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Metatranscriptomics Reveals
Antibiotic-Induced Resistance Gene
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Microbiota
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Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI,
United States

Antibiotic resistance is a current and expanding threat to the practice of modern
medicine. Antibiotic therapy has been shown to perturb the composition of the host
microbiome with significant health consequences. In addition, the gut microbiome
is known to be a reservoir of antibiotic resistance genes. Work has demonstrated
that antibiotics can alter the collection of antibiotic resistance genes within the
microbiome through selection and horizontal gene transfer. While antibiotics also
have the potential to impact the expression of resistance genes, metagenomic-based
pipelines currently lack the ability to detect these shifts. Here, we utilized a dual
sequencing approach combining shotgun metagenomics and metatranscriptomics to
profile how three antibiotics, amoxicillin, doxycycline, and ciprofloxacin, impact the
murine gut resistome at the DNA and RNA level. We found that each antibiotic induced
broad, but untargeted impacts on the gene content of the resistome. In contrast,
changes in ARG transcript abundance were more targeted to the antibiotic treatment.
Doxycycline and amoxicillin induced the expression of tetracycline and beta-lactamase
resistance genes, respectively. Furthermore, the increased beta-lactamase resistance
gene transcripts could contribute to an observed bloom of Bacteroides thetaiotaomicron
during amoxicillin treatment. Based on these findings, we propose that the utilization
of a dual sequencing methodology provides a unique capacity to fully understand
the response of the resistome to antibiotic perturbation. In particular, the analysis of
transcripts reveals that the expression and utilization of resistance genes is far narrower
than their abundance at the genomic level would suggest.

Keywords: antibiotic resistance genes, microbiome, resistome, antibiotics, metagenomics, metatranscriptomics

INTRODUCTION

Antibiotic resistance has emerged as a major threat to human health. In the United States, millions
of people suffer from infections caused by antibiotic resistant bacteria, and tens of thousands die
as a result (CDC, 2013). Although antibiotic resistance is recognized to be an ancient phenomenon
predating the therapeutic use of antibiotics (D’Costa et al., 2011; Bhullar et al., 2012; Santiago-
Rodriguez et al., 2015), recent misuse and overuse of antibiotics has led to an increase in the
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selection for antibiotic resistance genes (ARGs) and has
contributed to the spread of infections caused by antibiotic
resistant bacteria. Thus, it is important to understand how
antibiotic exposure impacts the abundance and expression of
resistance genes in the host. Culture-independent methods of
profiling entire microbial communities for ARGs have greatly
expanded our ability to detect and track resistance elements
utilizing high-throughput sequencing techniques (Sommer et al.,
2009; Lu et al., 2014; Crofts et al., 2017; Arango-Argoty et al.,
2018; Yin et al., 2018). This important development in detection
has led to the discovery of ARGs in gut colonizing microbes.

The gut microbiota is now recognized as an important
element in human health and disease (Cho and Blaser, 2012;
Human Microbiome Project Consortium, 2012; Pflughoeft and
Versalovic, 2012; Lynch and Pedersen, 2016), and can serve as
a reservoir of antibiotic resistant bacteria (Sommer et al., 2010).
Research into the collection of ARGs within the microbiome,
termed the “resistome”(D’Costa et al., 2006; Wright, 2007), has
begun to explore resistance genes within the gut. Studies have
characterized the gut resistome in terms of composition (Sommer
et al., 2009, 2010; Hu et al., 2013), life history (Lu et al., 2014;
Moore et al., 2015; Parnanen et al., 2018), geographic location
(Forslund et al., 2013; Hu et al., 2013; Pehrsson et al., 2016),
antibiotic perturbation (Jernberg et al., 2007; Looft et al., 2012),
and other factors. In addition, horizontal gene transfer (HGT)
of ARGs between bacteria in the gut has been theorized to
contribute to the spread of resistance (Shoemaker et al., 2001;
Lester et al., 2006; Karami et al., 2007; Smillie et al., 2011; Stecher
et al., 2012; Huddleston, 2014). Since the gut microbiome is a
reservoir of antibiotic resistance and has the potential to promote
HGT of ARGs, it is of particular importance to understand the
role of antibiotics in shaping the landscape of antibiotic resistance
in this microbial environment.

Antibiotic therapy has been shown to have a dramatic impact
on the microbiome, playing a role in gut dysbiosis (Dethlefsen
et al., 2008; Dethlefsen and Relman, 2011; Becattini et al.,
2016), increasing susceptibility to infection (Ubeda et al., 2010;
Buffie et al., 2012), and altering the composition of the gut
resistome (Jernberg et al., 2007; Zhang et al., 2013; Palleja
et al., 2018). Less is known about how antibiotics promote ARG
selection in vivo (Sjolund et al., 2003; Looft et al., 2012), and
the impact of antibiotics on the expression of resistance genes
in the host microbiota. In response to antibiotic treatment,
changes in the resistome may be stochastic, induced by the
underlying changes in population structure, or more directed
and targeted toward the drug administered. Here we utilize a
dual sequencing methodology that employs both metagenomics
and metatranscriptomics to reveal broad, untargeted changes in
the resistome at the DNA level and a narrower, drug-specific
response at the RNA level.

MATERIALS AND METHODS

Mouse Experiments
In a previous study, we obtained total cecal DNA and RNA
from six-week-old female C57BL/6J mice that were treated

with amoxicillin (0.1667 mg/mL) for 12 h, or ciprofloxacin
(0.0833 mg/mL), or doxycycline hydrochloride (0.067 mg/mL)
for 24 h (Cabral et al., 2019). All antibiotic treatments were
administered in drinking water, which was provided ad libitum.
Based on the estimate that a healthy mouse drinks 150 mL/kg of
water per day, these concentrations were selected to administer
a dosage of 25 (amoxicillin), 12.5 (ciprofloxacin), or 10
(doxycycline) mg/kg/day (Yang et al., 2017). Control mice were
provided with pH-matched water. Each group had four mice that
were split into at least two cages per group to account for cage
effects. After the 12- or 24-h treatments, mice were sacrificed
and cecal contents were collected and stored in DNA/RNA
Shield Collection and Lysis Tube from Zymo Research (Irvine,
CA, United States). Samples were kept on ice prior to being
transferred to −80◦C for permanent storage. Mouse experiments
were carried out at the Brown University mouse facility with
approval from the Institutional Animal Care and Use Committee
of Brown University.

Nucleic Acid Extraction and
Quantification
DNA and RNA were extracted from cecal samples using the
ZymoBIOMICS DNA/RNA Miniprep Kit from Zymo Research
(Irvine, CA, United States), eluted in nuclease-free water, and
stored at −80◦C. Extracted DNA and RNA were quantified using
the dsDNA-BR and RNA-HS kits on a QubitTM 3.0 Fluorometer
(Thermo Fisher Scientific, Waltham, MA, United States).

Metagenomic and Metatranscriptomic
Library Preparation
Metagenomic libraries were prepared using the Ovation R©

Ultralow System V2 kit from NuGEN (San Carlos, CA,
United States). DNA was sheared to a median fragment
size of 300 bp using a Covaris S220 High Performance
Ultrasonicator (Woburn, MA, United States), and used to
prepare metagenomic libraries following the manufacturer’s
protocol. Metatranscriptomic libraries were prepared using
Ovation R© Complete Prokaryotic RNA-seq Library System from
NuGEN. Extracted RNA was first treated with DNA rDNase
I to remove contaminating DNA. Next, host mRNA and
bacterial ribosomal RNA was reduced using the MICROBEnrich
and MICROBExpress kits from Invitrogen (Carlsbad, CA,
United States). This processed RNA was then used to generate
metatranscriptomic libraries following the manufacturer’s
protocol with the addition of AnyDeplete probes designed
to specifically remove fragments originating from murine
osteosarcoma virus, a known source of contamination sequences.

Sequencing
Metagenomic and metatranscriptomic libraries were sequenced
on an Illumina HiSeqX using paired-end, 150 bp reads.
Sequencing yielded an average of 26,113,145 (± 11,436,616)
and 85,599,941 (± 11,674,614) raw reads per metagenomic
and metatranscriptomic libraries, respectively. All reads were
deposited in the NCBI Short Read Archive under BioProject
numbers PRJNA504846 (metagenomics) and PRJNA515074
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(metatranscriptomics). This data set was previously published by
Cabral et al. (2019). The DNA, RNA, and subsequent libraries
and sequencing data were the same as those initially published in
Cabral et al. (2019). Here, we reanalyze this data using a different
set of pipelines and with a focus on the detection of ARGs.

Processing of Raw Reads
Raw reads from both metagenomic and metatranscriptomic
sequencing were processed using the kneadData wrapper
script (McIver et al., 2018). Reads were trimmed with
Trimmomatic (version 0.36) with SLIDINGWINDOW set at
4:20, MINLEN set at 50, and ILLUMINACLIP: TruSeq3-
PE.fa:2:20:10 (Bolger et al., 2014). Sequences from contaminating
C57BL/6NJ mouse genome and two murine retroviruses
[murine osteosarcoma virus (accession NC_001506.1) and mouse
mammary tumor virus (accession NC_001503)] were filtered
out using Bowtie2 (Langmead and Salzberg, 2012). In addition
to this preprocessing, bacterial ribosomal reads were removed
from the datasets using the SILVA 128 database (Pruesse et al.,
2007). Based on the principle coordinate analysis (PCoA) of
the metatranscriptomic derived resistomes we determined that
doxycycline sample 1 was an outlier and it was removed from
further analysis (Supplementary Figure S1). Doxycycline sample
1 had roughly 10 times the number of ARG hits relative to
all other samples despite it being sequenced to a similar depth
(Supplementary Table S1).

Taxonomic Analysis of Metagenomic
Reads
Cleaned metagenomic forward reads were classified against a
database containing all prokaryotic genomes downloaded from
NCBI RefSeq using Kaiju (version 1.7.0) using the MEM run
mode and the default cutoffs for E-value and minimum required
match length (Menzel et al., 2016) (full relative abundance tables
can be found in Supplementary Table S2). The taxonomic output
table was analyzed in R (version 3.5.2) using the phyloseq package
(version 1.24.2) to calculate alpha and beta diversity metrics
(McMurdie and Holmes, 2013). PCoA was performed using the
Bray-Curtis Dissimilarity metric (Bray and Curtis, 1957).

Metagenomic Assembly and Binning
The PATRIC web server (3.5.43) (Wattam et al., 2017) was
utilized to bin and assign taxonomy to contigs assembled using
metaSPAdes within SPAdes (3.13.0) (Nurk et al., 2017).

Antibiotic Resistance Gene Analysis
Processed reads were joined using the fastq-join function of
the ea-utils package (Aronesty, 2011). The joined reads were
then queried for antibiotic resistance genes using DeepARG
(version 1) (Arango-Argoty et al., 2018) using the default settings
(0.8 minimum coverage of alignment, E-value cutoff 1e-10, 50%
minimum percentage of identity) and excluding “predicted”
resistance genes (full counts tables of ARGs and ARG classes can
be found in Supplementary Table S3). ARGs at the DNA level
from the metagenomic data were identified by running cleaned,
merged PE reads through the DeepARG pipeline. On average

45,768 (± 10,213) ARG hits were obtained from an average of
26,281,760 (± 5,410,439) cleaned paired-end (merged forward
and reverse read files). Using the same method to identify ARGs
at the RNA level from metatranscriptomic sequencing, we found
an average of 14,576 (± 6,147) ARG hits from an average of
49,338,997 (± 10,392,548) cleaned paired-end (merged forward
and reverse read files) reads.

Statistical Analyses and Figure
Generation
Differential abundance of ARGs and ARG classes between
treatments and controls was determined using DESeq2 (version
1.20.0) (Love et al., 2014) in R (version 3.5.2) using default
parameters. Statistical differences between alpha diversities were
calculated in GraphPad Prism (version 8.0) (GraphPad Software,
La Jolla, CA, United States). All figures were generated using
Prism 8.0, except Supplementary Figure S4 which was generated
using the Clustal Omega tool (Sievers and Higgins, 2018) on the
EMBL-EBI web server (Madeira et al., 2019).

RESULTS AND DISCUSSION

Microbial Diversity
Antibiotic treatment was administered for either 12 h
for amoxicillin (beta-lactam) or 24 h for ciprofloxacin
(fluoroquinolone) and doxycycline (tetracycline) with untreated
time-matched controls. The microbiome of the amoxicillin
treated mice displayed a marked reduction in bacterial alpha
diversity (p < 0.05, Mann-Whitney U test), however, no change
in diversity was observed in mice treated with ciprofloxacin or
doxycycline (Figure 1A). Shifts in beta diversity were observed
between each treatment and their respective controls indicating
that these antibiotics elicit unique changes to the murine gut
microbiome at a taxonomic level (p < 0.05, PERMANOVA)
(Figure 1B). Perhaps the most drastic taxonomic change was
the expansion of Bacteroides thetaiotaomicron in the microbiota
of amoxicillin treated mice (Figure 1C and Supplementary
Figure S2). Overall, we found that out of the three antibiotics
tested, amoxicillin had the most profound impact on the
murine cecal microbiome community in terms of diversity and
species relative abundance, while ciprofloxacin and doxycycline
exhibit less drastic changes. A more detailed description of the
taxonomic shifts is detailed in Cabral et al. (2019), while in this
study we focus on the ARGs.

ARG Abundance
While metagenomic analysis is commonly used to characterize
the resistome, it can only report the genes found in the
community but does not provide information about the actual
expression of those genes. In the metagenomic data, we
determined the average number of ARGs relative to total
reads to calculate the relative abundance of ARGs in the
community. There were 1.74E-03 (± 1.62E-04) ARGs per read
detected in the metagenomic data (Supplementary Table S1),
with an average of 336 (± 14) unique ARGs found in each
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FIGURE 1 | Antibiotic treatment has variable impacts on the diversity and taxonomic structure of the microbiome. (A) Shannon diversity index displayed as
mean ± SEM (*p < 0.05 Mann-Whitney U test, n = 4). (B) PCoA based on Bray-Curtis beta diversity. (C) Relative abundance of bacterial species displayed as
mean ± SEM (n = 4, top 250 most abundant species colored, full relative abundance table available in Supplementary Table S2).

metagenomic sample (Supplementary Figure S3A). In contrast
to the metagenomic data, metatranscriptomics cannot describe
the structure of the community, but it can identify the portion
of the total genes actively transcribed by the microbiome. In
the metatranscriptomic data, there were 3.1E-04 (± 1.67E-04)
ARGs per read (Supplementary Table S1), with an average of 161
(± 40) unique ARGs found in each metatranscriptomic sample
(Supplementary Figure S3B). This data shows that there are
more unique ARGs found in the DNA than in the RNA despite
the higher sequencing depth used for metatranscriptomics.
This discrepancy could indicate that many of the ARGs
encoded in the microbiome are not actively transcribed with or
without drug pressure.

Resistome Diversity
Two of the antibiotics examined, amoxicillin and ciprofloxacin,
had unique impacts on the taxonomic composition of the
microbiome resulting in corresponding shifts in the resistome
diversity at the DNA level. Metagenomic data showed that

compared to time-matched controls, there was a significant
increase in the Shannon diversity of the resistomes with
amoxicillin (p < 0.05, Mann-Whitney U test), and a decrease
in the Shannon diversity with ciprofloxacin (p < 0.05,
Mann-Whitney U test), while doxycycline treatment had no
impact (Figure 2A). Analysis of the Bray-Curtis beta diversity
revealed significant differences in amoxicillin and ciprofloxacin
groups compared to their time-matched controls (p < 0.05,
PERMANOVA), but not in the doxycycline treated group
(p = 0.2, PERMANOVA) (Figure 2C). However, these shifts in
ARG diversity profiles did not necessarily reflect a drug specific
selection but rather resulted from the overall shift in microbiome
composition. We found that while treatment induced changes
in alpha diversity of the resistome at the DNA level, it did not
impact resistome alpha diversity at the RNA level (Figure 2B).
The lower and more stable alpha diversity of the RNA reads
compared to the DNA reads likely stems from the fact that
many of the genes detected in the metagenomics are not actively
transcribed under vehicle or antibiotic treatment. We also found
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FIGURE 2 | Antibiotics have variable impacts on the diversity and structure of the resistome. (A,B) Shannon diversity index based on resistance gene counts
displayed as mean ± SEM for both metagenomic and metatranscriptomic data (*p < 0.05 Mann-Whitney U test). (C,D) PCoA based on Bray-Curtis of resistance
gene counts for both metagenomic and metatranscriptomic data.

that amoxicillin and ciprofloxacin did not significantly impact
Bray-Curtis ARG diversity at the RNA level (p = 0.128, p = 0.397,
PERMANOVA). Additionally, in the metatranscriptomic data,
doxycycline did induce a significant Bray-Curtis shift from
the 24-h controls (p < 0.05, PERMANOVA) (Figure 2D).
This shift in beta-diversity may be driven by the induction
of drug targeted ARG transcripts observed in the doxycycline
treated samples.

ARG Class Level Changes in Response
to Antibiotics
Antibiotic-induced shifts in ARG classes were determined using
DESeq2 and considered significant with a log2FC ≥ 1.5 or ≤ −1.5
and an adjusted p-value < 0.05 (Figure 3A). At the DNA
level, we did not find any changes in ARG classes that directly
corresponded to antibiotic treatment. For example, the beta-
lactam resistance class was not increased with amoxicillin.
Instead, we report that the only significant changes in ARG
classes were an increase in kasugamycin class ARGs in response
to amoxicillin treatment, decreases in the fosmidomycin and
trimethoprim classes in response to ciprofloxacin treatment,
and a decrease in the fosmidomycin class in response to
doxycycline treatment (Figure 3A). As a whole, none of the

treatments led to an induction of ARG classes targeted toward
the drug administered.

In contrast to the lack of drug targeted changes at the DNA
level, metatranscriptomic sequencing showed an induction of
ARG classes targeted to two of the treatments at the RNA level
(Figure 3B). Overall, there were a number of significant changes
in ARG classes against beta-lactams, fosmidomycin, polymyxin,
and trimethoprim in response to amoxicillin treatment, triclosan
in response to ciprofloxacin treatment, and fosfomycin, rifampin,
and tetracycline in response to doxycycline treatment. Most
interestingly, amoxicillin significantly increased the abundance
of the beta-lactam ARG class with log2FC 2.67 (padj = 2.50E-04),
and doxycycline increased the abundance of the tetracycline ARG
class with log2FC 1.81 (padj 3.10E-21) in the RNA (Figure 3B).
Thus, in contrast to the metagenomic data, metatranscriptomics
shows a significant increase in ARG classes that are targeted to
the antibiotic treatment and have the potential to provide a fitness
advantage to members of the gut microbiota.

ARG Level Changes in Response to
Antibiotics
Results from the differential abundance analysis show that the
antibiotics tested have variable impacts on the abundance of AR
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FIGURE 3 | Differential abundance of antibiotic resistance gene classes. Changes in ARG class abundances after antibiotic treatment observed in (A) metagenomic
and (B) metatranscriptomic data. The color scale represents log2 fold change (***log2FC ≥ 1.5/ ≤ –1.5 and padj < 0.05) (Full ARG class counts available in
Supplementary Table S3).

genes and transcripts. At the metagenomic level, we found a
set of differentially abundant genes that appeared general and
unrelated to the antibiotic utilized. In contrast, the transcriptional
response was much narrower and in the case of amoxicillin
and doxycycline, it appears that antibiotic therapy promoted
genes directly targeted to the drug utilized. This dichotomy
between DNA and RNA level responses could not have been
detected without using a dual sequencing approach. Overall,
there were fewer differentially abundant ARG transcripts (21
transcripts) found in the metatranscriptomic analysis compared
to the number of differentially abundant ARGs (116 genes) in
the metagenomic data (Figures 4A–F). This is a reflection of the
fewer ARG reads found in the metatranscriptomic data, as well as
the more specific response of the microbiome at a transcriptional
level compared to the broad metagenomic changes. This is
best exemplified by changes in ARGs targeted to antibiotics,
specifically amoxicillin and doxycycline.

While the observations made at the ARG class level were
fairly broad, the gene level data provided more insights into
the direct impact of antibiotic administration on specific ARGs.
The differential expression tool DESeq2 was used to analyze the
antibiotic-induced changes in AR gene and transcript abundance
(Figure 4A). We found 56 significantly elevated or reduced ARGs
after amoxicillin treatment. Of these 56, two beta-lactamase
genes of interest, cepA and bl2e_cepA, had significant increases
in gene abundances of log2FC 4.96 (padj = 4.10E-20) and
log2FC 4.73 (padj = 6.72E-16), respectively. In addition to
drug targeted genes, we also found increases in a much larger
set of untargeted genes (42 genes). It is possible that these

changes are the result of taxonomic shifts in bacteria that encode
these genes, rather than a direct selection promoted by the
induced resistance genes. The beta-lactamase genes increased
in the metagenomic data are also increased at the RNA level,
highlighted by significantly higher transcript abundances of
log2FC 5.12 (padj = 2.40E-05), 4.93, (padj = 2.01E-3), for cepA
and bl2e_cepA, respectively (Figure 4B). This may suggest that in
response to amoxicillin the community increased transcription
of beta-lactamase genes leading to increased bacterial fitness.
Conversely, it is also possible that this change merely reflects a
bloom in the bacterium encoding these transcripts rather than a
direct transcriptional response.

To identify the bacterial origin of the beta-lactamase genes
found in our dataset, bacterial genomes were assembled
from metagenomic data. Within the B. thetaiotaomicron
metagenomically assembled genome (MAG), we identified a
region corresponding to a class A beta-lactamase gene with
100% protein sequence homology to a subclass A2 beta-
lactamase. Due to its high degree of sequence similarity, this
gene likely corresponds to the reads assigned to the cepA
and bl2e_cepA genes (Supplementary Figure S4). The relative
bloom of B. thetaiotaomicron after amoxicillin treatment may
account for the increase in both the cepA and bl2e_cepA gene
abundance and transcript level abundance. It is possible that
the survival of this taxa during amoxicillin treatment may
be promoted by these genes, although we cannot make a
definitive conclusion without more evidence. Various laboratory
strains and patient isolates of Bacteroidales have been shown
to exhibit high levels of resistance to beta-lactams including
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FIGURE 4 | Differential abundance of antibiotic resistance genes. Changes in ARG abundances after antibiotic treatment observed in metagenomic (A,C,E) and
metatranscriptomic data (B,D,F). Bars represent change in gene/transcript abundance after exposure to antibiotics displayed as log2 fold change ± standard error
(log2FC ≥ 1.5/ ≤ –1.5 and padj < 0.05) (Full ARG class counts available in Supplementary Table S3).

amoxicillin (Rogers et al., 1994; Nakano et al., 2011; Stentz
et al., 2015). Previous research into B. thetaiotaomicron found
that this bacterium produces outer membrane vesicles (OMVs)
containing cephalosporinase enzymes that protect neighboring
bacteria from beta-lactam antibiotics (Stentz et al., 2015). Because
B. thetaiotaomicron is a common human commensal (Curtis
et al., 2014; Banerjee et al., 2018), this work has interesting
implications for the complex microbial environment of the gut
microbiome where B. thetaiotaomicron could have a role in

modulating antibiotic activity across many taxa through OMV-
secreted beta-lactamase enzymes.

Metagenomic data showed that ciprofloxacin treatment
induced significant changes in ARG abundance, most notably an
increase in the relative abundance of several chloramphenicol,
aminoglycoside, and MLS class genes, log2FC > 1.5 (padj< 0.05),
and a decrease in the abundance of genes related to multidrug
and fosmidomycin resistance log2FC < −1.5 (padj < 0.05)
(Figure 4C). No significant increases in fluoroquinolone
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resistance genes were found in this dataset, however, it should
be noted that point mutations conferring resistances were not
included in the ARG database used. Thus, fluoroquinolone
resistance mutations in gyrA, gyrB, or parC could not be
identified from this analysis and might be present in the
resistome. No ARG transcripts corresponding to fluoroquinolone
resistance were significantly elevated in the ciprofloxacin treated
samples. The transcripts of tetC, muxC, and mdtC, all genes
encoding efflux system components, were significantly increased
by ciprofloxacin treatment (log2FC ≥ 1.5, padj < 0.05)
(Figure 4D). Although none of these genes have been shown
to directly efflux ciprofloxacin, the fact that fluoroquinolone
treatment exclusively increased transcription of efflux type ARGs
remains interesting.

At the DNA level, no genes were increased in abundance
during doxycycline treatment; however, several were
decreased in abundance. Although genes known to confer
doxycycline resistance were detected in the metagenomic
data (Supplementary Table S3), they were not significantly
changed due to doxycycline treatment (Figure 4E). While
doxycycline did not increase the abundance of any tetracycline
class ARGs in the metagenomic data set, we did detect changes
in the metatranscriptomic data. At the RNA level, doxycycline
appears to have a targeted effect on the transcript abundance
of tetracycline resistance genes with significant increases in
the abundance of tet32, tet44, and tetW with log2FCs of 5.06,
4.63, and 4.07, respectively (padj = 1.6E-2, 1.2E-2, 2.2E-2,
respectively) (Figure 4E). This distinct difference in gene versus
transcript abundance of these tetracycline class ARGs suggests
that while short-term treatment with doxycycline may not select
for bacteria encoding these resistance genes, it may induce their
expression. All three tetracycline resistance genes with increased
transcript abundance, tet32, tet44, and tetW have been shown
to offer protection to tetracycline antibiotics through ribosomal
protection mechanisms (Melville et al., 2001; Stanton et al.,
2004; Abril et al., 2010). The increased transcript abundance
of several tet genes in response to doxycycline, combined with
unchanged levels of these same tet genes in the metagenomic
dataset, suggests that their elevated transcriptional activity
may be providing protection and enabling the population of
tet-carrying bacteria to remain stable during treatment. The
doxycycline-induced expression of several tetracycline resistance
genes highlights the need for increased transcriptional profiling
of ARGs. Relying solely on metagenomics without utilizing
metatranscriptomic sequencing, we would have missed this
ARG activity that may contribute to bacterial survival during
antibiotic pressure.

CONCLUSION

In this study, we show that short-term antibiotic pressure
leads to the differential expression of specific ARGs within
the microbiome, but alters the metagenomic landscape in a
less targeted way. We use both shotgun metagenomics and
metatranscriptomics to profile how three antibiotics, amoxicillin
(beta-lactam), doxycycline (tetracycline), and ciprofloxacin

(fluoroquinolone), impact the diversity, composition, and
transcriptional response of the murine gut resistome. We found
that combining these two sequencing methods provides unique
perspectives on ARGs in the microbiome that would have been
missed by using metagenomics exclusively. For example, we
found that at the RNA level a majority of the induced ARGs
were targeted against the administered antibiotic, while at the
DNA level we found more changes overall, but we did not find a
drug-specific pattern. Our results show that both bactericidal and
bacteriostatic antibiotic treatment alters the resistome at both the
RNA and DNA level, but that these changes may be more specific
to the drug administered at the transcript abundance level.

This work highlights the impacts of three antibiotics on
the murine cecal resistome as well as the importance of
both metagenomic and metatranscriptomic profiling of ARGs.
However, due to the current methodology, there are several
limitations to this work that must be considered. Experiments
were done in mice in a closed mouse facility with reduced
exposure to environmental bacteria and the antibiotic exposure
period was fairly short. Both of these factors will reduce
the opportunity for new ARGs to enter the microbiome
and for selection to act on existing ARGs. In addition,
due to limitations in strain level identification from current
metagenomic methodologies, we are unable to predict whether
or not there was selection of specific ARG containing strains
following antibiotic treatment. Additionally, the computational
pipeline utilized to detect ARGs is unable to identify point
mutations and their contributions to the resistome. These aspects
limit our ability to detect selective events and the evolution
of resistance. Finally, these experiments were conducted with a
limited sample size (n = 4), and no samples were collected at
time 0. These two factors may limit our ability to detect smaller
shifts in ARG levels with sufficient significance and may hinder
the detection of baseline changes to the microbiota of the control
mice over the course of the experiment.

Despite these limitations, we believe that the dual sequencing
approach has real benefits over purely DNA-based approaches.
The widespread use of common antibiotics such as those tested
in this study contributes to the dissemination of resistance genes
in the human population and our microbiomes. However, as
demonstrated here, the presence of an ARG in the metagenome
may not necessarily indicate that it will be transcribed at baseline
or in response to antibiotics. Thus, as we continue to develop
strategies to monitor resistance in patient populations it will be
important to track both gene presence and expression.
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