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Amino Acid Mutation in Position 349
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Pathogenicity of Rabies Virus
Jun Luo, Boyue Zhang, Yuting Wu and Xiaofeng Guo*

College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Rabies, caused by rabies virus (RABV), is a zoonotic disease infecting mammals
including humans. Studies have confirmed that glycoprotein (G) is most related to RABV
pathogenicity. In the present study, to discover more amino acid sites related to viral
pathogenicity, artificial mutants have been constructed in G of virulent strain GD-SH-
01 backbone. Results showed that pathogenicity of GD-SH-01 significantly decreased
when Gly349 was replaced by Glu349 through in vivo assays. Gly349→Glu349 of G did
not significantly influence viral growth and spread in NA cells. Gly349→Glu349 of G
increased the immunogenicity of GD-SH-01 in periphery and induced more expression
of interferon alpha (IFN-α) in the brain in mice. It was observed that Gly349→Glu349

of G led to enhanced blood–brain barrier (BBB) permeability at day 5 postinfection.
All together, these data revealed that Gly349→Glu349 of G mutation decreased RABV
pathogenicity through enhanced immune response and increased BBB permeability.
This study provides a new referenced site G349 that could attenuate pathogenicity of
RABV.
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INTRODUCTION

Rabies is an ancient zoonotic disease affecting the central nervous system (CNS) and continues
to be a worldwide health problem. In humans, once the rabies symptoms manifest, the mortality
rate is almost 100%. The causative agent of rabies is the rabies virus (RABV), which causes fatal
encephalitis in warm-blooded animals (Jackson, 2003). RABV, an unsegmented, negative-stranded
RNA virus, belongs to the genus Lyssavirus of the family Rhabdoviridae. The RABV genome
is ∼12 kb in size and comprises five genes, encoding nucleoprotein (N), phosphoprotein (P),
matrix protein (M), glycoprotein (G), and the RNA-dependent RNA polymerase (L) (Schnell et al.,
2010). Glycoprotein, the sole protein exposed on the surface of the virion, is the most important
determinant of RABV pathogenicity and is the major protein to induce virus neutralizing antibody
(VNA) (Dietzschold et al., 1983; Morimoto et al., 1999; Ito et al., 2001; Faber et al., 2002, 2004).
Different RABV strains possess different virulence mainly based on the different sequences of
G proteins. Amino acid residues 333, 194, 37, and 242/255/268 in G have been demonstrated
to be strongly related to pathogenicity (Faber et al., 2005; Takayama-Ito et al., 2006a,b; Yamada
et al., 2014b). However, mutations in the G protein that contribute to the pathogenicity are
sometimes strain dependent (Takayama-Ito et al., 2004, 2006b). Therefore, it is likely that some
amino acid residues correlated to virulence have still not been discovered and reported in the
literature. RABV G is comprised of a signal peptide, an ectodomain, a transmembrane domain, and
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a cytoplasmic tail (Wunner et al., 1988; Kuzmina et al., 2013).
The ectodomain and cytoplasmic of G have been linked to the
pathogenicity and immune evasion of the virus (Coulon et al.,
1998; Prehaud et al., 2010; Virojanapirom et al., 2012; Huang
et al., 2017). In addition, four major and one minor antigenic
sites of G were identified using monoclonal antibodies (Lafon
et al., 1984; Benmansour et al., 1991). Residues 34–42 and 198–
200 of G have been recognized antigenic site II (Prehaud et al.,
1988). Previous studies suggest that site III is from amino acids
330 to 338 in G (Seif et al., 1985; Wunner et al., 1988). Amino
acid arginine at position 333 of G, which locates in site III, is
virulent for adult mice (Dietzschold et al., 1983; Tuffereau et al.,
1989). Therefore, most of the antigenic sites described locate in
ectodomain of glycoprotein.

A highly pathogenic GD-SH-01 strain, which caused pigs’
death in a farm in Southern China, was isolated from a rabid pig
(Luo et al., 2013). The analysis of whole-genome phylogeny and
the comparison of nucleotide acid sequences suggested that the
GD-SH-01 strain was closely associated with clade I of China, and
it was found to be more pathogenic than challenge virus standard
24 (CVS-24) based on the pathogenicity index comparison (Luo
et al., 2013). In an attempt to discover selective amino acids in
G related to pathogenicity of RABV, and consequently provide
some new referenced sites to generate highly attenuated rabies
vaccines, we compared and analyzed the amino acid sequences
of G from different RABV strains and conducted artificial
amino acid mutation(s) on the backbone of GD-SH-01, with
the corresponding amino acid(s) of HEP-Flury, which is one of
the most attenuated rabies fixed strains and does not kill adult
mice and was widely used as a vaccine strain (Fox et al., 1957;
Sharpless et al., 1957; Morimoto et al., 2011). The pathogenicity
of all mutants was then tested in adult mice. Here, we described a
new amino acid site of RABV that related to its pathogenicity.

MATERIALS AND METHODS

Cells, Viruses, and Animals
Mouse neuroblastoma (NA) cells (Wuhan Institute of Biological
Products, Wuhan, China) were cultured in Roswell Park
Memorial Institute (RPMI) 1640 medium (Gibco, Suzhou,
China) with 10% fetal bovine serum (FBS) (Gibco, Grand Island,
NY, United States). Baby hamster kidney (BHK-21) cells (Wuhan
Institute of Biological Products, Wuhan, China) were maintained
in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, Suzhou,
China) containing 10% FBS. HEP-Flury (from Jiangsu Academy
of Agricultural Sciences, China) were propagated in NA cells.
The virulent wild-type strain GD-SH-01 was previously isolated
from a rabid pig (Luo et al., 2013). Mutant RABV containing
Arg333→Gln333 of G on the backbone of GD-SH-01 was rescued
by our laboratory previously (unpublished data, here as a positive
control of attenuated RABV strain). Female Kunming (KM) mice
(6–7 weeks old), which are an outbreeding strain from Swiss
mice, were purchased from the Center for Laboratory Animal
Science of the Southern Medical University (Guangzhou, China).
All animal experiments were performed under specific pathogen-
free conditions in the Laboratory Animal Center of South China

Agricultural University. All animal experiments were approved
by the Ethics Committee for Animal Experiments of the South
China Agricultural University and conducted in compliance with
National Institutes of Health (NIH) guidelines (Zhang et al.,
2016). All possible efforts were made to minimize the suffering
of laboratory animals.

Selection of Amino Acid in G Protein
To choose the potential amino acids that could attenuate RABV
GD-SH-01 strain (Luo et al., 2012), several pathogenic and non-
pathogenic RABV strains were selected, and the amino acid
sequences of the G’s ectodomain were compared, using MEGA
6 software [MEGA 6.06 (6140226)]. In this study, we selected
partial strains including wild-type strains (from different hosts)
and attenuated strains (pathogenic and non-pathogenic strains),
together with interested wild-type strain GD-SH-01 (Table 1).
The selected viral sequences were obtained from GenBank.

Amino acid site that determine pathogenicity of RABV
is regularly different between pathogenic strains and non-
pathogenic strains. Therefore, we selected amino sites that are
different between pathogenic strains and non-pathogenic strains
or between wild-type strains and attenuated strains. Therefore,
selective amino acids, which differed in selected strains in the
G of HEP-Flury were chosen: amino acid at position 19 in G
(G19), G194, and G349. In addition, different amino acid residue
of G243 between wild-type and attenuated strains was selected.
Amino acid residues in the G protein of GD-SH-01 that are
different from most other selected strains were chosen: G96
and G132. The selected strains’ information and amino acids
are shown in Table 1. All the selected amino acid sites above
were mutated artificially on the backbone of GD-SH-01 with the
corresponding amino acid of HEP-Flury.

Construction of the Mutant Full-Length
Genome cDNAs and Rescue of the
Viruses
The plasmid containing the full-length genome complementary
DNA (cDNA) of GD-SH-01 (rGDSH) was constructed and
described previously (Tian et al., 2017). To construct the full-
length genome cDNA that contains the G19, G96, G132, G194,
G243, or G349 mutations of GD-SH-01, the plasmid of rGDSH
was amplified using respective primers (Table 2). The amino
acids at respective position of GD-SH-01 were replaced with the
corresponding amino acids of HEP-Flury. The seamless cloning
was performed using One Step Cloning Kit (Vazyme Biotech,
Nanjing, China) according to the manufacturer’s protocols.
Successful insertion was confirmed by DNA sequencing. All
the mutant viruses were rescued in BHK-21 cells as described
previously (Inoue et al., 2003; Luo et al., 2017). Rescued viruses
were confirmed in NA cells by direct fluorescent antibody assay
(dFA) with fluorescein isothiocyanate (FITC)-labeled anti-RABV
N antibodies (Fujirabio Diagnostics, Malvern, PA, United States).

Virus Propagation and Titration
All the rescued mutant viruses (rGDSH-G19, rGDSH-G96,
rGDSH-G132, rGDSH-G194, rGDSH-G243, and rGDSH-G349),
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TABLE 1 | Various rabies virus (RABV) strains information and selected amino acid position.

Strains information Amino acid position

Strain Host GenBank No. Passage G19 G96 G132 G194 G243 G333 G349

HEP-Flury Human GU565704.1 + L A L H M Q E

GD-SH-01 Pig JX088694.1 wt I S F N I R G

JX08-48 Ferret badger FJ719752.1 wt I S F N I R G

GX4 Dog DQ849071.1 wt I S F N I R G

HN10 Human EU643590.1 wt I S F N I R G

F04 Ferret badger FJ712196.1 wt I S F N I R G

WH11 Donkey JQ647510.1 wt I T L N I R G

SH06 Dog FJ418886.1 wt I A L N I R G

CYN1009D Dog JQ730682.1 wt I A L N I R G

BJ2011E Equine JQ423952.1 wt I A L N I R G

CQ92 Dog DQ849072.1 wt I A L N I R G

RC-HL Cattle AB009663.2 + I A L N M R G

Ni-CE Cattle AB128149.1 + I A L N M R G

CVS-11 Cattle GQ918139.1 + I A L N M R G

CVS-B2c Cattle AF042824.1 + I A L N M R G

CVS-N2c Cattle HM535790.1 + I A L N M R G

SAD-B19 Dog M31046.1 + I A L N M R G

“+”, virus has been passaged in non-original host or culture cells; “wt,” wild-type virus.

TABLE 2 | Primers used for construction of the mutant full-length genome complementary DNAs (cDNAs).

Primers Sequences of primers nt changes

rGDSH-G19-F CCCATTGATTTACATCATCTCAGCTGTCCGAATAATTTGGTTGTGG ATA→TTA

rGDSH-G19-R TGAGATGATGTAAATCAATGGGACTCCAGGGACCGAGTTTGTCTG

rGDSH-G96-F TGCGTGCAGAGCCGCATACAATTGGAAGATGGCTGGTGACCCCAG TCC→GCC

rGDSH-G96-R ATTGTATGCGGCTCTGCACGCATCCGGTGTTGGTCGAAAGTGC

rGDSH-G132-F AAAGAGTCCCTCGTCATCATATCTCCAAGTGTGGCAGATCTAG TTT→CTC

rGDSH-G132-R TATGATGACGAGGGACTCTTTGGTGGTTTTTACAGTCCGGAGC

rGDSH-G194-F ATTTTCACCCATAGCAGAGGGAAGAGAGCATCCAAAGGGAGC AAC→CAT

rGDSH-G194-R CCCTCTGCTATGGGTGAAAATATCACAAGAGGTTCCCAGTCTG

rGDSH-G243-F TGGGTCGCAATGCAGACATCAGACGAGACCAAGTGGTGCCCTC ATT→ATG

rGDSH-G243-R CTGATGTCTGCATTGCGACCCATGTTCCATCCATAAGTCTAAG

rGDSH-G349-F AGAGTTGGAGAGAGATGTCATCCCCATGTGAACGGGGTGTTTTTC GGC→GAG

rGDSH-G 349-R GATGACATCTCTCTCCAACTCTCAAACACCCTTTAGAGGGGATG

Underlined and bold are nucleotides in the G of GD-SH-01 were replaced by the corresponding nucleotides of HEP-Flury. F, forward primer; R, reverse primer;
nt, nucleotides.

rGDSH-G333, HEP-Flury and GD-SH-01 were propagated in NA
cells (Neuro-cells which is sensitive to RABV). Virus titers were
determined by dFA as described previously (Luo et al., 2016).
Briefly, NA or BHK-21 cells grown in 96-well cell-culture plates
were inoculated with 10-fold serial dilutions of the indicated
virus in RPMI 1640 medium and incubated at 37◦C with 5%
CO2 for 2 days. Then, culture medium was discarded and
cells were fixed with 80% acetone for 30 min at −20◦C. Cells
were washed with phosphate-buffered saline (PBS) three times
and then stained with FITC-labeled anti-RABV N antibodies
at 37◦C for 60 min. Subsequently, antigen-positive foci were
counted under a fluorescence microscope (AMG, Washington,
United States), and virus titers were calculated as focus forming
units (FFUs) per milliliter (FFU/ml) using the Karber method
(Ramakrishnan, 2016).

Pathogenicity of RABV in Adult Mice
Pathogenicity of mutant strains was conducted in adult
mice. KM mice (6–7 weeks of age) were inoculated
intramuscularly (i.m.) with 1.0 × 105 FFU or intracerebrally
(i.c.) with 2.0 × 103 FFU of HEP-Flury, GD-SH-01,
rGDSH-G19, rGDSH-G96, rGDSH-G132, rGDSH-G194,
rGDSH-G243, rGDSH-G349, or rGDSH-G333 (as a
positive control of attenuated RABV strain). Each group
consisted of five or six mice. Mortality was recorded daily
for 21 days.

Virus Growth Curve in NA Cells
Monolayer cultures of 2 × 106 NA cells were infected with
virus at a multiplicity of infection (MOI) of 0.1 FFU. Cells were
then incubated at 37◦C and harvested at 24, 48, 72, and 96 h
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postinoculation (hpi). Virus titers of samples were determined in
NA cells by dFA, as described above. All titrations were carried
out in triplicate.

Virus Spread Assay
The virus spread assay was performed in NA cells in 60-
mm cell cultural dishes as described previously (Mei et al.,
2019). Briefly, monolayer NA cells were infected with RABV
at an MOI of 0.01 and incubated at 37◦C. Cells were stained
with FITC-labeled anti-RABV N antibodies at 24, 36, 48, and
60 hpi. Fluorescent foci in each dish were observed under a
fluorescence microscope. The diameter of each fluorescent foci
was measured using Adobe Photoshop CS software (Adobe, San
Jose, United States) based on its scale. At least six fluorescent foci
in each dish were measured.

Virus-Neutralizing Antibody Investigation
in Adult Mice
Groups of five KM mice (6–7 weeks of age) were inoculated via
the i.m. injection of 1.0 × 105 FFU rGDSH-G349 or GD-SH-
01. RPMI 1640 medium was used for mock infection. Serum
was collected from caudal vein at 9 days postinfection (dpi) and
used to determine VNA levels by means of fluorescent antibody
virus neutralization (FAVN) tests, as described previously
(Cliquet et al., 1998).

Flow Cytometry
Flow cytometry was carried out to investigate the percentage
of immune cells in the spleen after RABV infection. Briefly,
KM mice (6–7 weeks of age) were infected i.m. with
1.0 × 105 FFU of rGDSH-G349 or GD-SH-01 or RPMI
1640 medium, respectively. Mouse spleen were harvested
at 9 dpi. Single-cell suspensions were prepared followed
by treatment with red blood cell lysis buffer (Beyotime,
Shanghai, China) following the manufacturer’s instructions,
and stained with antibodies against markers of T cells
(FITC-CD3e, PE-CD4, PerCP-Cy5.5-CD8a) and B cells
(FITC-CD19, PE-CD40) (all antibodies were purchased
from Affymetrix eBioscience, United States) by incubation
for 30 min on ice. A minimum of 50,000 events were
counted using CytoFLEX flow cytometer (Beckman Coulter,
United States). Data were analyzed using FlowJo software (Tree
Star, Ashland, United States).

Quantitative Real-Time PCR
Kunming mice (6–7 weeks of age) were inoculated via
the i.m. injection of 1.0 × 105 FFU rGDSH-G349 or
GD-SH-01. At 5 and 9 dpi, mice were anesthetized with
ketamine/xylazine (100/10 mg/kg) and then perfused by
intracardiac injection of PBS. Whole brain tissues were harvested
and then lysed in Magzol reagent (Magen, Guangzhou, China).
Groups of three mice were used for each virus at one time
point. Total RNA of each brain tissue sample was extracted
using the HiPure Universal RNA Kit (Magen, Guangzhou,
China) according to the manufacturer’s protocol. Reverse
transcription was carried out using the RevertAid First Strand

cDNA Synthesis Kit (Thermo Fisher Scientific, United States)
following the manufacturer’s instructions. Quantitative real-
time PCR (qRT-PCR) was performed using SYBR Green
Master Mix (Vazyme Biotech Co., Ltd., Nanjing, China) in
a CFX Connect Real-Time System (Bio-Rad, Hercules, CA,
United States). Expression levels of interferon alpha (IFN-α)
and immunoglobulin G (IgG) Ê-L chain were normalized to the
house-keeping gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). Genomic RNA was determined with primers
amplifying leader RNA and partial N. Primers used to
amplify target and reference genes were described previously
(Luo et al., 2017).

Measurement of Viral Load in Periphery
To evaluate RABV load at the inoculation site, KM mice (6–
7 weeks of age) were inoculated in the right hind leg with
1.0 × 105 FFU rGDSH-G349 or GD-SH-01. After the mice
were humanely killed, the right hind leg muscles of five mice
from each group were removed from infected mice at 1, 3,
5, 7, and 9 dpi and grinded in liquid nitrogen and then
lysed in Magzol reagent (Magen). Total RNA was extracted
using the HiPure Universal RNA Kit (Magen), and qRT-PCR
was performed as described previously (Wang et al., 2014)
to determine RABV genomic RNA in muscles using primers
amplifying leader RNA and partial N. Genomic RNA was
normalized to GAPDH.

Virus Growth Curve in Mouse Brain
Rabies virus growth curves in vivo were performed in mouse
brain. KM mice (6–7 weeks of age) were inoculated i.m. with
1.0 × 105 FFU of rGDSH-D255G or GD-SH-01 in 30 µl
RPMI 1640 medium. Three infected mice of each group were
euthanized at 1, 3, 5, 7, and 9 dpi, and brains were harvested
to detect the RABV genome using qRT-PCR as described
previously (Luo et al., 2018). Three infected mouse brains were
homogenized in a ninefold volume of RPMI 1640 medium
and centrifuged at 12,000 × g for 10 min at 4◦C following
repeated freezing and thawing to investigate virus titer in brains.
Supernatants were harvested, and virus titer was determined as
described above.

Measurement of BBB Permeability Using
Sodium Fluoride Uptake
Groups of three KM mice (6–7 weeks of age) were inoculated
via the i.m. injection of 1.0 × 105 FFU rGDSH-G349
or GD-SH-01. The mock-infected mice were treated with
RPMI 1640 medium. Blood–brain barrier (BBB) permeability
was measured through the uptake of sodium fluoride as
described previously (Luo et al., 2018) at 1, 3, 5, and
9 dpi. Data are expressed as fold change relative to mock-
infected mice.

Statistical Analysis
Data were analyzed using GraphPad Prism 6 software (GraphPad
Software, San Jose, CA, United States). The statistical significance
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was determined using the Student’s t-test. P < 0.05 was
considered to be significantly different.

RESULTS

Rescue of Mutant Viruses
Based on the full-length cDNA sequence of GD-SH-01, amino
acid (Ile) at G19 was replaced by Leu (Ile19→Leu19), designated
as rGDSH-G19; amino acid (Ser) at G96 was replaced by Ala
(Ser96→Ala96), designated as rGDSH-G96; amino acid (Phe)
at G132 was replaced by Leu (Phe132→Leu132), designated
as rGDSH-G132; amino acid (Asn) at G194 was replaced
by His (Asn194→His194), designated as rGDSH-G194; amino
acid (Ile) at G243 was replaced by Met (Ile243→Met243),
designated as rGDSH-G243; and amino acid (Gly) at G349
was replaced by Glu (Gly349→Glu349), designated as rGDSH-
G349. Mutant RABV containing Arg333→Gln333 of G on the
backbone of GD-SH-01 was termed rGDSH-G333 (Figure 1).
The mutant strains were rescued in BHK-21 cells and
each virus was verified in NA cells by immunofluorescence
staining using FITC-conjugated antibodies against RABV N
protein. Successful single amino acid mutation was confirmed
by DNA sequencing.

Pathogenicity of Mutant Strains in Adult
Mice
To investigate if the selected mutations really attenuated the
pathogenicity of RABV, adult KM mice (6–7 weeks) were i.m. or
i.c. inoculated with each mutant strain. As shown in Figure 2,
virulent strain GD-SH-01 caused 100% mortality by 14 dpi,
while, as expected, all the mice survived the infection with
the avirulent HEP-Flury through both i.m. and i.c. infection.
As shown in Figure 2A, mutants rGDSH-G19, rGDSH-G96,
rGDSH-G132, rGDSH-G194, and rGDSH-G243 caused 40, 60,
20, 20, and 40% mortality, respectively, while rGDSH-G349
caused no mice death through i.m. infection, same as the contrast
group rGDSH-G333. As shown in Figure 2B, mutants rGDSH-
G19, rGDSH-G96, rGDSH-G132, rGDSH-G194, and rGDSH-
G243 caused 100% mortality, while rGDSH-G349 caused 50%
mortality through i.c. infection. Contrast group rGDSH-G333
did not kill adult mice through i.c. infection (Figure 2B). These
results indicated that mutations of G19, G96, G132, G194, or
G243 decreased parental pathogenicity after i.m. inoculation,
whereas they displayed the same level of pathogenicity as
the parent GD-SH-01 after i.c. inoculation. In contrast, the
G349 mutation showed to be a promising mutation, as it
significantly attenuated GD-SH-01 without killing adult mice
through i.m. inoculation.

Virus Growth Curve in NA Cells
Gly349→Glu349 of G significantly decreased RABV pathogenicity
as described above. We therefore will focus on the investigation
of rGDSH-G349. The in vitro growth curves of rGDSH-
G349 were investigated in NA cells. As shown in Figure 3A,
G349 mutation strain showed same growth curves compared

with parent GD-SH-01. However, rGDSH-G349 reached
the highest virus titers at 72 hpi, which was higher than
GD-SH-01.

Spread of Viruses in NA Cells
G exposed on the surface of virion that is responsible for
the interaction with host cells. Here, we investigated whether
G349 mutations affect viral spread in NA cells. As shown in
Figures 3B,C, Gly349→Glu349 mutation in G did not affect viral
spread compared with parent GD-SH-01.

Immunogenicity of rGDSH-G349 in Adult
Mice
After discovering that rGDSH-G349 significantly attenuated GD-
SH-01 pathogenicity, an attempt was made to investigate its
immunogenicity, which is essential in the clearance of RABV
(Kaplan et al., 1975; Hooper et al., 1998). To investigate
the immune response after Gly349→Glu349 mutation, flow
cytometry was conducted to determine contents/counts of
CD19 + CD40 + B cells, CD4 + T cells, and CD8 + T cells in
spleen at 9 dpi. Figure 4A illustrates the gating strategy to identify
CD19 + CD40 + B cells, and Figure 4B illustrates the gating
strategy to identify CD4 + T cells and CD8 + T cells. As shown
in Figure 4C, rGDSH-G349 recruited more CD19 + CD40 + B
cells and CD8 + T cells (from CD3 + T cells) than parent GD-
SH-01 in the spleen after i.m. infection. The counts of CD4 + T
cells (from CD3 + T cells) induced by GD-SH-01 were more than
those induced by rGDSH-G349.

Virus neutralizing antibody in the periphery blood was
determined at 9 dpi in mice after i.m. infection. As shown
in Figure 5A, rGDSH-G349 was able to induce a higher level
of VNA in periphery compared with parent GD-SH-01. In
sum, Gly349→Glu349 mutation in GD-SH-01 strain enhances its
immunogenicity in mice.

Viral Load of RABV at Inoculation Site
Viral load of RABV at the inoculation site was evaluated in KM
mice after i.m. infection with rGDSH-G349 or GD-SH-01. As
shown in Figure 5B, more genomic RNA of rGDSH-G349 than
parent GD-SH-01 were determined at 5 and 7 dpi. Comparable
viral load were detected in mice infected with rGDSH-G349 and
GD-SH-01 at 1, 3, and 9 dpi.

Immune Effectors in CNS After RABV
Infection
To investigate the innate immune response caused by RABVs in
CNS, mice were immunized with rGDSH-G349 or GD-SH-01
via i.m. route. The messenger RNA (mRNA) levels of IFN-α was
investigated using qRT-PCR. As shown in Figure 6A, rGDSH-
G349 induced more IFN-α than parent GD-SH-01 at 5 dpi. This
indicated that G349 mutation induced a stronger innate immune
response in CNS at early stage.

IgG κ-L chain mRNA expression was determined to evaluate
antibody level in brain tissues (Phares et al., 2006; Lebrun
et al., 2015). As shown in Figure 6B, rGDSH-G349 induced
more expression of IgG Ê-L chain than parent GD-SH-01 at
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FIGURE 1 | Schematic diagrams of mutations in glycoprotein of rabies virus (RABV). N, nucleoprotein; P, phosphoprotein; M, matrix protein; G, glycoprotein; L,
RNA-dependent RNA polymerase. SP, signal peptide; ED, ectodomain; TM, transmembrane domain; CTD, cytoplasmic tail.

FIGURE 2 | Pathogenicity of mutant rabies virus (RABV) strains in adult mice. Female Kunming (KM) mice (6–7 weeks of age) were inoculated i.m. (A) with 1.0 × 105

or i.c. (B) with 2.0 × 103 FFU of HEP-Flury, GD-SH-01, rGDSH-G19, rGDSH-G96, rGDSH-G132, rGDSH-G194, rGDSH-G243, rGDSH-G333, or rGDSH-G349.
Each group consisted of five or six mice. Mortality was recorded daily for 21 days.

5 dpi. rGDSH-G349 infection triggered more immune effectors
infiltrated into CNS than GD-SH-01.

Virus Growth Curve in Mouse Brain
Mice were inoculated i.m. with rGDSH-G349 or GD-SH-
01, and viral genomes and live virus particles were detected

at various times postinoculation to further investigate
whether G349 mutation affect virus replication in the CNS.
Comparable viral genome and live virus particle levels were
detected in mice infected between rGDSH-G349 and GD-
SH-01 at 1, 3, and 5 dpi (Figure 7). However, the levels
of viral genome and live virus particle of rGDSH-G349
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FIGURE 3 | Growth curves and spread ability of rabies virus (RABV) in NA cells. (A) Growth curves. NA cells were infected with rGDSH-G349 or GD-SH-01,
respectively, at a multiplicity of infection (MOI) of 0.1. At 1, 2, 3, and 4 dpi, culture supernatants were harvested, and virus titers were determined. (B,C) Viral spread
in NA cells. Monolayer NA cells were infected with rGDSH-G349 or GD-SH-01 at an MOI of 0.01 and incubated at 37◦C. Cells were stained with fluorescein
isothiocyanate (FITC)-labeled anti-rabies virus (RABV) N antibodies at 24, 36, 48, and 60 hpi. The stained cells were examined under a fluorescence microscope,
and for each group, the presentative image out of three replicates was shown (B). (C) The diameter of each fluorescent foci was measured based on its scale. Data
are presented as mean values ± SE.

were significantly lower than that of GD-SH-01 at 7 and
9 dpi (Figure 7).

BBB Permeability Caused by
rGDSH-G349 in Adult Mice
Enhanced BBB permeability may contribute to the clearance of
infected RABV in CNS. Here, we investigated whether G349
mutation changed BBB permeability after infection. As shown in
Figure 8, mice infected with rGDSH-G349 exhibited increased
levels of NaF compared with GD-SH-01 in both the cerebrum
and cerebellum at 5 dpi. This suggests that G349 mutation strain
enhanced BBB permeability.

DISCUSSION

Reverse genetic technology is a powerful tool to investigate RABV,
and it has been used since the first RABV was rescued from
cloned cDNA (Schnell et al., 1994). Since then, several studies
have successfully used reverse genetic technology to construct
mutant strains of RABV to investigate their pathogenicity or
immunogenicity (Takayama-Ito et al., 2006a,b; Yamada et al.,
2014b; Nakagawa et al., 2017). Previous studies have confirmed
that Ala242, Asp255, Ile268, Lys330, and Arg333 are all involved

in viral pathogenicity (Tuffereau et al., 1989; Coulon et al.,
1998; Faber et al., 2005; Takayama-Ito et al., 2006b), suggesting
that more than one amino acid are associated with RABV
pathogenicity. Here, we speculate that, in addition to the reported
amino acid, other novel amino acid sites in G determine the
pathogenicity of RABV. By comparing the ectodomain of G
from various strains, we selected six potential amino sites,
which might be related to pathogenicity of RABV. In this
study, mutations were conducted in the backbone of GD-SH-
01, which is a highly virulent strain isolated from pig (Luo et al.,
2013). To illustrate the relationship between amino acid site and
pathogenicity, the viral strain was compared to the avirulent
strain HEP-Flury, and the corresponding referenced amino acids
were matched and replaced. All the mutant strains were rescued,
and the pathogenicity was investigated. Here, we found that
Gly349→Glu349 mutation in G decreased RABV pathogenicity,
which was not reported previously.

Interestingly, the comparison of selected G gene sequences
highlighted that the HEP-Flury strain exclusively contained Glu
at G349, while other strains contained a Gly in that position
(Table 1). In addition, only HEP-Flury strain presented Gln at
G333, while other strains (in Table 1) contained an Arg. Previous
studies had indicated that pathogenicity of RABV decreased
significantly when Arg or Lys at G333 was replaced by other
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FIGURE 4 | Flow cytometric analysis of immune cells in spleen. Female KM mice (6–7 weeks of age) were infected i.m. with 1.0 × 105 FFU of rGDSH-G349,
GD-SH-01, or medium alone (mock infection). Spleens were harvested at 9 dpi, and single-cell suspensions were prepared and stained with antibodies against
markers of T cells (FITC-CD3e, PE-CD4, PerCP-Cy5.5-CD8a) and B cells (FITC-CD19, PE-CD40). Data were collected and analyzed with a CytoFLEX flow
cytometer (Beckman Coulter) and FlowJo software (Tree Star). (A) Representative flow cytometric pseudocolor showing the gating strategy to identify
CD19 + CD40 + B cells. (B) Representative flow cytometric pseudocolor showing the gating strategy to identify CD4 + T cells and CD8 + T cells. (C) Percentages of
CD19 + CD40 + B cells, CD4 + T cells and CD8 + T cells in spleen (n ≥ 3 per group). Values are presented as mean ± SE. Asterisks indicate significant differences
between groups, as calculated by Student’s t-test (*P < 0.05).

FIGURE 5 | (A) Virus neutralizing antibody (VNA) in periphery. Groups of five female Kunming (KM) mice (6–7 weeks of age) were inoculated i.m. with 1.0 × 105 FFU
of rGDSH-G349, GD-SH-01 or medium alone (mock infection). Peripheral blood was obtained at 9 dpi, and serum virus-neutralizing antibody was ascertained using
fluorescent antibody virus neutralization test, as described in section “Materials and Methods.” (B) Viral load at inoculation site. KM mice (6–7 weeks of age) were
inoculated in the right hind leg with 1.0 × 105 FFU rGDSH-G349 or GD-SH-01 and the right hind leg muscles were collected from infected mice at 1, 3, 5, 7, and
9 dpi. Genomic RNA of RABV were investigated by quantitative real-time PCR in a CFX Connect Real-Time System. Expression level were normalized to the
housekeeping gene GAPDH messenger RNA (mRNA). Data were analyzed using BioRad CFX Manager and GraphPad Prism 6. Results were shown as the
mean ± SE. Asterisks indicate significant differences between groups, as analyzed by t-test (*P < 0.05).

Frontiers in Microbiology | www.frontiersin.org 8 April 2020 | Volume 11 | Article 481

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00481 April 1, 2020 Time: 20:15 # 9

Luo et al. G349 Mutation Decreases Pathogenicity

FIGURE 6 | Expression of interferon alpha (IFN-α) (A) and immunoglobulin G (IgG) Ê-L chain (B) in the CNS. Female adult Kunming (KM) mice were inoculated i.m.
with 1.0 × 105 FFU of rGDSH-G349 orGD-SH-01. At 5 and 9 dpi, mice were anesthetized, and brains were harvested following the perfusion with PBS. Expression
of interferon alpha (IFN-α) and immunoglobulin G (IgG) Ê-L chain in brain tissues were investigated by quantitative real-time PCR in a CFX Connect Real-Time
System. Expression level were presented per copy of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) messenger RNA (mRNA0.
Results were shown as the mean ± SE. Asterisks indicate significant differences among groups, as calculated by Student’s t-test (*P < 0.05).

FIGURE 7 | Growth curves of rGDSH-G349 and GD-SH-01 in mouse brain. Kunming (KM) mice were inoculated with 1.0 × 105 FFU of rGDSH-G349 or GD-SH-01
via an i.m. route. Mice were euthanized at 1, 3, 5, 7, and 9 dpi, and brains were harvested to determine rabies virus (RABV) genome (A) using quantitative real-time
PCR and live virus titers (B) as described in Materials and Methods. Three mice were used for RABV genome investigations, and three mice were used for virus titers
investigations per group. Data are presented as mean values ± SE. Asterisks indicate significant differences between the two groups, as calculated using Student’s
t-test (*P < 0.05).

amino acids (Seif et al., 1985; Tuffereau et al., 1989; Tao et al.,
2010). Therefore, selecting potential sites present in avirulent
strains, but not in virulent strains, is an approved strategy for
studying the effect of mutation on pathogenicity. Of note, RC-HL
strain contains Arg at G333, but it is an avirulent strain (Ito et al.,
1994); therefore, mutations related to pathogenicity of RABV are
strains dependent. Further studies are necessary to investigate if
Glu at G349 could attenuate other RABV strains.

Previous study indicates that by exchanging the ectodomain
of G from wild-type with attenuated RABVs, the virus titers and
spread ability were altered (Huang et al., 2017). In this study, we
discovered that the single mutation at G349 did not significantly
alter the virus growth curves and spread ability in NA cells. It has
been reported that multiple mutations at positions 252/255/268
of G protein of RC-HL strain did not alter the virus titers in NA
cells (Ito et al., 2010). However, single amino mutation at position

37 or 146 of G protein of 1088 strain significantly increased
virus replication in NA cells (Yamada et al., 2014b). In addition,
mutation of Asn194 of G protein attenuated strain SPBNGA with
Ser had no effect on virus production, while mutation with Lys
decreases virus production (Faber et al., 2005). These previous
findings suggest that whether a single or multiple mutations of
the G protein of RABV really exerts effect on virus replication
is dependent on the specific mutant site or the specific RABV
strains, or on both events.

Previous studies indicate that R196S mutation and D247N
mutation of G in strain 1088 variants, which led to an additional
N-glycosylation and decrease in pathogenicity of RABV (Yamada
et al., 2014a,b). Therefore, N-glycosylation in G may influence
pathogenicity of RABV (Yamada et al., 2014b). In this study,
G349 mutation does not increase or decrease N-glycosylation.
Normally, pathogenic RABV infection causes adult mice death
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FIGURE 8 | Blood–brain barrier (BBB) permeability in the cerebrum and cerebellum of mice infected with rabies virus (RABV). Kunming (KM) mice (6–7 weeks old)
were inoculated i.m. with either rGDSH-G349 or GD-SH-01. RPMI 1640 medium was used for the mock infection. At 1, 3, 5, or 9 dpi, brains were harvested, and
BBB permeability was measured by NaF uptake in the cerebrum and cerebellum. Data are presented as fold change over mock infection. *Indicate significant
differences among groups, as calculated by Student’s t-test (*P < 0.05).

while, attenuated RABV does not kill adult mice (Clark, 1978;
Morimoto et al., 1998; Takayama-Ito et al., 2004; Shimizu et al.,
2007; Tao et al., 2010; Wirblich and Schnell, 2011; Tian et al.,
2016; Miao et al., 2017). Here, we found that mutation from Gly
to Glu at G349 significantly attenuated GD-SH-01, the same as
mutation of G333, without killing adult mice by i.m. inoculation.
Neuroinvasiveness do not contribute to the attenuated virulence
of G349 mutation because rGDSH-G349 showed the same
growth ability compared with parent GD-SH-01 at an early stage
of infection in the CNS. There must be other factors that direct
the clearance of infected rGDSH-G349. Both innate immune
response and adaptive immune response are essential in the
clearance of RABV (Kaplan et al., 1975; Hooper et al., 1998;
Chopy et al., 2011).

G plays the most important role in the induction of VNA
(Cox et al., 1977). A previous study has confirmed that variant
1088-N30 induces higher level of VNA than street strain 1088
in serum in the earlier phase of infection after i.m. inoculation
(Yamada et al., 2012). In this study, we found that VNA titer
in mice induced by rGDSH-G349 was higher than parent GD-
SH-01 after i.m. infection. What’s more, rGDSH-G349 recruited
more CD19 + CD40 + B cells and CD8 + T cells in spleen.
The immunogenicity of rGDSH-G349 is stronger than GD-SH-
01, and this may be due to more viral load at inoculation site
as the results showed. In addition, Gly349→Glu349 mutation
attenuated RABV pathogenicity, and this may contribute to the
activation of dendritic cells (Yang et al., 2015). In addition, G349
mutation enhanced IgG Ê-L chain and IFN-α expression in CNS.
Therefore, the enhanced innate immune response in CNS and
infiltration of immune effectors induced by G349 mutation might
contribute to the clearance of infected RABV. This explained
why the virus load of rGDSH-G349 decreased at a late stage of
infection in CNS.

Recent studies have confirmed the crystal structures of RABV
G and its interaction with neutralizing antibodies (Hellert
et al., 2020; Yang et al., 2020). Residues from G333–G350 of
ectodomain from three strains (CVS-11, Flury, and SAD-B19) are

observed to bond to antibody 523-11 (Yang et al., 2020). They also
found that antibody 523-11 could block the G-mediated syncytia
formation of CVS-11, Flury, and SAD-B19 strains. However,
antibody 523-11 only inhabits the infection of cells by Flury.
The different residues from G333 to G350 were G333 (Gln:
Arg) and G349 (Glu: Gly) between Fulry and CVS-11or SAD-
B19. In this study, interested G349 locates the region that is a
target of neutralizing antibodies, and its mutation may change
the interaction with host cells. Further work is needed to confirm
this speculation.

Enhanced BBB permeability caused by attenuated RABV
also contribute to the clearance of infected RABV (Phares
et al., 2006; Roy et al., 2007; Hooper et al., 2009; Chai et al.,
2015). In this study, we found that rGDSH-G349 rather than
parent GD-SH-01 significantly enhanced BBB permeability at
5 dpi. This might contribute to the enhanced inflammation in
CNS and subsequently clear the infected RABV. In addition,
VNA in serum may also contribute to the clearance of RABV
in the CNS when BBB permeability opens (Huang et al.,
2014). rGDSH-G349 induced higher levels of VNA in periphery
after i.m. infection.

Previous studies indicated that attenuation caused by a single
mutation in G of RBAV may revert according to reverse mutation
or new mutation occurred in other amino acid site (Faber et al.,
2005; Tao et al., 2010). Multiple amino acid changes could
extensively attenuate the pathogenicity of RBAV and improve the
stability of attenuation phenotype (Mebatsion, 2001; Dietzschold
et al., 2004; Faber et al., 2005; Masatani et al., 2011; Nakagawa
et al., 2017). Therefore, G349 could be a potential site when
construct multiple amino acid changes to extensively attenuate
the RABV pathogenicity.

In summary, by comparing the amino acid sequence of G
from different RABV strains, we selected six potential pathogenic
amino acid positions. Gly349→Glu349 mutation in G significantly
decreased RABV pathogenicity through enhanced immune
response rather than decreased replication. G349 mutation
enhanced BBB permeability and might contribute to the
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clearance of RABV in CNS. In conclusion, this study discovered
a new amino acid site of RABV related to pathogenicity.
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