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Depth Influences Symbiodiniaceae
Associations Among Montastraea
cavernosa Corals on the Belize
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Joshua D. Voss*

Harbor Branch Oceanographic Institute, Florida Atlantic University, Boca Raton, FL, United States

In Belize, shallow populations (10 and 16 m) of the coral species Montastraea cavernosa
from the back reef and reef crest are genetically differentiated from deeper populations
on the fore reef and reef wall (25 and 35 m). Like many species of scleractinian
corals, M. cavernosa has an obligate symbiosis with dinoflagellate microalgae from
the family Symbiodiniaceae. Here, we describe the Symbiodiniaceae taxa found within
previously sampled and genotyped M. cavernosa populations along a depth gradient
on the Belize Barrier Reef by implementing high-throughput sequencing of the ITS2
region of Symbiodiniaceae ribosomal DNA and the SymPortal analysis framework.
While Symbiodiniaceae ITS2 type profiles across all sampling depths were almost
entirely (99.99%) from the genus Cladocopium (formerly Symbiodinium Clade C),
shallow (10 and 16 m) populations had a greater diversity of ITS2 type profiles in
comparison to deeper (25 and 35 m) populations. Permutational multivariate analysis of
variance (PERMANOVA) confirmed significant differences in ITS2 type profiles between
shallow and deep sample populations. Overall Symbiodiniaceae communities changed
significantly with depth, following patterns similar to the coral host’s population genetic
structure. Though physiological differences among species in the cosmopolitan genus
Cladocopium are not well-described, our results suggest that although some members
of Cladocopium are depth-generalists, shallow M. cavernosa populations in Belize may
harbor shallow-specialized Symbiodiniaceae not found in deeper populations.

Keywords: mesophotic coral ecosystems, dinoflagellate, amplicon sequencing, ITS2, symbiosis, Cladocopium

INTRODUCTION

The association between scleractinian corals and their endosymbiotic dinoflagellate microalgae
(family Symbiodiniaceae) supports the growth and persistence of important coral reef
habitats worldwide (Muscatine and Cernichiari, 1969; Hatcher, 1988). Algal symbionts are
sheltered and provided inorganic nitrogen, phosphorus, and carbon; consequently, as much
as 95% of their photosynthetically produced saccharides are translocated to their coral host
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(Muscatine and Cernichiari, 1969; Muscatine et al., 1984; Rahav
et al., 1989; Venn et al., 2008; Weis, 2008). This normally
mutualistic symbiosis is also susceptible to breakdown when
corals are exposed to external stressors, especially thermal
anomalies (Goreau, 1964; Jokiel and Coles, 1977; Glynn and
D’Croz, 1990; Brown et al., 1995; Glynn, 1996). Although
corals are capable of heterotrophy, they are particularly reliant
upon the photosynthate produced by algal symbionts to fully
meet their energetic requirements. For most coral species in
close association with Symbiodiniaceae, the coral host will
ultimately perish if symbiosis is not re-established within a
few weeks to months after bleaching (Glynn and D’Croz, 1990;
Douglas, 2003).

The high diversity of algal symbiont communities within and
among coral host species contributes to the intricacies of the
coral-algal symbiosis. Morphometric differences observed among
symbiotic dinoflagellates provided evidence of multiple genera
and species within the initially described genus Symbiodinium
(Blank and Trench, 1985). Recent work led to the revision
of the former clades within the genus Symbiodinium sensu
lato into distinct genera within the newly re-described family
Symbiodiniaceae (LaJeunesse et al., 2018). These genera consist
of numerous algal symbiont “types” or “strains” which align
with species-level differences (LaJeunesse et al., 2012, 2018).
Presently, there is still much focus on describing these
species and evaluating their diverse genetic, physiological, and
ecological characteristics.

Symbiodiniaceae species may exhibit varying tolerances to
environmental conditions and stressors (Baker et al., 2004;
LaJeunesse et al., 2010; Wham et al., 2017). For example,
many species within the genus Durusdinium (formerly Clade
D) exhibit higher thermal tolerance than most species in other
genera, making them less likely to be expelled from their
coral host in times of thermal anomaly (Stat and Gates, 2011;
Cunning et al., 2015a; Silverstein et al., 2015). Corals may
harbor different species of Symbiodiniaceae depending upon
host species, geographic location, solar irradiance levels, or
water depth (van Oppen et al., 2011; Bongaerts et al., 2015b;
Cunning et al., 2015b, 2017). Corals often form symbioses
with one Symbiodiniaceae species, yet some corals may harbor
multiple Symbiodiniaceae taxa simultaneously (Thornhill et al.,
2009; Silverstein et al., 2012; Baums et al., 2014; Serrano et al.,
2014; Cunning et al., 2015a). These associations may also be
ephemeral, with the numerically dominant Symbiodiniaceae
taxa switching following environmental stress and disturbances,
particularly after thermally induced coral bleaching events
(Silverstein et al., 2012, 2015).

High-throughput sequencing of the internal transcribed
spacer 2 (ITS2) region of the ribosomal DNA operon is
one of the most useful molecular methods for describing
Symbiodiniaceae communities within corals (LaJeunesse, 2001;
Baker, 2003; Correa and Baker, 2009; Arif et al., 2014;
LaJeunesse et al., 2018). ITS2 sequencing has been implemented
to characterize Symbiodiniaceae community structure within
and among coral colonies and to identify community profile
shifts across environmental gradients, habitats, and temporal
scales (Stat et al., 2009; Quigley et al., 2014; Klepac et al.,

2015; Cunning et al., 2017; Polinski and Voss, 2018). While
the ITS2 marker is widely used in studies characterizing
Symbiodiniaceae communities and provides comparisons among
studies, ITS2 is known to be multicopy and it is unclear
how copy number varies among Symbiodiniaceae species
(Thornhill et al., 2007). This can impact interpretations of
inter- and intragenomic variation in bioinformatic analyses
(Thornhill et al., 2007; Sampayo et al., 2009). Many studies
collapse sequences into operational taxonomic units at 97%
similarity threshold, as is common with many prokaryotic 16S
amplicon analyses (Klepac et al., 2015; Cunning et al., 2017;
Kenkel and Bay, 2018). This approach can be confounded by
the intragenomic variation of Symbiodiniaceae ITS2 leading
to an inability to resolve biologically relevant taxa (Smith
et al., 2017; Hume et al., 2019). To overcome these hurdles,
other studies have used additional markers (e.g., psbAncr) in
conjunction with ITS2, allowing more robust analysis and
interpretation of in hospite Symbiodiniaceae (LaJeunesse and
Thornhill, 2011). Hume et al. (2019) recently developed and
validated the SymPortal analysis framework to deal with issues
of resolving Symbiodiniaceae taxa based only on ITS2 sequences.
SymPortal identifies defining intragenomic variants (DIVs)
within samples of ITS2 sequencing data. Combinations of
DIVs are then used to determine ITS2 type profiles which are
representative of putative Symbiodiniaceae taxa. This approach
achieves finer resolution of inter- and intragenomic variation
of Symbiodiniaceae ITS2 without the use of additional markers
(Hume et al., 2019).

Coral reefs globally are imperiled by a number of
anthropogenic influences, most notably climate change (Hughes,
1994; Glynn, 1996; Gardner et al., 2003; Mumby et al., 2006;
De’ath et al., 2012). Sea surface temperature models and future
emission scenarios project that the majority of the world’s coral
reefs will experience harmfully frequent thermal stress events
in the coming decades (Hoegh-Guldberg et al., 2008; Donner,
2009; Eakin et al., 2010; van Hooidonk et al., 2016; Hughes
et al., 2017; Skirving et al., 2019), which may have devastating
consequences for the delicate mutualism between corals and
Symbiodiniaceae and the ecosystems it supports. With the
present deterioration of coral reefs and the continued threat of
decline, there has been an increased focus on mesophotic coral
ecosystems (MCEs; Lesser et al., 2009, 2018; Bongaerts et al.,
2010). Located at 30–150 m depths, MCEs experience different
thermal regimes, light spectra, and irradiance as compared to
shallow coral ecosystems (Lesser et al., 2000, 2009; Leichter
et al., 2006; Kahng et al., 2010; Smith et al., 2016). Despite
these differences, many scleractinian species in the Tropical
Western Atlantic (TWA) co-occur on both shallow reefs and
MCEs (as much as 25–40%; Bongaerts et al., 2010, 2017). Due
in part to the species overlap with shallow reefs, MCEs are
hypothesized to be potential refuges for shallow reefs (i.e., the
Deep Reef Refugia Hypothesis; Glynn, 1996; Bongaerts et al.,
2010; Lesser et al., 2018; Bongaerts and Smith, 2019). Multiple
studies have examined the potential for “reseeding” of shallow
reefs with larvae from MCE coral counterparts using molecular
methods to quantify levels of genetic connectivity between
these habitats (Brazeau et al., 2013; Bongaerts et al., 2017;
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Studivan and Voss, 2018; Eckert et al., 2019). It is important
to evaluate symbiont community assemblages as well as coral
genetic structure when assessing connectivity of shallow and
mesophotic reefs to give insight into the potential barriers
to vertical connectivity for depth-generalist scleractinians
(Bongaerts et al., 2010).

Several studies have examined Symbiodiniaceae associated
with scleractinian corals in Belize (Warner et al., 2006; Finney
et al., 2010; Baumann et al., 2018), yet none have assessed
how Symbiodiniaceae vary across shallow and mesophotic
depths. The Belize Barrier Reef surrounding Carrie Bow
Cay and the seaward margin of Glover’s Reef Atoll provide
abundant mesophotic habitat directly adjacent to shallow coral
ecosystems. These reefs exhibit spur and groove structures
to a depth of 20–33 m, a near-vertical step from 30–37 m,
and a sloping reef wall continuing to >100 m (James and
Ginsburg, 1979; Figure 1). Populations of the depth-generalist,
broadcast spawning, scleractinian coral Montastraea cavernosa
lack gene flow between relatively shallow (10 and 16 m) and
deep (25 and 35 m) populations within the South Water
Caye and Glover’s Reef Marine Reserves (Eckert et al., 2019).
To better understand if the identity of algal endosymbionts
associated with M. cavernosa populations in Belize followed
similar patterns as observed in genetic structuring of their
coral hosts, we characterized the Symbiodiniaceae found within
previously genotyped M. cavernosa samples using the high-
throughput sequencing of the ITS2 marker and the SymPortal
analysis framework.

MATERIALS AND METHODS

Sampling Sites and Sample Collection
This study examined the algal endosymbionts within
M. cavernosa populations found across two marine reserves
(South Water Caye and Glover’s Reef Marine Reserves) on the
Belize Barrier Reef. Samples were collected from three sites
along the barrier reef near Carrie Bow Cay (South Reef, Raph’s
Wall, and Tobacco Reef) and one site on Glover’s Reef Atoll
(Glover’s Reef),∼30 km southeast of Carrie Bow Cay (Figure 2).
Samples were collected from sites containing sufficiently
abundant M. cavernosa across all depth zones. Approximately 15
M. cavernosa colonies were sampled at each of the four depth
zones (back reef∼10 m; reef crest∼16 m; fore reef∼25 m; upper
mesophotic ∼35 m; Figure 1) per reef site (n = 242). Sample
collection and initial processing are detailed in Eckert et al.
(2019). After field collection and processing at Carrie Bow Cay,
samples were preserved in TRIzol reagent and initially stored
at –20◦C. Samples were then transported to FAU-HBOI on ice
and stored at –80◦C until genomic DNA extraction. Samples
were collected over two field expeditions (Table 1). All samples
were collected in the spring, nearly one year apart, to avoid
potential seasonal Symbiodiniaceae community shifts. Samples
from 35 m depth zones within South Water Caye Marine Reserve
(i.e., Tobacco Reef, Raph’s Wall, and South Reef; n = 45) were
collected in March 2016 (Studivan and Voss, 2018), and all
remaining samples (n = 137) in South Water Caye Marine

Reserve were collected in March 2017. All samples (n = 60) from
Glover’s Reef Marine Reserve were collected in March 2017.

Symbiodiniaceae ITS2 Amplicon
Sequencing Library Preparation
Total genomic DNA was extracted using a modified cetyl
trimethylammonium bromide (CTAB) extraction (Mieog et al.,
2009) as in Eckert et al. (2019). Following DNA extraction, all
samples were cleaned with the Zymo Research DNA Clean &
Concentrator-5 kit to enhance downstream polymerase chain
reaction (PCR) amplification. Cleaned extracts were checked
for quality and concentration with a NanoDrop 2000 (Thermo
Fisher Scientific) spectrophotometer and sample dilutions were
prepared for PCR amplifications.

The ITS2 region of Symbiodiniaceae ribosomal DNA operon
was targeted for sequencing using Symbiodiniaceae specific
primers its-dino and its2rev2 (Pochon et al., 2001; Stat et al.,
2009) modified to include adapter regions for the incorporation
of indexed forward and reverse Illumina adapters (Klepac et al.,
2015; Supplementary Table S1). Each 30 µL PCR included the
following components: 1U Takara HS Taq, 1X Takara Taq Buffer,
0.15 µM each forward and reverse primer, 0.25 mM dNTP
mixture, and 20 ng of template genomic holobiont DNA. All
PCRs were run with an initial melt of 95◦C for 5 min, followed
by 22–28 cycles of 95◦C for 40 s, 65◦C for 2 min, and 72◦C for
1 min, and a final extension of 72◦C for 10 min. To avoid over-
amplification, any samples with only a faint band visible on a
2% agarose gel after 22 cycles received an additional 1–6 PCR
cycles following the same PCR profile without the initial melt of
95◦C for 5 min (Kenkel et al., 2013; Klepac et al., 2015). Samples
that did not amplify after 28 cycles were excluded from further
analyses (n = 1; Supplementary Table S2).

PCR products were cleaned with the Thermo Scientific
GeneJET PCR Purification Kit according to manufacturer
protocols, quantified fluorescently using Qubit (Invitrogen), and
diluted for subsequent PCRs. Samples were randomly assigned
to one of three sequencing pools (∼80 samples per pool) and
a second PCR was run on each sample to incorporate a unique
combination of indexed forward and reverse Illumina adapter
primers producing a unique dual index (i.e., “barcode”) for each
sample in each pool (Klepac et al., 2015; Supplementary Table
S1). A 20 µL PCR was run for each sample in each pool with
15 ng initial PCR product and 0.15 µM of each indexed Illumina
forward and reverse adapter primer. All other components were
identical to the initial ITS2 amplification PCR. Cycling conditions
were identical to initial PCRs, but with only 4 cycles required to
incorporate indexed adapters.

Indexed PCR products were run on a 2% agarose gel with
SYBR Green (Invitrogen). The resulting ∼500 bp amplicon
was excised, extracted with the QIAGEN Gel Extraction
Kit, and quantified using quantitative PCR (qPCR) on an
Eppendorf Realplex4 using Thermo Scientific Maxima SYBR
Green qPCR Master Mix with 0.1 µM Illumina adapter primers
(Supplementary Table S1). Indexed ITS2 libraries were pooled
based on calculated cycling thresholds (CT) to ensure equitable
representation among samples in each sequencing pool. Pooled
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FIGURE 1 | Generalized reef structure and sampling depths on the Belize Barrier Reef. Inset photographs are representative of typical habitat at sampling depths.
Figure from Eckert et al. (2019).

libraries were purified and concentrated through isopropanol
precipitation and eluted in nuclease-free water for sequencing.
The libraries were loaded and sequenced with 20% phiX on
the Illumina MiSeq platform (v3 chemistry) using paired-
end 300 bp reads.

Amplicon Sequencing Analysis With
SymPortal
Demultiplexed forward and reverse .fastq.gz files were remotely
submitted to SymPortal.org for analysis and were subjected
to standard sequence quality control protocols implemented
with MOTHUR 1.39.5 (Schloss et al., 2009), the BLAST+ suite
of executables (Camacho et al., 2009), and minimum entropy
decomposition (Eren et al., 2015) to filter non-Symbiodiniaceae
and sequencing artifacts from the dataset (Hume et al.,
2019). Sequences were grouped by genera and only groups
with more than 200 sequences were algorithmically searched.
Sequences occurring in a sufficient number of samples within
both the dataset being analyzed and the entire database
of samples run through SymPortal were identified as DIVs
which were then used to characterize ITS2 type profiles
(Hume et al., 2019).

Statistical Analysis of SymPortal Results
Subsequent statistical analyses of Symbiodiniaceae diversity
were conducted on SymPortal outputs in the R statistical
environment (R Core Team, 2019) and PRIMER v7 software
package (Clarke and Gorley, 2015). To account for differences
in sequencing depth among individual libraries, resulting
ITS2 sequences and ITS2 type profile reads were normalized

using trimmed mean of M-values (TMM) in the package
edgeR (Robinson and Oshlack, 2010), which effectively
decreases false discovery rates and increases true positive
rates (Pereira et al., 2018). Non-metric multidimensional scaling
analyses were conducted in PRIMER v7 using Bray-Curtis
dissimilarities of square root-transformed sample read counts
to visualize differences in beta diversity of ITS2 sequences and
ITS2 type profiles.

Subsequent statistical analyses were carried out on ITS2 type
profile sequencing reads, which are representative of putative
Symbiodiniaceae taxa. The betadisper function was used in
the package vegan to calculate multivariate homogeneity of
dispersion (PERMDISP) using Bray-Curtis distances (Oksanen
et al., 2019). Pairwise comparisons were calculated with
permutation tests using the permutest function in vegan for
any significant factors (9,999 permutations). Permutational
multivariate analysis of variance (PERMANOVA) was used to
test for differences in Symbiodiniaceae ITS2 type profiles, due
to the balance of sampling design and the demonstrated lack
of sensitivity to heterogeneity of dispersion compared to other
multivariate statistical tests (e.g., ANOSIM; Anderson and Walsh,
2013). Depth and sampling site were used as fixed factors in the
adonis function in vegan with 9,999 permutations of residuals
from Bray-Curtis dissimilarities. After significant PERMANOVA
results, pairwise PERMANOVA tests were conducted with the
package pairwiseAdonis (Martinez Arbizu, 2017) using false
discovery rate (FDR) corrected p-values. PERMANOVA were
also run on a subset of the data with 35 m samples removed to
test if different sampling times (2016 vs. 2017) influenced the
observed results. Finally, similarity percentage (SIMPER) tests
were run in PRIMER v7 using an 80% cumulative similarity
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FIGURE 2 | Sampling sites within South Water Caye and Glover’s Reef Marine Reserves on the Belize Barrier Reef. Coral reef habitat and MPA shapefiles adapted
from Meerman and Clabaugh (2017).

cutoff to determine which ITS2 type profiles contributed
most to significant differences among factors identified by
pairwise PERMANOVA.

RESULTS

Symbiodiniaceae ITS2 Sequences and
ITS2 Type Profiles
Prior to quality filtering, the 241 samples returned 46,476,815
sequencing reads, 30,858,017 of which passed the described
initial quality and sample assignment filters (66.39%). ITS2
sequences from the genera Symbiodinium (formerly Clade A),
Breviolum (formerly Clade B), and Cladocopium (formerly
Clade C) were used to calculate ITS2 type profiles, with
the majority of filtered ITS2 sequences being of the genus
Cladocopium (99.99%; Figure 3). Thirteen ITS2 type profiles
were identified across all samples, eleven of which were from
the genus Cladocopium, with the remaining Symbiodinium
and Breviolum profiles comprising 0.00017% of all ITS2 type
profiles (Figure 4).

Symbiodiniaceae Variation Across Depth
Visualization of beta diversity of ITS2 sequences with nMDS
revealed that most samples from 25 and 35 m populations,
hereafter referred to as “deep populations,” clustered together
while samples from 10 and 16 m, hereafter referred to as “shallow
populations,” were much less tightly clustered (Figure 5A).
Ordination of ITS2 type profiles with nMDS illustrated strong
clustering of the majority of samples (Figure 5B). Nearly all
(94.17%) of the deep population samples grouped together in
the main cluster, with shallow population samples much more
dispersed in comparison (66.12% in the main cluster). Beta
diversity of ITS2 type profiles was significantly higher in shallow
populations (F = 11.5653, 237, p < 0.0001; Table 2) than deep
populations but did not differ significantly across sampling sites.

PERMANOVA results indicated that Symbiodiniaceae
communities varied significantly by depth (Pseudo-F = 6.8803,
225, p = 0.0001), but that neither site nor the interaction
between site and depth had any significant effects on community
composition. Pairwise PERMANOVA identified that differences
in Symbiodiniaceae communities occurred between shallow
populations and deep populations (Table 3). Removing all 35
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TABLE 1 | Site and sampling information for Montastraea cavernosa samples collected near Carrie Bow Cay, Belize.

Site name Latitude Longitude Depth zone n Sampling date

Tobacco Reef (TR) 16◦49.946′ N 88◦4.441′ W 10 m 15 25 March 2017

16 m 15 24–25 March 2017

25 m 15 25 March 2017

35 m 15 7–8 March 2016

Raph’s Wall (RW) 16◦46.564′ N 88◦4.479′ W 10 m 15 23 March 2017

16 m 15 23 March 2017

25 m 16 23 March 2017

35 m 15 6 March 2016

South Reef (SR) 16◦46.137′ N 88◦4.433′ W 10 m 16 24 March 2017

16 m 15 24 March 2017

25 m 15 24 March 2017

35 m 15 5 and 8 March 2016

Glover’s Reef (GR) 16◦45.323′ N 87◦46.875′ W 10 m 15 27 March 2017

16 m 15 27 March 2017

25 m 15 27 March 2017

35 m 15 27 March 2017

m samples did not change results of PERMANOVA or pairwise
comparisons, demonstrating that time differences between
sampling trips did not significantly influence patterns in algal
symbiont community structure (Supplementary Table S3).
SIMPER tests found shallow and deep populations were 37.46%
dissimilar to one another on average. The three most abundant
ITS2 type profiles (Figure 4) accounted for over 85% of the
dissimilarity between shallow and deep populations (Table 4).

DISCUSSION

Cladocopium was the most abundant algal genus identified
across all M. cavernosa samples from all depth zones on the
Belize Barrier Reef, the majority of which were C3-related
sequences. These results agree with previous characterizations of
M. cavernosa algal symbiont communities on the Belize Barrier
Reef which all hosted Cladocopium (mainly C3 type) species as
their dominant algal symbiont across a depth gradient from 8–
25 m (Warner et al., 2006). The genus Cladocopium is one of
the most species-rich, ecologically abundant, and diverse genera
of Symbiodiniaceae (LaJeunesse et al., 2018). Some members of
the genus, C. goreaui for example, are considered host-generalists
because they exist in association with many coral species
and across broad environmental, geographic, and depth ranges
(LaJeunesse, 2001, 2005; Serrano et al., 2014; LaJeunesse et al.,
2018). Previous studies across multiple regions have reported
M. cavernosa harboring Cladocopium spp. almost exclusively
(Warner et al., 2006; Serrano et al., 2014; Bongaerts et al., 2015b;
Klepac et al., 2015; Polinski and Voss, 2018). Similar to the results
presented here, Cladocopium spp. have also been identified as
the predominant symbiont species within M. cavernosa on reefs
in Florida, United States Virgin Islands, Barbados, Bermuda, as
well as other sites in Belize (Finney et al., 2010; Serrano et al.,
2014). Just as Cladocopium spp. are extremely cosmopolitan reef
inhabitants, M. cavernosa is one of the most ubiquitous coral

species in the TWA, potentially due in part to its association
with this common genus of algal symbiont. Many species of
Cladocopium are also found associated with coral species at
depths >60 m (Lesser et al., 2010; Bongaerts et al., 2015b;
Lucas et al., 2016). Members of Cladocopium were found to be
more photochemically efficient than members of Durusdinium,
especially in temperatures ≤24◦C (Silverstein et al., 2017). This
may make Cladocopium species more beneficial symbionts at
greater depths, including in mesophotic coral ecosystems where
temperatures can be lower and light is more limited (Lesser
et al., 2009). Niche specialization and coincidental metabolic
costs across depth have been demonstrated in the algal symbiont
communities of Seriatopora hystrix colonies (Cooper et al., 2011).
While Durusdinium spp. were dominant in S. hystrix between 3–
23 m, Cladocopium dominated endosymbiont communities were
more common between 23–45 m, coinciding with a decline in net
photosynthetic production.

Forming symbiotic relationships predominantly with a
cosmopolitan and hyper-diverse Symbiodiniaceae genus may
be advantageous to high dispersal, allowing M. cavernosa
to dominate and persist across most reefs in the TWA.
However, some studies examining M. cavernosa Symbiodiniaceae
communities have also detected background (≤5%) levels
of other genera, including Symbiodinium, Breviolum and
Durusdinium (Serrano et al., 2014; Klepac et al., 2015; Polinski
and Voss, 2018). All of these genera have been previously
identified within other scleractinian species on the Belize
Barrier Reef (Baumann et al., 2018), but we only detected
minimal abundances (<0.01%) of ITS2 type profiles from
Symbiodinium and Breviolum in a minority of our samples
(n = 2), demonstrating an affinity for symbioses between M.
cavernosa and Cladocopium spp. in this region.

Previous examination of Symbiodiniaceae from mesophotic
and shallow M. cavernosa has found significant differences in
communities and physiology across depth in multiple regions.
In the northwestern Gulf of Mexico (NW GOM), M. cavernosa
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FIGURE 3 | Normalized relative proportion of ITS2 sequences from Montastraea cavernosa samples. Only the most abundant (>0.01% of all reads) sequences are
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database ID number followed by a letter which refers to the genus the sequence is from (e.g., 71372_C is a sequence from the genus Cladocopium with the
database ID 71372).

from MCEs had higher densities of Symbiodiniaceae cells and
greater levels of chlorophyll a and chlorophyll c2 per unit area of
coral tissue in comparison to shallow conspecifics (Polinski and
Voss, 2018). Despite these differences, there was no significant
difference among Symbiodiniaceae communities observed across
depth in the NW GOM. Other studies have found differences
in Symbiodiniaceae communities of M. cavernosa and other

scleractinian corals across depth in the Bahamas (Lesser et al.,
2010) and Curaçao (Bongaerts et al., 2015a,b). In these instances,
significant differences were observed in the lower mesophotic
zone (>60 m). However, in Curaçao there was also a significant
shift in symbiont community profile observed at 25 m for
M. cavernosa (Bongaerts et al., 2015a), the same depth at which
we have seen differences in both symbiont communities and
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M. cavernosa genetic structure in Belize (Eckert et al., 2019).
While there is evidence for Symbiodiniaceae community shifts
with increasing depth, these patterns do not appear to be
universal. Rather, they appear to depend upon both coral species
and region (Bongaerts et al., 2010, 2015a, 2017).

Symbiodiniaceae ITS2 type profiles from M. cavernosa
on the Belize Barrier Reef are depth-stratified, but not as
distinctly as M. cavernosa population genetic structure. The

symbiont community “break point” still appears to remain
between the geomorphologic transition between reef crest and
fore reef (16 and 25 m; Figure 1), but rather than having
distinct depth-specialized assemblages, there is a relatively
abundant depth-generalist ITS2 type profile in Belize (Figure 4).
Shallow communities instead show greater algal diversity across
coral samples, characterized by the presence of additional
ITS2 type profiles not present in samples beyond 16 m. In
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TABLE 2 | Test results for homogeneity of multivariate dispersions (PERMDISP)
and pairwise permutation tests using the betadisper and permutest functions
in vegan.

Test Comparison Test statistic p-value

PERMDISP Site 0.5837 ns

Depth 11.565 0.0001

Permutation test 10 m vs. 16 m −0.1384 ns

10 m vs. 25 m 3.9797 0.0004

10 m vs. 35 m 4.2363 0.0001

16 m vs. 25 m 4.0923 0.0001

16 m vs. 35 m 4.3452 0.0001

25 m vs. 35 m 0.3414 ns

Pairwise p-values are the permuted p-values generated by the test (9,999
permutations). Non-significant tests are listed as “ns.”

TABLE 3 | Test results from permutational multivariate analysis of variance
(PERMANOVA; 9,999 permutations) of Symbiodiniaceae ITS2 type profiles from
M. cavernosa colonies and pairwise comparisons between all depth zones
(FDR corrected).

Test Comparison Pseudo-F p-value

Overall Depth 6.8801 0.0001

Site 1.4559 ns

Depth:Site 1.1611 ns

Depth 10 m vs. 16 m 0.9838 ns

10 m vs. 25 m 9.0844 0.0005

10 m vs. 35 m 10.0260 0.0004

16 m vs. 25 m 9.4051 0.0004

16 m vs. 35 m 10.6563 0.0004

25 m vs. 35 m 0.1196 ns

Non-significant tests are listed as “ns.”

Curaçao, multiple depth-generalist corals also harbored more
diverse Symbiodiniaceae communities on shallow reefs, but
overall, hosted similar algal symbiont compositions between
shallow and mesophotic depths, until depths of 50–60 m
(Bongaerts et al., 2015a). These results are similar to what we
observed in the algal symbiont communities of M. cavernosa

across shallow and upper mesophotic depths on the Belize Barrier
Reef. There may be extreme depth-specialized communities in
Belize among deeper (i.e., 40–60 m) M. cavernosa populations not
captured in this study, as reported in other regions (Lesser et al.,
2010; Bongaerts et al., 2015a).

On the Belize Barrier Reef, we found the majority (94.17%)
of deep populations of M. cavernosa were dominated by a single
ITS2 type profile with only 2 additional ITS2 type profiles present
in these populations. The majority of all sampled colonies along
the depth gradient from 10–35 m had the same Symbiodiniaceae
ITS2 type profile (Figure 4; n = 192). Recent studies suggest
that there is a high level of intra-genus diversity in physiological
tolerances of algal symbionts. For example, a consensus ranking
algorithm found that thermal tolerance of different Cladocopium
species ranged highly, between the 3rd and 71st percentile (Swain
et al., 2017). There is the potential that the ITS2 type profiles
which were only present in shallow populations of M. cavernosa
are specialized for shallow reef habitats. Previous work has
suggested that the taxa of in hospite Symbiodiniaceae in coral can
be significantly influenced by the availability and diversity of free-
living Symbiodiniaceae present in the surrounding environment
(Cunning et al., 2015b; Quigley et al., 2017). However, there
is limited information on whether depth is a significant factor
in structuring communities of free-living Symbiodiniaceae or if
the in hospite Symbiodiniaceae mirror free-living communities
across depth. Distinct algal symbiont profiles may also be related
to coral skeletal morphology and symbiont photochemistry. In
the Gulf of Mexico, Symbiodiniaceae density and chlorophyll
measurements changed with host morphology (Polinski and
Voss, 2018; Studivan et al., 2019). Observed differences in
Symbiodiniaceae communities found in Belize may also occur
as a function of host morphology as in the Gulf of Mexico. We
are presently unable to assess this hypothesis due to the small
fragment sizes sampled (∼ 6 cm2).

While this study implemented a balanced sampling design
over depth and site, sampling occurred over two excursions
(Table 1). This could introduce variance over time, due to
the temporal changes which may occur in the numerically
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TABLE 4 | Similarity percentage (SIMPER) test results.

Group Average Dissimilarity ITS2 type profile Contribution

Shallow vs. Deep 37.46% C3-C3de-C3bb-C21ae-C3an-C3s-C3dk 46.43%

C3/C3dm-C3de-C3bb-C21ae-C3cd-C3an-C3s-C3dk 19.64%

C3/C3cd-C3de-C3dn-C3bb-C21ae-C3an 19.13%

ITS2 type profiles contributions to Average dissimilarity between depth zones are shown in descending order. SIMPER cutoff was set at 80%.

dominant Symbiodiniaceae within a coral colony (Baker, 2003;
Berkelmans and van Oppen, 2006; Reich et al., 2017). A total
of 13 Symbiodiniaceae ITS2 type profiles were found within
M. cavernosa samples taken from 10 and 16 m in March 2017.
There were only three ITS2 type profiles found in 25 m samples,
even though they were also sampled in March 2017 (Table 1).
Additionally, the entire complement of Glover’s Reef samples was
sampled during a single day (27 March 2017) and these profiles
are indistinguishable from profiles at all other sites (Table 3).
Montastraea cavernosa has previously demonstrated stability
in its Symbiodiniaceae through temporal sampling of tagged
colonies, even in a comparatively variable environment (Klepac
et al., 2015). Finally, there were no observed coral bleaching
events between sampling events, which is a common impetus
for changing of dominant Symbiodiniaceae taxa (Berkelmans
and van Oppen, 2006; Silverstein et al., 2015). Based on these
combined factors, the data presented here likely represent
differences driven by depth rather than any temporal co-factors.

Symbiodiniaceae ITS2 type profiles that dominated deep
populations of M. cavernosa in this study were also typically
abundant in shallow populations of M. cavernosa. However,
a subset of Symbiodiniaceae ITS2 type profiles unique to
shallow populations contributed to the significant differences
in algal symbiont assemblages reported between the shallow
and deep M. cavernosa populations. Physiological differences
among putative Symbiodiniaceae species have been previously
documented, particularly in terms of thermal tolerance (Hume
et al., 2015; Díaz-Almeyda et al., 2017; Silverstein et al.,
2017; Swain et al., 2017), which could potentially be a
driver of observed depth stratification in Belize. Nonetheless,
the ubiquity of the majority of Symbiodiniaceae ITS2 type
profiles across both shallow and deep zones suggest that
algal symbionts are unlikely to be driving the observed
lack of gene flow between shallow and deep M. cavernosa
populations on the Belize Barrier Reef (Eckert et al., 2019).
Further resolution of Symbiodiniaceae taxonomy, coupled with
investigations of environmental tolerances and preferred ranges
(e.g., light, temperature, etc.) among individual Symbiodiniaceae
species are needed to understand the consequences of various
coral-algal symbioses and how these may drive observed
variations in Symbiodiniaceae assemblages across depth zones in
Belize and elsewhere.
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