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In this study, Lactobacillus plantarum strain DHCU70 isolated from dahi, a fermented
milk product and L. plantarum strain DKP1 isolated from kinema, a fermented soybean
food of India, respectively were evaluated for their bacteriocin production and probiotic
properties. Both strains of L. plantarum (DHCU70 and DKP1) were found to have potent
antimicrobial activity against Kocuria rhizophila ATCC 9341. Bacteriocin produced by
L. plantarum strains DHCU70 and DKP1 did not exhibit inhibition of cell wall, DNA
and fatty acids biosynthesis mechanisms as evaluated by whole cell reporter assays.
We characterized the bacteriocin encoding genes in L. plantarum strains DHCU70
and DKP1 by whole genome sequence which consisted of a single and circular
chromosome with genome size of 3.38 Mb (GC content of 44.3%) and 3.39 Mb,
respectively and a GC content of 44.3%. L. plantarum DHCU70 has 3252 number of
protein encoding genes comprising 89 number of RNA genes (69tRNA, 16rRNA, 4nc
RNA) whereas L. plantarum DKP1 has total of 3277 number of protein encoding genes
with 89 number. of RNA genes (69tRNA, 16S rRNA, 4nc RNA). Analysis revealed the
presence of 20.5 kb long and 23 numbers of plantaricin encoding locus (pln locus)
for production of antimicrobial compound. BAGEL analysis has shown that the pln
locus of both the strains of L. plantarum showed maximum sequence similarity with
plantaricin NC8 of L. plantarum NC8, originally isolated from grass silage. Annotated
whole genome sequence of both strains DHCU70 and DKP1 was analyzed for the
presence of probiotic marker genes. The probiotic properties of these strains of were
also evaluated in vitro. Due to the presence of genes responsible for antimicrobial activity
and probiotic properties, both strains of L. plantarum may be considered as a suitable
probiotic candidate in food industry.
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INTRODUCTION

Fermented foods and beverages have several functional
microorganisms including many species of lactic acid bacteria
(LAB) which are well known for antimicrobial and probiotic
properties (Tamang et al., 2016b; Rezac et al., 2018). LAB are
certified as generally regarded as safe (GRAS) bacteria granted
by the American Food and Drug Agency (FDA)1. Most of
the genera belong to LAB such as Lactococcus, Lactobacillus,
Leuconostoc, Pediococcus, and few Streptococcus have also
received the Qualified Presumption of Safety (QPS) status by
European Food Safety Authority (EFSA)2. LAB mostly act
as protective cultures due to the production of antimicrobial
compounds bacteriocin, nisin, enterocin, etc. (Gaggia et al., 2011;
Tamang et al., 2016a) which are present in many fermented
dairy and vegetable (Tamang et al., 2009; Jiang et al., 2012;
Grosu-Tudor and Zamfir, 2013; Mokoena, 2017; Silva et al.,
2018).Among the various species of Lactobacillus, L. plantarum
is well known for its probiotic application due to its natural
habitation in human gastro intestinal tract (Zhang et al., 2012)
and has several functional properties such as antioxidant
activity, anti-cholesterol effect, bio-protective and immune-
modulation (Ren et al., 2014; Devi et al., 2015, 2016; Tamang
et al., 2016a). L. plantarum has both narrow and broad spectra of
antibacterial activity against Gram-positive pathogenic bacteria
viz Listeria monocytogenes, Staphylococcus aureus and also
against Gram-negative pathogenic bacteria such as Salmonella
Typhimurium, Klebsiella, Rhizophila, E. coli, Aeromonas
hydrophila, and Yersinia (Behera et al., 2018; Silva et al., 2018;
Spangler et al., 2019).

Lactobacillus plantarum produces antimicrobial compound
known as plantaricin (Song et al., 2014), which has a
bactericidal mode of action against other closely related
microorganisms by dissipating the proton motive force or
by creating the pores in the cell membrane that permits
the efflux of relatively large molecules (Todorov, 2009).
Most of the experiments on the mode of action is being
done by conventional microbiological methods involving
screening of antimicrobial compound by agar well diffusion
assay, which are tedious and unwieldy (Balouiri et al., 2016).
Nowadays, the application of high-throughput screening
(HTS)with targeted cell-based assays, that carry reporters such
as β-galactosidase or luciferase genes (Shobharani and Halami,
2016) for microbial compounds, is getting more popular and
reliable (Baker et al., 2016).

Different strains of L. plantarum are genetically diverse
with respect to genome size, number of proteins and diversity
in plantaricin encoding locus (Devi and Halami, 2019). The
genome size of L. plantarum varies from 3.0 to 3.3 Mb (Li
et al., 2015). L. plantarum P8 (Accession no. NC_021224)
has genome size of 3 Mb with total no of 2892 protein
encoding genes whereas L. plantarum WCFS1 has genome size
of 3.3 Mb with 3057 number of total protein encoding genes
(Accession no. NC 004567). L. plantarum ZJ316 (Accession

1www.fda.gov
2www.efsa.europa.eu

no. NC_020229) found to have 3159 number of protein
encoding genes. Devi and Halami (2019) characterized the
plantaricin produced by L. plantarum in different plantari-
types based on presence or absence of various pln genes. Pln
locus of plantaricin encoding genes is genetically organized
in either simple or complex operon (Diep et al., 2009).
Plantaricin 423, S and W are found on one simple operon
(Nissen-Meyer et al., 2009) whereas, L. plantarum C11,
WCFS1, JDM1, J23, J51 and NC8 strains are organized in
complex pln locus consisting of 25–28 genes in the mosaic-
like structure of 5–6 operons encoding Class IIb bacteriocin
(Diep et al., 2009; Tsapieva et al., 2011; Tai et al., 2015).
All bacteriocin related information collected from bacteriocin
databases, that have been created to compile the increasing
number of bacteriocins characterized from both Gram-positive
and Gram-negative bacteria, may be used for the automated
screening of bacteriocin gene clusters (Blin et al., 2013;
Van Heel et al., 2013).

Some species of Lactobacillus isolated from ethnic
fermented foods of Sikkim in India were reported to have
antimicrobial activities (Tamang et al., 2005, 2008, 2009; Dewan
and Tamang, 2007; Tamang and Tamang, 2009). However,
there has been no report of whole genome sequencing of
Lactobacillus species, isolated from ethnic fermented foods
of Sikkim in India, targeting the bacteriocin producing
gene for characterization of bacteriocin and identification
of probiotic genes. The present work aims to study the
whole genome sequence of Lactobacillus strains isolated
from some ethnic fermented foods of Sikkim, India to
characterize the bacteriocin producing gene and evaluation
of its probiotic properties.

MATERIALS AND METHODS

Bacterial Strains and Culture Condition
Different strains of LAB were isolated from two common
ethnic fermented foods of Sikkim in India viz. kinema,
fermented soybean food (Tamang, 2015) and dahi, fermented
milk product (Rai et al., 2016), respectively. Isolates were
sub-cultured in de Man, Rogosa and Sharpe (MRS) media
(HiMedia, Mumbai, India) and incubated at 37◦C for 18 h.
Kocuria rhizophila ATCC 9341, used as an indicator strain to
check the antimicrobial activity of the isolates, was cultured
in BHI broth (HiMedia, India) and incubated at 37◦C for
24 h under aerobic conditions. Study on mode of action was
carried out by using reporter strains of Bacillus subtilis BSF2470
(cell wall inhibition), AUT1 (Nisin specific reporter), yorB
promoter (DNA inhibition) and fabHB (fatty acid inhibition)
(Shobharani et al., 2015), which were stored at −20◦C in Luria
Bertani (LB) broth containing 16% (v/v) glycerol following the
method of Nithya and Halami (2012). Reporter cultures were
sub-cultured to antibiotics (erythromycin at a concentration
of 5 mg/ml for BSF and chloramphenicol at a concentration
of 5 mg/ml for all other reporters) containing fresh LB
broth and incubated aerobically at 37◦C, 150 rpm for 24 h
(Shobharani et al., 2015).
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Evaluation of the Antimicrobial Activity of
L. plantarum
Previously isolated bacterial isolates from various fermented
foods of North East India was evaluated for bacteriocin
production by agar well diffusion method (Li et al., 2015).Cells
were grown in MRS for 16–18 h and then centrifuged at
8000 rpm, 4◦C for 15 min to remove the cells. The supernatant
was neutralized to the pH of 7.0 with 0.1 N NaOH followed
by filter-sterilization through 0.2 µm membrane. Consequently
agar well diffusion assay was performed against indicator strain
K. rhizophila. Briefly, 50 µL of cell free supernatants were placed
into 6 mm wells on BHI agar plates seeded with the above
indicator strains. After incubation at 37◦C for 12 h, the diameters
of inhibition zones were measured. Proteinaceous nature of
antibacterial substance was checked by incubating the cell-free
supernatant (CFS) with 1 mg/ml of proteinase K (Hi Media)
at 37◦C for 2 h (Devi and Halami, 2011).Both protease-treated
CFS were assayed for activity as indicated above (Devi and
Halami, 2011). CFS was also tested for heat resistance at boiling
temperature for 15 min (Sure et al., 2016).

Characterization of Isolates
Isolates of LAB (DHCU70 strain from dahi and DKP1 strain
from kinema) showing prominent anti bacterial activity against
Kocuria rhizophila were characterized by using conventional
methods involving Gram-staining, SEM analysis followed by
various Biochemical tests – Catalase Test, Growth at various
temperature, pH and salt concentrations(Li et al., 2015).
Sugar fermentation profile was checked by incubating the
cultures at 37◦C for 48 h in Bromo Cresol purple broth
with different sugars as described by Schillinger and Lücke
(1987). Identity of cultures was confirmed by 16S rRNA
gene sequencing using one set of bacterial universal primers
27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-
GGTTACCTTGTT ACGACTT-3′) (Lane, 1991). Subsequently,
taxonomy of the cultures was confirmed by whole genome
sequencing analysis.

Chromogenic Plate Assay for the Mode
of Action
Study on mode of action was carried out by using whole cell
reporter assay (Nithya and Halami, 2012). Briefly, overnight
grown reporter bacteria in antibiotic containing LB Broth was
sub-cultured again in LB Broth without antibiotic and incubated
at 37◦C aerobically till the absorbance reached to 0.7 OD600.
Subsequently, LB agar plates containing reporter bacterial strain
supplemented with 50 µg/ml of X-Gal were prepared. Then
isolates were spotted on the LB agar plate and incubated for 24–
36 h at room temperature until a blue coloration was observed
due to the induction of lacZ resulting in the production of
β-galactosidase.

DNA Extraction
Extraction and purification of genomic DNA of isolates was
carried out using Qiagen DNeasy blood and tissue kit (Qiagen,
Hilden, Germany). The concentration and purity of genomic

DNA was quantified by previously calibrated Nano-drop
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
United States) and Qubit fluorometer (Invitrogen, United States).

Genome Sequencing
Whole genome sequencing of two tentatively identified
L. plantarum cultures: DHCU70 and DKP1 was carried out
following the method of Tanizawa et al. (2015) using Illumina
Miseq 300× 2 Platform (Illumina, San Diego, CA, United States)
at the facility of Genotypic Technology Pvt. Ltd., Bangalore.
A total number of 55143 and 567922 reads were obtained for
L. plantarum DHCU70 and DKP1, respectively, with N50 value
135,312 and 135,926, respectively.

Bioinformatics Analysis
High-quality reads were assembled in contigs using SPADES
3.9.1 assembler. Later the order of contigs was determined by
aligning the contigs with the genome sequence of originally
published strain L. plantarum Wcfs1 (GenBank Accession no.
AL935263). Gene prediction for assembled genome was carried
out using Genmark which were annotated by similarity searched
against UniProt bacterial protein database using DIAMOND
BLAST with an e-value of1e-5 for gene ontology and annotation
(Buchfink et al., 2015). Prophage insert regions were detected
with an on-line phage search tool, PHASTER (Arndt et al., 2016).
The CRISPR regions were identified with a CRISPR on-line
detection tool, CRISPR finder (Grissa et al., 2007). Information
about plasmids was obtained by using online tool Plasmid Finder.

Phylogenetic Analysis
The genetic presence and comparison of 16S rRNA and recA
genes were performed by analyzing the nucleotide sequence
data available at National Center for Biotechnology Information
(NCBI) database. The 16S rRNA and recA gene sequences
of related organisms were obtained from NCBI database and
compared with the sequences of our L. plantarum strains to know
the closest neighbor in the evolutionary tree. Neighbor-joining
(NJ) phylogenetic tree with p-distance model was constructed by
MEGA 6 software (Tamura et al., 2011).

Identification of Bacteriocin Encoding
Genes
Different pln genes were identified in WGS of L. plantarum
strains DHCU70 and DKP1 by sequence similarity search using
BLASTP and compared with already known plantaricin (Diep
et al., 2009). Subsequently, organization of plantaricin encoding
genes of individual strain of L. plantarum was analyzed using
bacteriocin database BAGEL4 (Van Heel et al., 2013).

Probiotic Functionalities
Identification of Probiotic Genes
The sequence information for different probiotic genes (Lebeer
et al., 2008) of related strain was obtained from the NCBI
database and used to find out the probiotic genes present in our
L. plantarum strains by sequence similarity search using BLASTP.
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Acid and Bile Salt Tolerance
Acid and bile tolerance of L. plantarum cultures was evaluated
as described by Archer and Halami (2015). For acid tolerance
MRS broth was adjusted to pH 3 with 1N HCl; and for bile
salt tolerance test, 0.3% (w/v)bile salts (MP Biomedicals, India
Pvt. Ltd.) was added to MRS broth. The broth with adjusted
pH values and bile salt concentration were inoculated with
109CFU/mL of O/N grown cultures of L. plantarum DHCU70
and DKP1 strains and incubated at 37◦C. Each tube containing
1 ml of culture was taken at 0, 1, 2, 3, and 24 h interval and
absorbance was measured at 600 nm. Subsequently cultures were
serially diluted in 0.8% saline water and plated on MRS agar
followed by incubation at 37◦C for 48 h. The viable bacterial
cell counts in terms of the colony forming units (cfu/ml) were
recorded after 24 h. All the experiments were repeated twice.
MRS broth with neutral pH 7.0 and without bile was served as
a control, respectively.

DPPH Radical-Scavenging Assay
Antioxidant activity was measured by DPPH assay as described
by Son and Lewis (2002) and Archer and Halami (2015).
Briefly overnight grown cultures were centrifuged at 8000 rpm
for 10 min at 4◦C and the CFS was collected. 100 µl
of CFS was mixed with 1.9 ml of methanol. Later, 2 ml
of 2,2-diphenyl-1-picrylhydrazyl (DPPH) (6 mg/100 ml of
methanol)was added to CFS. DPPH without addition of
CFS was used as control while only methanol was used as
blank. The tubes were mixed properly and incubated at room
temperature for 30 min in dark. After incubation absorbance
was measured at 517 nm and DPPH activity was measured by
following formula:

DPPH radical scavenging activity% =

[(Acontrol− Atest)/Acontrol] × 100

Cell Surface Hydrophobicity
Bacterial adhesion to hydrocarbons was determined according to
the method described by Rosenberg et al. (2006). Bacterial cells
were grown in MRS broth at 37◦C for 18 h and centrifuged at
8000 rpm for 10 min. The cell pellets were washed twice with
phosphate buffer, pH 7.0, resuspended in phosphate buffer and
the initial absorbance was adjusted to 0.7 OD at 600 nm (Abi).
Cell suspension was mixed with n-hexadecane or xylene (3:1),
vortexed and incubated at 37◦C for 10 min. The mixture was
again vortexed and kept at 37◦C for 1 h for phase separations.
The aqueous phase was removed gently and its absorbance (AbF)
was measured at 600 nm. The surface hydrophobicity (%) was
calculated as per the following formula:

Surface Hydrophobicity = 100 × (AbI− AbF)/AbsInitial

Cellular Auto-Aggregation
Auto-aggregation was performed as described by Archer and
Halami (2015). The 5 ml of cultures were mixed properly and
incubated at 15◦C for 2–3 h. One ml of upper suspension was

taken from undisturbed incubated tube; OD was measured at
600 nm and percentage auto aggregation was calculated as follow:

Percentage aggregation =
1− (OD of upper suspension/OD of total culture) × 100

RESULTS AND DISCUSSION

Evaluation of Antimicrobial Activity
We isolated 683 bacterial isolates from various fermented foods
of North East India, out of which 129 lactic bacteria bacterial
isolates were found to produce an antimicrobial compound (data
not shown). All 129 isolates were phenotypically characterized
on the basis of physiological and biochemical tests out of which,
only seven isolates were tentatively identified as Lactobacillus
plantarum. Out of seven strains of L. plantarum, only two strains-
DHCU70 isolated from dahi, a fermented milk product of Sikkim
and DKP1 isolated from kinema, a fermented soybean food
of Sikkim, India, showed prominent inhibition zones against
Kocuria rhizophila ATCC 9341for untreated CFS, CFS at acidic
pH, CFS at basic pH and CFS treated at boiling temperature
(Supplementary Table S1 and Supplementary Figure S1).
Antimicrobial activity of both strains of L. plantarum was found
to be stable at boiling temperature, acidic (pH 3) and basic (pH
9) (Supplementary Table S1 and Supplementary Figure S1).
Identification of Lactobacillus plantarum strains DHCU70 and
DKP1 was confirmed by 16S rRNA gene sequences (Figure 1A).
Antimicrobial compound produced by L. plantarum strains
DHCU70 and DKP1 was found to be proteinaceous in nature,
as when CFS was treated with proteinase K it showed complete
loss of antimicrobial activity (Yang et al., 2012).

Similar observations were earlier reported on broad spectrum
of activity of plantaricin LR14 produced by L. plantarum against
Kocuria rhizophila, Listeria monocytogenes, Salmonella, Yersinia,
enterocolitica, Bacillus lichniformis, and E. coli (Tiwari and
Srivastava, 2008). Plantaricin LPL-1 isolated from fermented fish
was active against S. aureus, Listeria. monocytogenes, B. pumilus,
B. amyloliquefaciens, E. faecalis, L. plantarum, L. delbrueckii,
L. bulgaricus, L. salivarius, and L. lactis (Wang et al., 2018).
L. plantarum strains isolated from fermented vegetables products
of India showed antibacterial activity against K. rhizophila (Devi
and Halami, 2019). Besides, antibacterial activity plantaricins also
showed thermo-stability (Behera et al., 2018; Lim et al., 2018).

The mode of actions was carried out by using whole
cell reporter assay. L. plantarum strains DHCU70 and DKP1
induced the production of β-galactosidase in reporter strains
of Bacillus subtilis BSF2470 specific for cell wall inhibition
(Figure 2). Bacteriocin produced by DHCU70 and DKP1 strains
of L. plantarum did not show any positive response toward DNA
specific reporter (yorB) as well as fatty acid specific reporter
(fabHB) indicating that bacteriocin produced by both the strains
of L. plantarum did not act on DNA and fatty acids (data
not shown). So it may be concluded that bacteriocin produced
by DHCU70 and DKP1 acts through inhibition of cell wall.
In general, class II bacteriocins show bactericidal mode of
action by dissipating the proton motive force by disrupting the
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FIGURE 1 | Construction of phylogenetic tree using NCBI Database by Neighbor-Joining method (A) 16S rRNA gene; (B): recA gene sequence; (C): complete
genome sequence.

trans-membrane potential or pH gradient of indicator strains
(Todorov, 2009). Specifically in class IIb bacteriocins, two peptide
bacteriocin acts by creating pores which results in dissipating
trans membrane potential (Zhang et al., 2015). As most of the
L. plantarum known till date found to act on cell membrane
(Arena et al., 2019). Interestingly, L. plantarum strains DHCU70
and DKP1 did not show positive result on Bacillus subtilis
BSF2470 reporter. So we repeated the assay with concentrated
bacteriocin preparation and observed that the AMC produced by
L. plantarum strains are acting on BSF2470 reporter (Figure 2).
These results found to be consistent in every repetition.

Genome Analysis of L. plantarum
We obtained a complete genome sequence of Lactobacillus
plantarum strains DHCU70 and DKP1, which showed a single
circular chromosome (Figures 3A,B). Both strains shared
maximum sequence similarity with L. plantarum strain WCFS1
(Kleerebezem et al., 2003) having a genome size of 3.38 and
3.39 Mb, and G + C content of 44.3%, respectively (Table 1).
A total of 3252 and 3277 protein-coding sequences (CDSs)
were identified in L. plantarum strains DHCU70 and DKP1,
respectively, The 3191 and 3215 number of proteins present

in strains DHCU70 and DKP1, respectively, were found to be
functionally categorized among the predicted coding sequence
for protein. Kleerebezem et al. (2003) have noted 3052 protein
encoding sequences in L. plantarum strain Wcfs1. Both the
strains of L. plantarum have no plasmid showing its significance
in transformation and conjugation experiments in our study.
Aukrust and Blom (1992) used L. plantarum and L. sake
strains isolated from meat and vegetable for transformation.
Similarly, Shrago et al. (1986) transferred erythromycin resistant
streptococcal plasmid pAM β1 to L. plantarum via conjugation.
The chromosome of L. plantarum strains DHCU70 and DKP1
contained 89 RNA genes including 69 tRNA, 16 rRNA and 4
ncRNA. Many strains of L. plantarum isolated from fermented
vegetables and milk products have already been sequenced
which include L. plantarum K25 from Tibetan Kefir (Jiang
et al., 2018), L. plantarum SK151 from kimchi (Amoranto et al.,
2018), and L. plantarum LL441 from dairy cheese (Flórez and
Mayo, 2018) having genome size of 3.1 Mb (GC content of
44.6%), 3.2 Mb (GC content of 44.6%), 3.1 Mb (GC content
of 44.5%), respectively. Zhang et al. (2009) reported 62 tRNA
and 16 rRNA encoding genes in L. plantarum JDM1. However
in our study we characterized bacteriocin encoding genes
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FIGURE 2 | Mode of action studies using whole cell reporter assay for
Lactobacillus plantarum strains DHCU70 and DKP1. Indicators:
Rif1-Rifampicin (–ve control) 1 µg/ml, Rif2-Rifampicin (–ve control) 0.1 µg/ml,
CUL70- culture of dhcu70, CULDKP1- culture of DKP1, CFS70 – Cell filtrate
supernatant of DHCU70, CFSDKP1 – cell filtrate supernatant of DKP1; Nisin
and Subtilin (+ve control).

in L. plantarum strains DHCU70 and DKP1 through whole
genome sequencing.

Based on the phylogenetic analysis of 16S rRNA gene
and recA gene (Devi et al., 2016) through BLASTn, strains

DHCU70 and DKP1 were found to display more than
99% similarity with L. plantarum group strains (Figure 1B).
However, genomes of different L. plantarum group strains
were difficult to distinguish by 16S rRNA gene sequence
similarity since current taxonomy of L. plantarum group has
closely related with species of L. paraplantarum, L. pentosus,
L. arixonensis, L. plantarum subsp. plantarum, L. plantarum
subsp. argentoratensis, L. xiangfangensis, and L. fabifermentans
(Torriani et al., 2001; Kostinek et al., 2005; Devi et al.,
2016). Phylogenetic tree was constructed based on the whole
genome sequence to understand the phylogenetic relationship
among L. plantarum strains which showed a close relationship
with L. plantarum subsp. plantarum strain WCFS1 and
strain MF1298 (Figure 1C). This observation suggests that
the strains DHCU70 and DKP1 belonged to L. plantarum
subsp. plantarum.

Characterization of Bacteriocin Locus
Screening of the entire genome of L. plantarum strains
DHCU70 and DKP1 revealed that bacteriocin encoding locus
(pln locus) was located in a 20.5 kb long region consisting of
23 genes (pln) organized in operon-like structure (Figure 4).
Strains DHCU70 and DKP1 have genes encoding two peptides
plantaricin plnJK (classIIb), plnEF (classI) and inducible
classII plantaricin NC8βα. The presence of two pln loci
encoding plantaricins from two different classes contributes
to a broad inhibitory spectrum of L. plantarum (Tai et al.,
2015).Precursor peptides of NC8α and NC8β were made up
of 47 and 55 amino acids, respectively, comprising leader
sequences of the double-glycine type at N-terminal (Maldonado
et al., 2003). However, the mature alpha and beta peptides
contained 29 and 34 amino acids, respectively. Both the
strains have a regulatory operon which included the inducing

FIGURE 3 | (A)Circular genome map of Lactobacillus plantarum DHCU70; (B) Circular genome map of Lactobacillus plantarum DKP1.
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TABLE 1 | Comparison of the features of Lactobacillus plantarum genome with reference genome.

Strain L. plantarum DHCU70 L. plantarum DKP1 Reference strain (L. plantarum WCFS1)

Source Dahi Kinema Human saliva

Genome Size(bp) 3383299 3393069 3308274 (Chromosomal DNA)

G + C Content (%) 44.3% 44.3% 45.6%

Total number of genes 3252 3277 3174

Coding genes 3191 3215 3063

Pseudogenes 61 62 23

Total no of RNA 89 89 88

No. of tRNA 69 69 70

No. of rRNA 16 16 15

No. of nc RNA 4 4 3

No. of repeat regions (CRISPER Array) 1 2

No. of prophage region 6 7 4

FIGURE 4 | Genetic organization of pln locus of (A): Lactobacillus plantarum DHCU70; (B) L. plantarum DKP1; (C): Lactobacillus plantarum NC8; (D): Lactobacillus
plantarum WCFS1; Indicators: α – NC8α, β– NC8β, J – pln J, K- plnK, E-plnE, F-plnF, Red color indicated immunity protein.

peptide encoding genes plnc8IF and histidine protein kinase
plnc8K, as reported earlier in L. plantarum NC8 (Maldonado
et al., 2003). The presence of plantaricin secretary genes
plnG and plnH has also been confirmed in L. plantarum
strains DHCU70 and DKP1 (Table 2), which are involved
in the ABC transport system (Rizzello et al., 2014). The pln
locus of the strains appeared to form several operons. Their
production is regulated by secreted peptide pheromone, a
membrane-located sensor and transcription regulators (Diep
et al., 2009). Comparative analysis of pln locus with other
known pln locus showed that both L. plantarum strains
DHCU70 and DKP1 matched with class IIb two peptide
antibiotics with L. plantarum NC8 as the closest neighbor
(Axelsson et al., 2012).

Lactobacillus plantarum strains were reported to have diversity
in pln locus. Lb plantarum strain C11 is found to be
organized in five operons-regulatory operon plnABCD, plnEFI,
plnJKLR, plnMNOP, plnGHSTUVWYXY (Daeschel et al., 1990).
Whereas, organization of pln operon in L. plantarum strain
NC8 was found to be similar to that of C11 with different
regulatory operons consisting of plnNC8IF, plnNC8HK and

plnD (Maldonado et al., 2004). L. plantarum type strains
J23 and J51 also shows common feature of both strains
C11 and NC8 with new ORFs (Rojo-Bezares et al., 2008;
Navarro et al., 2008).

Probiotic Characters
We analyzed various probiotic genes responsible for stress
resistance, active removal of stressors, bile salt hydrolase
activity, adhesion ability and immunomodulatory activity
to find out the probiotic potential of bacteriocin producing
L. plantarum strains DHCU70 and DKP1 (Table 3). Both
L. plantarum strains DHCU70 and DKP1 were found to
have dltA&D and gadB genes, through whole genome
sequencing analysis (Figure 3), which are responsible for
acid tolerance, bsh gene for bile tolerance, clpL gene for
acid and bile tolerance and dltB gene for anti-inflammatory
potential (Yunes et al., 2016; Bustos et al., 2018). We have
also identified the genes Mucin22 and fbp responsible for
adhesion ability to the intestinal epithelial layer (Turpin
et al., 2012), probably to exclude the pathogenic species
(Garcia-Gonzalez et al., 2018). Probiotics attributes shown
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TABLE 2 | Comparison of pln genes of Lactobacillus plantarum strains DHCU70 and DKP1 with reference strains (NC8 and WCFS1).

pln genes Function Lactobacillus plantarum strains

DHCU70 DKP1 NC8 WCFS1

plnA Induction pheromome – – – +

plnB Histidine protein kinase – – – +

plnC Response regulator – – – +

plnD Response regulator + + + (99.6%) +

plnEF Prebacteriocin with GC leader + + +(100%) +

plnG ABC Transporter + + + (99.7%) +

plnH Accessory protein + + +(98%) +

plnJK Prebacteriocin with GC leader + + +(100%) +

plnL Immunity protein + + + (100%) +

plnMN Prebacteriocin with GC leader – – – +

plnNC8α Prebacteriocin with GC leader + – +(100%) –

plnNC8β Prebacteriocin with GC leader + + +(100%) –

plnNC8IF Induction pheromome + + +(100%) –

plnNC8HK Histidine protein kinase + + +(100%) –

TABLE 3 | Probiotic related genes present in Lactobacillus plantarum strains DHCU70 and DKP1.

Gene Putative function Response Lactobacillus plantarum strains

DHCU70 DKP1

Stress resistance genes

dltD (L. rhamnosus) d- anylation of LTA Acid and defensin Resistance + +

dltA (L. reuteri) d- anylation of LTA Acid and defensin Resistance + +

DNA and protein protection and repair

dps(L. reuteri) DNA protection during starvation DNA protection during starvation + +

clpL(L. reuteri) clpATPase (chaperon) Acid and bile tolerance + +

clpC (L. plantarum) Persistence capacity in vivo + +

msrB (L. reuteri) Methionine sulfoxide reductase Persistence capacity in vivo + +

luxS (L. reuteri) Activated methyl cycle Persistence capacity in vivo + +

Active removal of stressors

gadB (L. acidophilus) GABA transporter Acid tolerance + +

bsh (L. plantarum) Bile salt hydrolase Bile salt resistance + +

Anti-pathogenic effect

luxS (L. reuteri) Production of AI-2. AI-3 Autoinduction ability + +

Immunomodulation

dltB (L. plantarum) d- anylation of LTA Anti-inflammatory potential in vitro in
PBMCs and in vivo in a murine model
of colitis or in a rat model for visceral
pain perception

+ +

dltD (L. reuteri) d- anylation of LTA Resistance to human β-defensin-2 + +

Adhesion ability

Mucin22 Mucin binding Adhesion ability + +

fbp Fibronectin binding Adhesion ability + +

by L. plantarum strains DHCU70 and DKP1 may be
responsible for the potential capability to survive in vitro
environmental stresses and in vivo human GIT conditions
(Varankovich et al., 2015). L. plantarum strains isolated from
different plant or animal (milk)-origins have antioxidant
activity, probiotic effect, and protein fortification (Behera
et al., 2018). Probiotic Lactobacillus shows probiotic factors
such as stress response and adherence ability (Lebeer

et al., 2008), and also to adaptation factors which include
microbe-microbe interaction, epithelial barrier protection
and immune modulatory effects (Llewellyn and Foey, 2017;
Song et al., 2018).

Lactobacillus plantarum strains DHCU70 and DKP1
were subjected to acid tolerance at bile tolerance and
pH3. Strains DHCU70 and DKP1 were found to have
high tolerance rate to bile at 3 h (Figure 5A and Table 4)
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FIGURE 5 | (A) Bile tolerance of L. plantarum strains DHCU70 and DKP1; (B) Acid tolerance of L. plantarum strains DHCU70 and DKP1.

TABLE 4 | Bile and acid tolerance of L. plantarum isolates DHCU70 and DKP1.

Treatments and strains Hour (x 107 cfu/ml)

0 1 2 3 24

Bile tolerance:

DHCU70 1.6 1.8 2.1 2.2 (100%)a 2.7

DKP1 1.9 2.0 2.2 2.3 (100%)a 2.5

Acid tolerance:

DHCU70 2.8 1.2 1.9 2.0 (71%)a 2.9

DKP1 2.7 1.5 1.8 1.9 (65%)a 1.9

aPercentage (%) survival.

and pH 3 (Figure 5B and Table 4). Strain DHCU70 also
showed growth in the given conditions to tolerate the
stress till 24 h. The pH of human stomach varies from 1.5
(before food) to 5.0 (after food) due to the secretion of
gastric juices (Cotter and Hill, 2003). Small intestine also
receives various ranges of bile from liver (Staley et al.,
2017). So, it is important for a probiotic bacterium to
tolerate such conditions in order to survive in human
GIT tract. Our findings showed that both the cultures
are able to withstand the acidic and bile conditions of
human GIT tract.

Lactobacillus plantarum strains DHCU70 and DKP1 were
analyzed for antioxidant activity through DPPH radical-
scavenging assay and showed 77.57 and 68% antioxidant
activity (Supplementary Table S2a), respectively. Many
Lactobacillus strains isolated from fermented foods were
reported to have antioxidant activity ranging from 40 to
90% (Kuda et al., 2014). Such probiotic isolates with high
antioxidant ability helps to reduce the oxidative stress (Li
et al., 2012). This suggests that our L. plantarum cultures can
be used as a suitable probiotic candidate in food industry.
Bacterial adhesion was evaluated using hydrocarbons like
xylene and n-hexadecane. Auto-aggregation ability of strain
DHCU70 was 72.84% whereas for strain DKP1 was 52.91%
(Supplementary Table S2b). The percentage hydrophobicity
for L. plantarum strains DHCU70 and DKP1 was 55.57%

and 5.40% for xylene, respectively, and 42.9 and 40.88%
for hexadecane, respectively (Supplementary Table S2c).
L. plantarum shows a defense mechanism against the
pathogen due to its hydrophobic and auto aggregative ability
(Honey Chandran and Keerthi, 2018).

CONCLUSION

Lactobacillus plantarum strains DHCU70 and DKP1 isolated
from fermented foods dahi and kinema, respectively, found to
have inducing peptides, immunity peptide and ABC transporter
proteins. Originally analyzed L. plantarum strain NC8 having
NC8-type bacteriocin was isolated from grass silage. However
L. plantarum DHCU70 having the same NC8 type of bacteriocin
has been isolated from dairy origin, dahi (fermented milk
product) which indicates that L. plantarum DHCU70 of dairy
origin may have better adaptability to the GIT conditions.
Moreover, the mode of action studies showed that both the
strains of L. plantarum DHCU70 and DKP1 have novel
mode of actions that may help in resolving the problem of
antibiotic resistance. Along with antibacterial properties, strains
L. plantarum DHCU70 and DKP1 are found to have probiotic
genes which may help them to survive in vitro environmental
stresses and in vivo human GIT conditions, indicating as
potential probiotic candidates.
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