article 3052

https://www.frontiersin.org/articles/10.3389/fmicb.2019.03052/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2019.03052/full#supplementary-material
https://doi.org/10.1186/s12941-016-0174-9
https://doi.org/10.1007/s11250-019-01823-3
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1371/journal.pone.0172997
https://doi.org/10.1371/journal.pone.0128036
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1128/AAC.02412-14
https://doi.org/10.1128/IAI.03003-14
https://doi.org/10.1128/IAI.03003-14
https://doi.org/10.3389/fvets.2014.00005
https://doi.org/10.1186/s12864-016-3289-7
https://doi.org/10.1038/nrmicro2265
https://doi.org/10.1186/s12866-018-1322-5
https://doi.org/10.1186/s12866-018-1322-5
https://doi.org/10.3389/fmicb.2017.02278
https://doi.org/10.1128/jb.179.7.2274-2280.1997
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1128/AEM.01661-19
https://doi.org/10.1128/mBio.01681-14
https://doi.org/10.1128/mBio.01681-14
https://doi.org/10.1017/s0043933915002366
https://doi.org/10.1017/s0043933915002366
https://doi.org/10.1177/1040638717729395
https://doi.org/10.1128/AEM.01395-08
https://doi.org/10.1128/AEM.01395-08
https://doi.org/10.1128/aem.02171-06
https://doi.org/10.1016/j.resmic.2016.06.011
https://doi.org/10.4161/bact.27943
https://doi.org/10.4161/bact.27943
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-03052 January 8, 2020 Time: 19:39 # 10

Rafique et al. Escherichia coli From Domestic Chickens

Letunic, I., and Bork, P. (2007). Interactive tree of life (iTOL): an online tool
for phylogenetic tree display and annotation. Bioinformatics 23, 127–128. doi:
10.1093/bioinformatics/btl529

Li, Y., Chen, L., Wu, X., and Huo, S. (2015). Molecular characterization of
multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic
broilers. Poult. Sci. 94, 601–611. doi: 10.3382/ps/pev008

Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., et al. (2016).
Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in
animals and human beings in China: a microbiological and molecular biological
study. Lancet Infect. Dis. 16, 161–168. doi: 10.1016/S1473-3099(15)00424-7

Loytynoja, A. (2014). Phylogeny-aware alignment with PRANK. Methods Mol. Biol.
1079, 155–170. doi: 10.1007/978-1-62703-646-7_10

Lv, J., Mohsin, M., Lei, S., Srinivas, S., Wiqar, R. T., Lin, J., et al. (2018). Discovery of
a mcr-1-bearing plasmid in commensal colistin-resistant Escherichia coli from
healthy broilers in Faisalabad, Pakistan. Virulence 9, 994–999. doi: 10.1080/
21505594.2018.1462060

Maamar, E., Alonso, C. A., Hamzaoui, Z., Dakhli, N., Abbassi, M. S., Ferjani, S.,
et al. (2018). Emergence of plasmid-mediated colistin-resistance in CMY-2-
producing Escherichia coli of lineage ST2197 in a Tunisian poultry farm. Int.
J. Food Microbiol. 269, 60–63. doi: 10.1016/j.ijfoodmicro.2018.01.017

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E.,
Giske, C. G., et al. (2012). Multidrug-resistant, extensively drug-resistant
and pandrug-resistant bacteria: an international expert proposal for interim
standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281.
doi: 10.1111/j.1469-0691.2011.03570.x

Manges, A. R. (2016). Escherichia coli and urinary tract infections: the role of
poultry-meat. Clin. Microbiol. Infect. 22, 122–129. doi: 10.1016/j.cmi.2015.
11.010

Mellata, M., Dho-Moulin, M., Dozois, C. M., Curtiss, R., Lehoux, B., and
Fairbrother, J. M. (2003). Role of avian pathogenic Escherichia coli virulence
factors in bacterial interaction with chicken heterophils and macrophages.
Infect. Immun. 71, 494–503. doi: 10.1128/iai.71.1.494-503.2003

Mora, A., Viso, S., Lopez, C., Alonso, M. P., Garcia-Garrote, F., Dabhi, G.,
et al. (2013). Poultry as reservoir for extraintestinal pathogenic Escherichia coli
O45:K1:H7-B2-ST95 in humans. Vet. Microbiol. 167, 506–512. doi: 10.1016/j.
vetmic.2013.08.007

Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T., et al.
(2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics
31, 3691–3693. doi: 10.1093/bioinformatics/btv421

Paudel, S., Stessl, B., Hess, C., Zloch, A., and Hess, M. (2016). High genetic diversity
among extraintestinal Escherichia coli isolates in pullets and layers revealed by a
longitudinal study. BMC Vet. Res. 12:221. doi: 10.1186/s12917-016-0859-5

Potter, R. F., Lainhart, W., Twentyman, J., Wallace, M. A., Wang, B.,
Burnham, C. A., et al. (2018a). Population structure, antibiotic resistance, and
uropathogenicity of Klebsiella variicola. MBio 9:e02481-18. doi: 10.1128/mBio.
02481-18

Potter, R. F., Wallace, M. A., McMullen, A. R., Prusa, J., Stallings, C. L., Burnham,
C. A. D., et al. (2018b). blaIMP-27 on transferable plasmids in Proteus mirabilis
and Providencia rettgeri. Clin. Microbiol. Infect. 24, 1019.e5–1019.e8. doi: 10.
1016/j.cmi.2018.02.018

Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2–approximately
maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi: 10.
1371/journal.pone.0009490

Rahman, S., and Mohsin, M. (2019). The under reported issue of antibiotic-
resistance in food-producing animals in Pakistan. Pak. Vet. J. 5:e9490.

Richter, S. S., Sercia, L., Branda, J. A., Burnham, C. A. D., Bythrow, M., Ferraro,
M. J., et al. (2013). Identification of Enterobacteriaceae by matrix-assisted laser

desorption/ionization time-of-flight mass spectrometry using the VITEK MS
system. Eur. J. Clin. Microbiol. Infect. Dis. 32, 1571–1578.

Sabri, M., Léveillé, S., and Dozois, C. M. (2006). A SitABCD homologue from
an avian pathogenic Escherichia coli strain mediates transport of iron and
manganese and resistance to hydrogen peroxide. Microbiology 152, 745–758.
doi: 10.1099/mic.0.28682-0

Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., Frej-Madrzak, M., Ksiazczyk,
M., Bugla-Ploskonska, G., et al. (2019). Virulence factors, prevalence and
potential transmission of extraintestinal pathogenic Escherichia coli isolated
from different sources: recent reports. Gut Pathog. 11, 10. doi: 10.1186/s13099-
019-0290-0

Schmieder, R., and Edwards, R. (2011). Quality control and preprocessing
of metagenomic datasets. Bioinformatics 27, 863–864. doi: 10.1093/
bioinformatics/btr026

Schreiber, H. L. IV, Conover, M. S., Chou, W. C., Hibbing, M. E., Manson, A. L.,
Dodson, K. W., et al. (2017). Bacterial virulence phenotypes of Escherichia coli
and host susceptibility determine risk for urinary tract infections. Sci. Transl.
Med. 9:eaaf1283.

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics
30, 2068–2069. doi: 10.1093/bioinformatics/btu153

Shini, S., Huff, G. R., Shini, A., and Kaiser, P. (2010). Understanding stress-induced
immunosuppression: exploration of cytokine and chemokine gene profiles in
chicken peripheral leukocytes 1. Poult. Sci. 89, 841–851. doi: 10.3382/ps.2009-
00483

Subedi, M., Luitel, H., Devkota, B., Bhattarai, R. K., Phuyal, S., Panthi, P., et al.
(2018). Antibiotic resistance pattern and virulence genes content in avian
pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal.
BMC Vet. Res. 14:113. doi: 10.1186/s12917-018-1442-z

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A.,
Robinson, T. P., et al. (2015). Global trends in antimicrobial use in food
animals. Proc. Natl. Acad. Sci. U.S.A. 112, 5649–5654. doi: 10.1073/pnas.150314
1112

Yang, Y. Q., Li, Y. X., Song, T., Yang, Y. X., Jiang, W., Zhang, A. Y., et al. (2017).
Colistin resistance gene mcr-1 and its variant in Escherichia coli isolates from
chickens in China. Antimicrob. Agents Chemother. 61:e01204-16

Zankari, E., Allesoe, R., Joensen, K. G., Cavaco, L. M., Lund, O., and Aarestrup,
F. M. (2017). PointFinder: a novel web tool for WGS-based detection of
antimicrobial resistance associated with chromosomal point mutations in
bacterial pathogens. J. Antimicrob. Chemother. 72, 2764–2768. doi: 10.1093/jac/
dkx217

Zhu Ge, X., Jiang, J., Pan, Z., Hu, L., Wang, S., Wang, H., et al. (2014). Comparative
genomic analysis shows that avian pathogenic Escherichia coli isolate IMT5155
(O2:K1:H5; ST complex 95, ST140) shares close relationship with ST95 APEC
O1:K1 and human ExPEC O18:K1 strains. PLoS One 9:e112048. doi: 10.1371/
journal.pone.0112048

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Rafique, Potter, Ferreiro, Wallace, Rahim, Ali Malik, Siddique,
Abbas, D’Souza, Burnham, Ali and Dantas. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 10 January 2020 | Volume 10 | Article 3052

https://doi.org/10.1093/bioinformatics/btl529
https://doi.org/10.1093/bioinformatics/btl529
https://doi.org/10.3382/ps/pev008
https://doi.org/10.1016/S1473-3099(15)00424-7
https://doi.org/10.1007/978-1-62703-646-7_10
https://doi.org/10.1080/21505594.2018.1462060
https://doi.org/10.1080/21505594.2018.1462060
https://doi.org/10.1016/j.ijfoodmicro.2018.01.017
https://doi.org/10.1111/j.1469-0691.2011.03570.x
https://doi.org/10.1016/j.cmi.2015.11.010
https://doi.org/10.1016/j.cmi.2015.11.010
https://doi.org/10.1128/iai.71.1.494-503.2003
https://doi.org/10.1016/j.vetmic.2013.08.007
https://doi.org/10.1016/j.vetmic.2013.08.007
https://doi.org/10.1093/bioinformatics/btv421
https://doi.org/10.1186/s12917-016-0859-5
https://doi.org/10.1128/mBio.02481-18
https://doi.org/10.1128/mBio.02481-18
https://doi.org/10.1016/j.cmi.2018.02.018
https://doi.org/10.1016/j.cmi.2018.02.018
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1099/mic.0.28682-0
https://doi.org/10.1186/s13099-019-0290-0
https://doi.org/10.1186/s13099-019-0290-0
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.3382/ps.2009-00483
https://doi.org/10.3382/ps.2009-00483
https://doi.org/10.1186/s12917-018-1442-z
https://doi.org/10.1073/pnas.1503141112
https://doi.org/10.1073/pnas.1503141112
https://doi.org/10.1093/jac/dkx217
https://doi.org/10.1093/jac/dkx217
https://doi.org/10.1371/journal.pone.0112048
https://doi.org/10.1371/journal.pone.0112048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Genomic Characterization of Antibiotic Resistant Escherichia coli Isolated From Domestic Chickens in Pakistan
	Introduction
	Materials and Methods
	E. coli Cohort
	Illumina Whole-Genome Sequencing
	In silico Analysis
	Antibiotic Susceptibility Testing

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


