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Antimicrobial resistance (AMR) is becoming a huge problem in countries all over the
world, and new approaches to identifying strains resistant or susceptible to certain
antibiotics are essential in fighting against antibiotic-resistant pathogens. Genotype-
based machine learning methods showed great promise as a diagnostic tool, due
to the increasing availability of genomic datasets and AST phenotypes. In this article,
Support Vector Machine (SVM) and Set Covering Machine (SCM) models were used to
learn and predict the resistance of the five drugs (Tetracycline, Ampicillin, Sulfisoxazole,
Trimethoprim, and Enrofloxacin). The SVM model used the number of co-occurring
k-mers between the genome of the isolates and the reference genes to learn and predict
the phenotypes of the bacteria to a specific antimicrobial, while the SCM model uses a
greedy approach to construct conjunction or disjunction of Boolean functions to find the
most concise set of k-mers that allows for accurate prediction of the phenotype. Five-
fold cross-validation was performed on the training set of the SVM and SCM model to
select the best hyperparameter values to avoid model overfitting. The training accuracy
(mean cross-validation score) and the testing accuracy of SVM and SCM models of five
drugs were above 90% regardless of the resistant mechanism of which were acquired
resistant or point mutation in the chromosome. The results of correlation between
the phenotype and the model predictions of the five drugs indicated that both SVM
and SCM models could significantly classify the resistant isolates from the sensitive
isolates of the bacteria (p < 0.01), and would be used as potential tools in antimicrobial
resistance surveillance and clinical diagnosis in veterinary medicine.
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INTRODUCTION

Antimicrobial resistance (AMR) in bacteria from humans
and food-producing animals is becoming an urgent threat
to the control of bacterial infections. Identification of strains
resistant or susceptible to certain antibiotics is essential in
fighting against antibiotic-resistant pathogens. Typically, the
determination of antimicrobial susceptibility is done either by
disk diffusion or minimum inhibitory concentration (MIC)
assays. Identification of resistance-specific markers by PCR
or microarray hybridization not only corroborates phenotypic
results but is also useful for epidemiological purposes, as there
are often multiple different genes that can confer resistance
to a given antimicrobial agent (Bossé et al., 2017). With the
increasing throughput and decreasing cost of DNA sequencing,
whole genome sequencing (WGS) may be an alternative for
routine surveillance of resistance profiles and for identification
of emerging resistances (Mahé and Tournoud, 2018).

Actinobacillus pleuropneumoniae causes porcine
pleuropneumonia, which is present in almost all the countries
of the world. Pleuropneumonia can affect all ages of pigs
and may result in great economic losses in pig production
particularly as it causes serious respiratory distress and
death. A. pleuropneumoniae is divided into 15 serotypes
based on the antigenic properties of capsular polysaccharides
and cell wall lipopolysaccharides. None of the serotype
provides a cross-immune response for another serotype and
therefore restricts the application of vaccine (Kim et al.,
2016). A. pleuropneumoniae can be killed by using effective
antimicrobials. However, resistant mutants increased gradually
due to the misuse of antimicrobials (Zhang et al., 2018).
Knowledge of resistance profiles for A. pleuropneumoniae is
required to inform treatment decisions.

The presence or absence of specific resistance genes must
be associated with resistance (and susceptibility) to particular
antibiotics, and then the resistance profiles for all genes in a
particular isolate must be added together to provide the predicted
susceptibility profile for that organism. The routine studies
make genotype-to-phenotype predictions based on identifying
the AMR genes in the draft genomes via web servers like
ResFinder (Zankari et al., 2012), the Comprehensive Antibiotic
Resistance Database (CARD) (McArthur et al., 2013), and
Resfams (Gibson et al., 2015).

With the help of computational tools, reference-based or
reference-free machine-learning algorithms have been used
increasingly to build models that correlate genomic variations
with phenotypes. In supervised learning, each example consists
of an input and an expected outcome. The goal of the algorithm
is to learn a model that accurately maps any input to the
correct outcome.

In this study, we propose to apply the Support Vector
Machine (SVM) and Set Covering Machine (SCM) algorithm
to accurately predict their phenotype against five antimicrobial
agents (Tetracycline, Ampicillin, Sulfisoxazole, Trimethoprim,
and Enrofloxacin) from the whole genomes of 96 isolates of
A. pleuropneumoniae.

MATERIALS AND METHODS

Data
The WGS reads and binary resistance phenotypes of 5
antimicrobial agents (tetracycline, ampicillin, sulfisoxazole,
trimethoprim, and enrofloxacin) of 96 isolated strains of
A. pleuropneumoniae data were obtained from Bossé et al.
(2017). The WGS reads were downloaded from the European
Nucleotide Archive (Study: PRJEB23431) and the phenotypes of
the isolates against the antimicrobial agents were downloaded
from the Supplementary Material of the same study2. Acquired
resistance genes of the antimicrobial agents were downloaded
from ResFinder Database as reference genes3.

For enrofloxacin, even though resistance might be mediated
by the acquired qnr genes, resistance to fluoroquinolones in
the A. pleuropneumoniae is most often mediated by mutations
in the target genes gyrA, parC, and parE (Wang et al., 2010;
Pesesky et al., 2016; Zhang et al., 2018). Therefore, gene
sequences of the quinolone resistance determining regions
(QRDR) of gyrA (residues 68–106), parC (residues 68–106), and
parE (residue 425–478) of all the isolates were translated into
amino acid and aligned with the same regions of the reference
gyrA (GenBank accession number ABN73394), parC (GenBank
accession number ABN73680) and parE (GenBank accession
number ABN74341), respectively. All the DNA sequences of
QRDR with no mutation in amino acid were appended into a
FASTA file as reference genes (see Supplementary Material).

The WGS reads were further assembled using Velvet 1.2.08
(Zerbino and Birney, 2008). The contigs of the strains along
with the AMR genes downloaded from ResFinder Database and
the gene sequences of QRDR for recognition of enrofloxacin
point mutation were subsequently split into k-mers (sequence
of k nucleotides) of length 31 using the Ray Surveyor tool
(Déraspe et al., 2017).

Reference-Based SVM Model
With the input of resistance genes of interest as reference genes,
the matrix of the co-occurring k-mers in the genome of the
strains and the reference genes were simultaneously built by the
Ray Surveyor tool during the splitting process. Support Vector
Machine (SVM; radial basis function kernel) used the number
of co-occurring k-mers of the strain and the reference genes of
the specific antimicrobial to learn and predict the phenotypes
of each isolate. The SVM was implemented in the Python
sklearn package4.

The dataset was randomly divided into three subsets of equal
size by the ID of the strains, and two subsets were used for
training while the other one was used for testing. The training
and testing process repeated three times so that every subset of the
strains could be used to evaluate the performance of the model.

1https://www.ebi.ac.uk/ena/data/view/PRJEB2343
2https://www.frontiersin.org/article/10.3389/fmicb.2017.00311/full#
supplementary-material
3https://bitbucket.org/genomicepidemiology/resfinder_db/downloads/
4http://scikit-learn.org/
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Reference-Free SCM Model
Unlike the SVM model which included k-mers of reference genes
in the dataset, the SCM used to learn sparse and interpretable
models of phenotypes by reference-free k-mers comparisons
are performed implemented in Kover, an open-source software
implemented in the Python and C programming languages5.
Kover automates the machine learning analysis (e.g., dataset
splitting, model selection, and model evaluation) without making
assumptions about the underlying genetic mechanisms. The
k-mers and phenotypic data of all the strains were used and
packaged into a Kover dataset, and then split the dataset into
a training set (2/3 of the Kover data) and a testing set (1/3 of
the Kover data) according to the same ID of the datasets of
the SVM model. The training set was used to learn a model
containing combination rules of both conjunction (logical-AND)
and disjunction (logical-OR) at most 5 rules, the testing dataset
was used for testing the accuracy of the model.

Model Selection and Performance
Evaluation
In order to minimize the waste of the training dataset and
avoid overfitting, five-fold cross-validation was performed on
the training set of the SVM and SCM model to select the best
hyperparameter values. The best hyperparameter values selected
from the five-folds cross-validation were then averaged and
chosen to evaluate the performance of the model.

The performances of the SVM and SCM model were
evaluated in terms of sensitivity, specificity, accuracy,
and precision. They were defined as: sensitivity =
TP/(TP + FN), specificity = TN/(TN + FP), accuracy =
(TP + TN)/(TP + FP + TN + FN), and precision = TP/
(TP + FP). Where TP was the number of resistant strains
predicted to be resistant, TN was the number of sensitive
strains predicted to be sensitive, FP was the number of sensitive
strains predicted to be resistant, and FN was the number of
resistant strains predicted to be sensitive.

RESULTS

A total of 96 clinical A. pleuropneumoniae isolates were included
in the study, with 58, 19, 46, 16, 6 of the isolates resistant
to Tetracycline, Ampicillin, Sulfisoxazole, Trimethoprim, and
Enrofloxacin, respectively. There were 8 isolates were resistant
to four kinds of antimicrobials (Tetracycline, Ampicillin,
Sulfisoxazole, and Trimethoprim); 17 isolates were resistant to 3
kinds of antimicrobials, 10 of them were resistant to Tetracycline,
Ampicillin, and Sulfisoxazole, 7 of them were resistant to
Tetracycline, Ampicillin, and Trimethoprim, respective; 22
isolates were resistant to 2 kinds of antimicrobials, 20 of them
were resistant to Tetracycline and Sulfisoxazole, one of them
was resistant to Tetracycline and Ampicillin, one of them was
resistant to Sulfisoxazole and Trimethoprim, respectively; 18
isolates were resistant to single antimicrobial, 12 and 6 of them

5https://github.com/aldro61/kover/

were resistant to Tetracycline and Enrofloxacin, respectively; and
31 were sensitive to all kinds of the five antimicrobials (Figure 1).

The gyrA QRDR DNA fragments of all the 90 Enrofloxacin
sensitive isolates were the same as that region of the reference
gyrA, while part of the isolates contained the same QRDR DNA
fragments as the reference parC or parE genes. And including
those fragments, there were 5 and 2 DNA fragments in the 90
Enrofloxacin sensitive isolates that code the same amino acid as
reference parC and parE, respectively.

A total of 4,299,871 distinct k-mers of length 31 were obtained
from the 96 genomes of A. pleuropneumoniae. By comparing
the k-mers of the genes downloaded from ResFinder, a range of
509∼607 k-mers of tet(B) gene were found in the genome of 50
strains, 540∼613 k-mers of tet(H) gene in 5 strains, 454∼463
k-mers of blaROB-1 gene in 19 strains, 299∼402 k-mers of sul2
gene in 46 strains, and 172∼236 k-mers of dfrA14 gene together
with 13 k-mers of dfrA30 gene in 16 strains of the bacteria,
respectively. For enrofloxacin, 53 and 84 k-mers of gyrA QRDR
in the genomes of 7 and 89 isolates, 84 and 126 k-mers of parC
and parE QRDR in 96 isolates, respectively (Figure 2). No k-mer
of qnr genes were found in the genomes of the isolates.

The training accuracy (mean cross-validation score) and the
testing accuracy of SVM and SCM models of five drugs were
above 90% (Figure 3), indicating that both of the SVM and SCM
models were not overfitted. Average and standard deviation of
the sensitivity, specificity, accuracy, and precision measured on
the 3 randomly partition testing sets representing the whole 96
unduplicated strains of the bacteria were provided in Table 1.
The accuracies of Ampicillin, Sulfisoxazole, Trimethoprim, and
Enrofloxacin were 1.00 ± 0.00, indicating that no false positive
and no false-negative strain of bacteria were predicted by
both of the models.

Even though 3 and 8 out of 58 phenotype resistant strains
were predicted to be sensitive for tetracycline from SVM and
SCM model, respectively, the sensitivity and accuracy of both
of the models were still high enough for prediction. Of the 3
false-negative isolates (MIDG3342, MIDG3352, and MIDG3356)
predicted by SVM and SCM, no acquired tetracycline-resistant
genes were found in the genome of those isolates. Of the other 5
false negative isolates predicted by SCM, all of them were found
to carry the tetH gene and predicted to be true positive by SVM.

Correlations between the phenotype and the model
predictions of 3 subsets of testing datasets represented 96
unduplicated strains of A. pleuropneumoniae isolates were shown
in Table 2. The results indicated that both SVM and SCM models
could significantly classify the resistant isolates from the sensitive
isolates of the bacteria (p < 0.01).

DISCUSSION

Support Vector Machine (SVM) has been applied to several
biological problems such as prediction of protein-protein
interactions, homology detection, gene expression analysis, drug
discovery, and drug resistance analysis (Cui et al., 2012; Li
et al., 2016; Kouchaki et al., 2018). To our knowledge, it’s the
first time to use the SVM model to predict the drug resistance
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FIGURE 1 | The phenotype of 96 isolates. (A) Bar plot of phenotype availability for the different drugs. (B) Venn diagram quantifying the number of instances of
co-occurrence of resistance between drugs.

FIGURE 2 | Number of k-mers of resistant genes in the whole genome of 96 isolates of A. pleuropneumoniae. (A) Isolates with k-mers of tetB and tetH genes,
(B) Isolates with k-mers of blaROB-1 gene, (C) Isolates with k-mer of sul2 gene, (D) Isolates with k-mers of dfrA14 and dfrA30 genes, (E) Isolates with k-mers in
gene of gyrA QRDR without point mutation, (F) Isolates with k-mers in genes of parC and parE QRDR without point mutation.

based on the counts of co-occurring k-mers between the genome
and the reference resistance genes. Using the reference gene
fragments of QRDR built by the authors could cover the deficit
that no point mutation databases provide the reference genes
specific for A. pleuropneumoniae. And this new method could
be used for phenotype prediction of the other genes or bacteria
with point mutation.

Unlike the KmerResistance, which uses the “winner takes all
strategy”(Clausen et al., 2016), the exact number of co-occurring
k-mers between the genome and the reference resistance genes
were counted. The supervised machine learning itself can learn
from the situation where k-mers not being able to match
due to the mismatch, indel, non-perfect assembly, or genomic
rearrangements in the query genome from the training dataset
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FIGURE 3 | Bars with red color show the mean accuracy for the tuned model with five-fold cross-validation on the training dataset. Bars with blue color are the
accuracy of the tuned model on the test dataset. The error bars are standard deviations. (A) SVM model, (B) SCM model.

TABLE 1 | Prediction metrics on test datasets using the best performing SVM and SCM models.

SVM SCM

Sensitivity Specificity Accuracy Precision Sensitivity Specificity Accuracy Precision

Tetracycline 0.95 ± 0.05 1.00 ± 0.00 0.97 ± 0.03 1.00 ± 0.00 0.86 ± 0.08 1.00 ± 0.00 0.92 ± 0.04 1.00 ± 0.00

Ampicillin 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Sulfisoxazole 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Trimethoprim 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Enrofloxacin 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

TABLE 2 | Correlation of phenotype and model predictions of SVM and SCM models.

Antimicrobial
agent

Number of isolates
classified by

phenotype (R, S)

SVM SCM

Number of isolates
predicted to be TP

and TN (TP, TN)

Correlation of
phenotype to the
model prediction

Number of isolates
predicted to be TP

and TN (TP, TN)

Correlation of
phenotype to the
model prediction

Tetracycline (58, 38) (55, 38) p < 2.2e−16 (50, 38) p < 2.2e−16

Ampicillin (19, 77) (19, 77) p < 2.2e−16 (19, 77) p < 2.2e−16

Sulfisoxazole (46, 50) (46, 50) p < 2.2e−16 (46, 50) p < 2.2e−16

Trimethoprim (16, 80) (16, 80) p < 2.3e−16 (16, 80) p < 2.3e−16

Enrofloxacin (6, 90) (6, 90) p < 1.1e−09 (6, 90) p < 1.1e−09

R resistant, S sensitive. Correlation between phenotype and model predictions were calculated using Fisher’s exact test in python.

and predict the correct answer while the same situation happened
in the test dataset.

The Set Covering Problem is a classical question in
combinatorics, computer science, operations research, and
complexity theory. As of now, one of the most relevant
applications of SCP is given by crew scheduling problems in
railway and mass-transit transportation companies, where a
given set of trips has to be covered by a minimum-cost set of
pairings (Caprara et al., 2000). In this study, The SCM algorithm
uses a greedy approach to construct conjunction (logical-AND)
or disjunction (logical-OR) of Boolean functions to find the
most concise set of genomic features (k-mers) that allows for
accurate prediction of the phenotype. A conjunction model
assigns the positive class to a genome if all the rules output true,

whereas a disjunction model does the same if at least one rule
outputs true. The method was validated by generating models
that predict the antibiotic resistance of C. difficile, M. tuberculosis,
P. aeruginosa, and S. pneumoniae for 17 antibiotics (Drouin
et al., 2016). The obtained models, implemented in Kover, were
proven to be accurate, faithful to the biological pathways targeted
by the antibiotics, and they provide insight into the process of
resistance acquisition.

The numbers of isolates predicted to be sensitive or resistant
by SVM was exactly the same as the result predicted by mapping
the reference resistant genes against the assembly of the WGS
data (Bossé et al., 2017). This indicated that the SVM model is
excellent in classifying the phenotype of the bacteria. In general,
reference-based SVM model should be equally successful whether
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they are applied to a small or large set of pathogens since the
accuracy of the prediction rely mainly on whether there were
reference resistant genes in the reference databases like ResFinder
or other built-in databases.

Until now, no point mutation was reported in the amino
acid of GyrB QRDR of A. pleuropneumoniae. Of the amino
acid of parE QRDR (residues 440–479) of 96 isolates in this
study, 29 sensitive isolates had substitutions of D479E in the
parE protein. The other 61 sensitive isolates and the 6 resistant
isolates did not have substitutions of D479E comparing with
the amino acid of reference parE gene. The finding indicated
that mutation of D479E in the parE gene might not be related
to the resistant of the bacteria against Enrofloxacin. So, DNA
sequences of QRDRs of gyrA (residues 68–106), parC (residues
68–106), and parE (residue 425–478) of sensitive isolates were
chosen and appended to a FASTA file as reference genes for the
SVM model to learn and predict the phenotypes of the bacteria
against Enrofloxacin.

The SCM model, regardless of the resistant mechanism
of which were acquired AMR genes or point mutation in
the chromosome, by comparing the difference of the k-mers
between the resistant strains and the sensitive strains, finds the
most concise set of equivalent k-mers that allows for accurate
prediction of the phenotype.

Any approach that uses machine learning models requires
adequate input data to form a “training set” to train the
machine learning model and a “testing set” to assess the
performance of the model (Macesic et al., 2017). Among
the five antimicrobial agents, the resistant background of
A. pleuropneumoniae against tetracycline is more complicated
than the others. There were 58 phenotype resistant strains,
with 50 isolates carrying tet(B), 5 isolates carrying tet(H),
and 3 isolates did not have any tetracycline resistance genes
detected. And up to now, we still could not able to collect the
whole genome of the A. pleuropneumoniae with tet(H) genes
publicly, therefore, after randomly split the limited data into
training set or testing set, the SCM model did not have enough
sample to learn from the training dataset and therefore lead
to a relative lower accuracy while predicting the testing set of
the model.

Both models have advantages and shortcuts. The reference-
based SVM model performs well at classifying resistance from
sensitive isolates regardless of the sample size of the training set
since the counts of co-occurring k-mers between the genome
and the reference resistance genes of the resistant isolates
are significantly different from that of the sensitive isolates
(Figure 2). But this method relies mainly on the database

and therefore cannot be used for predictions where resistance
mechanisms have yet to be identified. The SCM model should
need enough proportion of true phenotype data against false
phenotype data as input to form a “training set” to train the
model, but it provides a unique approach for deciphering, de
novo, new biological mechanisms without the need for prior
information (Drouin et al., 2016).

Even though both of the models can use raw reads to learn and
predict the phenotype of the bacteria, it is recommended to use
the assembled contigs as input data, since the genome assembly
can increase the quality of the k-mer representation, reduces the
number of unique k-mers and thus makes the process of splitting
the genome into k-mers and building the matrix encoding the
presence or absence of all k-mers by Ray Surveyor tool much
faster (Drouin et al., 2016; Mahé and Tournoud, 2018).
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