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The soil is one of the most complex systems where species belonging to different kingdoms live
together (Young and Crawford, 2004). In particular, microorganisms such as bacteria and fungi
are involved in nutrient cycling and organic matter transformation (Qian and Hettich, 2017):
microbial community members with their activities determine nitrogen, sulfur, and carbon fluxes
in the terrestrial subsurface (Hug et al., 2016). The soil microbiota with plant growth promoting
rhizobacteria (PGPR), P-solubilizing bacteria, mycorrhizal-helping bacteria (MHB), and arbuscular
mycorrhizal fungi (AMF) can be moreover involved in transfer and mobilization of trace elements,
allowing bioremediation of heavy metal contaminated fields (Khan, 2005) or oil-polluted Alpine
soils (Margesin, 2000). Microorganisms can be considered as tools to remove pollutants in soil,
water, and sediments (Abatenh et al., 2017).

In order to understand the soil ecosystems and the biological processes that characterize it,
it is necessary to study its microbial community composition, but also the metabolic activities
performed by microbes (Siggins et al., 2012; Mello and Zampieri, 2017). The metagenomics advent
made possible to identify the microorganism communities present in the soil (Vogel et al., 2009),
while metaproteomics made possible to investigate the biological functions of these communities
(Qian and Hettich, 2017). When the two approaches are applied to the same target it becomes
possible to link microbial community composition to ecological processes, as performed by
Zampieri et al. (2016) who tried to decipher the functioning of the brulé, the particular niche where
a fungus in symbiosis with forest trees drives out the other symbiotic fungi. Recently, Martinez-
Alonso et al. (2019) combined different -omic techniques (16S rRNA sequencing, culturomics,
and metaproteomics) in order to identify microbial species and to clarify functions of microbial
populations in the englacial ecosystem.

The study of the proteins expressed in an ecosystem at a specific time is a hot topic. Considering
only soil ecosystem, using “metaproteomics AND soil” as topics onWeb of Science website (http://
www.webofknowledge.com/), it was possible to find 151 papers (as on September 15th 2019).
Among the soil related papers according to Web of Science classification, there are: 36 reviews,
9 book chapters, 4 meetings, 2 abstracts, 1 letter, 1 early access, 71 others, and 148 articles.

Although the metaproteomics technique is more than 10 years old, it is still challenged both by
technical and computational limitations. Humic acids and other contaminants which interfere with
the protein extraction, render it highly dependent on the soil type. Different extractionmethods can
influence the observed metaproteome (Taylor and Williams, 2010; Becher et al., 2013; Zampieri
et al., 2016; Mattarozzi et al., 2017; Keiblinger and Riedel, 2018). A strategy to overcome this
obstacle is to use parallel different extraction methods and pool the extracted proteins before the
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subsequent analysis. The absence of complete protein databases
(Wilmes and Bond, 2006; Bastida et al., 2009; Siggins et al.,
2012; Becher et al., 2013; Wilmes et al., 2015; Keiblinger et al.,
2016; Wang et al., 2016; Heyer et al., 2017; Callister et al.,
2018; Starke et al., 2019) limits the protein identification.
A promising solution is to build in-house databases based
on metagenomics data previously obtained from the same
environment (Zampieri et al., 2016; Mattarozzi et al., 2017).
The combination of metagenomics and metaproteomics has
surely received some help by the recent advent of inexpensive
high-throughput sequencing (Wilmes et al., 2015); by next
generation sequencing it is in fact possible to obtain in less
time more reads that can allow the organism identification and
can create a starting point for building a database tailored for
protein identification.

Despite all the limitations, the metaproteomics is a powerful
technique to study the biological functions of microbial
communities, to correlate the taxonomic and functional soil
composition within the environment (Heyer et al., 2017) and
also to evaluate the responses of microbial communities to
climate change (i.e., global warming) (Liu et al., 2017). Moreover,
soil protein identification could give information about the soil
biogeochemical potential and pollutant degradation and be an
indicator of soil quality (Bastida et al., 2019) and regeneration.

Looking at the 148 articles found in Web of Science
website, a consistent number of studies has been done all
around the world, on different soil types, such as agricultural,
forest, contaminated by heavy metals, desert, riparian ones.
The metaproteomic analyses were principally carried out
in the Northern hemisphere (with the exception of few
works in the Southern part of Africa). While in the USA
the studied matrix is associated mainly with water, in
Asia, basically in China, it is mostly associated with crops.
Considering Europe, the studied soil types are heterogeneous,
characterized by prevalence of forest and arid soils. The effects
of contaminants are topic of different studies: in some of them
contaminants were present in a natural way (e.g., heavy metals
in serpentine soils), in others they have been human-introduced
(e.g., petroleum).

The ability to compare studies could shed light on many soil
processes, identify new insight, discover similar communities
around the world, explore and understand the soil biodiversity,
but this is at the moment very complicated due to lack of
standards in the field both for the soil and the proteomics
data. Even though many studies have reported the soil
properties, the way to report them has not been consistent
across the papers and there is no standard framework that
researchers can use to compare similarities and differences
between the studied soils. Comparative studies enable a deeper
understanding of the soil physical and chemical properties.
One interesting resource for comparison of studies is the
Paleontology, Geobiology and Earth Archives Research Center
(PANGEA) (http://www.pangea.unsw.edu.au/research) that has
already emphasized the process of discovery and integration of
ideas in different areas such as landscape evolution. This resource
has allowed to create a standard framework, to understand
the range of natural variability present in biological systems,

enhancing the capacity to discriminate natural cycles from recent
human perturbations.

Concerning the proteomics data, currently not many
scientists release upon publication the raw data underlying their
experiment and on which they have built their conclusions.
On the other hand, many publishers require as mandatory
the raw data deposit in the guidelines, but not always this
requirement is fulfilled by the authors and checked by the
editors. The main repository for proteomics data, since 2012,
is the proteomeXchange (PX) consortium (Vizcaíno et al.,
2014). The aims of the consortium are the data submission
standardization and the dissemination of the proteomics data.
Today the consortium includes different repositories from
different countries and institutions, with different proteomic
targets. The members of the consortium are: PRIDE, PASSEL,
MassIVE, jPOST, iProX, Panorama Public, and Peptide Atlas and
their main targets are: universal archive, Re-analysis, focused
archive, Universal archive, Re-analysis, Universal archive,
Universal archive, and focused archive (Deutsch et al., 2020),
respectively. The submission process requires several details,
including data and metadata. First of all, the authors have to
provide the raw data (mandatory) and the derived peak list
(optional). Secondly, experimental and technical metadata have
to be provided; they are slightly different among the diverse
members of the consortium but with a sufficient information
to fulfill the requirements for the PX XML format file (http://
www.proteomexchange.org/docs/guidelines_px.pdf). Finally, the
processed results should be provided including the peptide and
the protein identifications (mandatory) and quantification results
(optional at present). Currently, two types of submission are
supported: complete or partial. The former allows to connect,
through PX resource, the identification data to the corresponding
mass spectra. The latter provides all the submitted files for
download, but it is not possible to parse, integrate and visualize
the identification and/or connect the processed results to the
corresponding mass spectra (Deutsch et al., 2020).

Concerning the proteomics data released, there are only
17 datasets related to “metaproteomics and soil” in PRIDE

TABLE 1 | Papers and raw data published in 2019: paper number results from

Web of Science, PubMed and Scopus searches using as topics the two first

columns.

Term 1 Term 2 Web of

science

Pubmed Scopus Raw data

(PRIDE)

Metaproteomics Soil 15 10 13 3

Metaproteomics Compost 1 0 0 0

Metaproteomics Sediments 3 3 4 3

Metaproteomics Gut 32 28 28 7

Metaproteomics Water 7 4 10 6

Metaproteomics Air 2 2 2 1

Metaproteomics Feces 2 3 12 0

Metaproteomics Lakes 0 1 1 1

Raw data numbers result from PRIDE query using the terms in the two first columns. All

searches were limited to paper from 2019. The term “sediments” include both terrestrial

and aquatic ones.

Frontiers in Microbiology | www.frontiersin.org 2 February 2020 | Volume 11 | Article 88

http://www.pangea.unsw.edu.au/research
http://www.proteomexchange.org/docs/guidelines_px.pdf
http://www.proteomexchange.org/docs/guidelines_px.pdf
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Chiapello et al. Metaproteomics Shared Data Guidelines

TABLE 2 | Checklist of standardized soil metadata according to Schoeneberger et al. (2012).

Sample Sampling time Location Element content

Name Replicate Date GPS

coord

Altitude Place

name

C% N% pH

Soil Land coverage Vegetation

Clay %—

sand %—

silt %

Soil

classification

Contaminants Moisture Temperature

regime

Type of

land

coverage

Plant

common

names

Plant

scientific

names

Vegetation

coverage %

Collection methods Storage system Note

Sampling

method

Depth of

sampling

Unit Soil

treatment

(sieved...)

Storage

temperature

Container

type

Additional

information

(https://www.ebi.ac.uk/pride/archive/) (Martens et al., 2005),
among them 11 are associated to a paper, while seven are
deposited without any link to a published paper, meaning
that only a very small proportion of the authors deposited
the raw data in public repositories. The sampling sites
related to the data deposited on PRIDE span from Spain
to Antarctica and from Northern California to Sweden,
indicating the absence of geographical bias and a great
variability as spatial coordinates. The act of publishing without
depositing the raw data limits other researchers from performing
comparative studies. We strongly believe that this restricts the
progress, discovering better insights and potential application
of metaproteomics field. Publishing the raw data should be
made mandatory, both for open and reproducible science,
and for allowing the data reuse and exploring new insights.
The lack of raw data on repositories is a problem that
also concerns other fields, such as studies carried out on
gut, water and so on, as shown by the outputs provided
by a search of these studies on Web of Science, Pubmed,
and Scopus databases and of their deposited raw data on
PRIDE (Table 1).

The aim of this opinion is not only to report the low
percentage of dataset related to the soil metaproteomic studies,
but also to point out the still concealed potential of the
technique if flanked by a proper repository of data. The
possibility of comparing studies could shed light on many
soil processes, but this is very complicated due to a lack of
shared proteomics data. Only 6 (5%; 3 out of the 9 papers

cited on PRIDE are not found on WOS) out of 148 studies
uploaded the raw data to PRIDE; moreover the remaining
studies not always included in the supplementary materials the
complete list of identified proteins. On the other hand, many
studies provided detailed information about the soil composition,
but unfortunately, not in a standardized way. The lack of
shared proteomics data, and at the same time the lack of
standard metadata on the soil composition, render the different
comparative studies a complicated challenge. Owing on the
previous considerations, we strongly advise the metaproteomics
community to adopt standardized soil metadata, to publish the
raw data on PRIDE and to follow the procedures pointed out
by ProteomeXchange Consortium. Standardized soil metadata
could follow the checklist (Table 2) we have extrapolated by
the useful guide for soil describing and sampling, proposed by
Schoeneberger et al. (2012).

These two simple good practices will massively increase
the ability to compare studies and carry out bioinformatic
analyses, using already published data. Although this
opinion focuses on soil metaproteomics data, we hope it
will ring a bell for scientists involved in other disciplines
and ecosystems.
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