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Meltwater streams connect the glacial cryosphere with downstream ecosystems.
Dissolved and particulate matter exported from glacial ecosystems originates from
contrasting supraglacial and subglacial environments, and exported microbial cells have
the potential to serve as ecological and hydrological indicators for glacial ecosystem
processes. Here, we compare exported microbial assemblages from the meltwater
of 24 glaciers from six (sub)Arctic regions – the southwestern Greenland Ice Sheet,
Qeqertarsuaq (Disko Island) in west Greenland, Iceland, Svalbard, western Norway,
and southeast Alaska – differing in their lithology, catchment size, and climatic
characteristics, to investigate spatial and environmental factors structuring exported
meltwater assemblages. We found that 16S rRNA gene sequences of all samples
were dominated by the phyla Proteobacteria, Bacteroidetes, and Actinobacteria, with
Verrucomicrobia also common in Greenland localities. Clustered OTUs were largely
composed of aerobic and anaerobic heterotrophs capable of degrading a wide variety
of carbon substrates. A small number of OTUs dominated all assemblages, with the
most abundant being from the genera Polaromonas, Methylophilus, and Nitrotoga.
However, 16–32% of a region’s OTUs were unique to that region, and rare taxa revealed
unique metabolic potentials and reflected differences between regions, such as the
elevated relative abundances of sulfur oxidizers Sulfuricurvum sp. and Thiobacillus
sp. at Svalbard sites. Meltwater alpha diversity showed a pronounced decrease
with increasing latitude, and multivariate analyses of assemblages revealed significant
regional clusters. Distance-based redundancy and correlation analyses further resolved
associations between whole assemblages and individual OTUs with variables primarily
corresponding with the sampled regions. Interestingly, some OTUs indicating specific
metabolic processes were not strongly associated with corresponding meltwater
characteristics (e.g., nitrification and inorganic nitrogen concentrations). Thus, while
exported assemblage structure appears regionally specific, and probably reflects
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differences in dominant hydrological flowpaths, OTUs can also serve as indicators
for more localized microbially mediated processes not captured by the traditional
characterization of bulk meltwater hydrochemistry. These results collectively promote
a better understanding of microbial distributions across the Arctic, as well as linkages
between the terrestrial cryosphere habitats and downstream ecosystems.

Keywords: glacial runoff, 16S rRNA gene, polar stream, biogeography, cryosphere, hydrology

INTRODUCTION

Glacier meltwater streams connect discrete cryosphere habitats
with downstream freshwater and marine ecosystems across the
Northern Hemisphere (e.g., Hood et al., 2009; O’Neel et al.,
2015; Milner et al., 2017). In addition to exporting freshwater,
glaciers and ice sheets also subsidize microbial productivity and
respiration through the downstream delivery of particulate and
dissolved material such as carbon (Bhatia et al., 2013a; Lawson
et al., 2014; Kohler et al., 2017), macro- and micronutrients
(Bhatia et al., 2013b; Hawkings et al., 2015; Dubnick et al., 2017a),
and other weathering products (Hawkings et al., 2017; Hatton
et al., 2019a; Stachnik et al., 2019). While recent progress has been
made in determining factors that control the magnitude of these
biogeochemical fluxes, important clues into solute generation and
the operation of the subglacial drainage system may be uncovered
through the investigation of more qualitative characteristics of
these exports. For example, past work has successfully shown
that chemical signatures of dissolved organic matter (Hood
et al., 2009; Lawson et al., 2014; Dubnick et al., 2017b) and
elemental isotopes (Kohler et al., 2017; Hatton et al., 2019b) are
related to the hydrological and lithological characteristics of the
glacial environment.

One potentially useful, yet under-utilized, tool for
investigating hydrological and biogeochemical weathering
processes are the diverse microbial cells collected and exported
by meltwater from the glacial ecosystem. For example, subglacial
microbes are found at the intersection of the glacier and the
underlying bedrock, and are functionally diverse, having been
shown to utilize a myriad of metabolic pathways operating
over a spectrum of redox conditions (Boyd et al., 2010, 2011,
2014; Stibal et al., 2012a,c; Hamilton et al., 2013; Dieser et al.,
2014), which may enable them to influence a host of weathering
reactions and biogeochemical transformations (Sharp et al., 1999;
Mitchell et al., 2013; Montross et al., 2013; Lamarche-Gagnon
et al., 2019). Yet, due to their physical inaccessibility, these
habitats are notoriously difficult to investigate, and much of
our knowledge of these habitats at present comes from discrete
samples taken from marginal areas (e.g., Boyd et al., 2011;
Žárský et al., 2018). On the other hand, supraglacial (surface ice)
microbial communities, which are comparatively straightforward
to access, can include all three domains of life (Anesio et al.,
2017), and include oxygenic, phototrophic and carbon-fixing
taxa, with Cyanobacteria specifically playing an integral part
in forming the matrix of cryoconite found in depressions on
the glacier surface (Langford et al., 2010; Cook et al., 2016;
Gokul et al., 2019).

Meltwater generated on glacier surfaces collects into
supraglacial streams and lakes that eventually drain into
moulins and crevasses to enter the subglacial hydrological
system (Irvine-Fynn et al., 2011; Hotaling et al., 2017b). Within
the subglacial environment, waters may be routed through
lower residence time efficient/channelized drainage systems
(analogous to subglacial ‘stream channels’), or through a
longer residence time distributed system, which may be more
analogous to the saturated sediments of rivers (Tranter et al.,
1996; Hubbard and Nienow, 1997; Irvine-Fynn et al., 2011).
No matter the path, meltwater entrains debris and microbial
cells en route, and is evacuated from the glacier terminus to
form proglacial streams. Thus, a wealth of information on the
physical/chemical characteristics and drainage pathways of a
given drainage network can be obtained by analyzing the cells
suspended in meltwater. Given recent advances in sequencing
technologies and bioinformatics, these data have great potential
to augment traditional physical and chemical clues for inferring
hydrologic patterns and biogeochemical processes among diverse
glacial habitats.

The physical characteristics (size and shape) and geographic
location of glaciers (latitude, elevation, and aspect) promote
differences in seasonal melt patterns and associated hydrological
‘plumbing,’ providing varying levels of meltwater exposure to
subglacial habitats (Tranter et al., 1996; Wadham et al., 2010).
Subglacial environments themselves are likely heterogeneous
within systems (Graly et al., 2014) and across space and time
because of differences in hydrologic regime (Tranter et al.,
2005), underlying lithology (Mitchell et al., 2013), and organic
matter reserves (Stibal et al., 2012c), all of which may dictate
possible metabolic pathways and energy sources for microbes.
Similarly, microbes inhabiting the supraglacial system can also
differ spatially due to differences in dispersal, climate conditions,
and allochthonous inputs (Stibal et al., 2012b; Cameron et al.,
2016). Therefore, regionally specific assemblages may emanate
from glacial rivers across the Arctic and sub-Arctic.

While temporal (Sheik et al., 2015; Dubnick et al., 2017a)
and catchment-scale (Hauptmann et al., 2016; Cameron et al.,
2017; Žárský et al., 2018) studies on cell export have been
previously performed from a limited number of glacier streams,
there are currently no studies that have made comparisons
among major geographic regions. Thus, in this work, we ask
two main questions: (1) How do exported meltwater assemblages
compare among disparate, high latitude regions, and (2) can a
combination of physical and chemical characteristics be used to
explain the exported assemblage structure and provide clues into
their origins? To test these questions, we collected and analyzed
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meltwater samples from glaciers in six major (sub)Arctic regions
differing in climate, glacier size, and bedrock lithology. We
hypothesized that individual geographic regions should export
unique microbial assemblages due to collective differences in
latitude, climate, and geology. Furthermore, we predicted that
physico-chemical variables commonly used to infer hydrological
patterns would be useful in predicting likely sources of microbial
cells from the supra- and subglacial environments.

MATERIALS AND METHODS

Study Sites
Meltwater samples were collected from 24 glaciers over six
different Arctic and sub-Arctic regions over the 2015–2017
summers (Figure 1). A full list of their characteristics is given in
Table 1. All sites were sampled as close to the glacier terminus
as safely possible (most within ∼10 m), with exceptions noted
below. Briefly, four streams were sampled from the Kuannersuit
Valley, located in central Qeqertarsuaq (Disko Island), west
Greenland, draining glaciers 6, 10, 11, and 13. Kuannersuit Valley
is composed of a primarily basaltic landscape, and numerous
glacier streams here originate from the island’s largest ice cap,
Sermersuaq, along with several valley and cirque glaciers (Žárský
et al., 2018). Iceland was the second basaltic locality, and four
sites were sampled: Sólheimajökull (outlet to Mýrdalsjökull),
Skaftafellsjökull (south outlet to Vatnajökull), Eyjabakkajökull
(north outlet to Vatnajökull), and Kaldalónsjökull (outlet to
Drangajökull) (Björnsson et al., 2000; Tweed et al., 2005).
Next, six localities were sampled on Svalbard. Two glaciers,
Nansenbreen and Sefströmbreen, are located in Isfjorden, while
Ebbabreen is located in Petuniabukta, and Midtre Lovénbreen
near Ny-Ålesund, Kongsfjorden (Hagen et al., 1993). Lastly, cold-
based glaciers Longyearbreen and Foxfonna were sampled near
Longyearbyen. Three mainland Norway glaciers were sampled
including Styggedalsbreen, Bøverbreen, and Austerdalsbreen, all
of which are situated upon gneiss bedrock (Mateos-Rivera et al.,
2016). Styggedalsbreen and Bøverbreen are located in the alpine
Jotunheimen region, while Austerdalsbreen is an outlet glacier
of Jostedalsbreen Ice Cap (Andreassen et al., 2012). Four outlet
glaciers of the Juneau Icefield were sampled in coastal southeast
Alaska; Herbert, Eagle, Lemon, and Mendenhall (Hood and
Berner, 2009). Both Lemon Creek and Eagle River were sampled
several km downstream due to inaccessibility, while Herbert and
Mendenhall meltwater was sampled at the glacier snout. All
four glaciers are underlain by felsic igneous intrusive bedrock.
Finally, three outlet glaciers of the Greenland Ice Sheet (GrIS)
were sampled, all of which drain Precambrian shield bedrock
composed of Archaean gneiss and granite (Henriksen et al.,
2009). Leverett Glacier was sampled several meters from its portal
(Kohler et al., 2017), while Russell Glacier was sampled several
hundred meters from its last glacial contact, upstream of the
confluence with the Leverett River. Lastly, Qinnguata Kuussua,
which drains the large Ørkendalen and Isorlersuup glaciers south
of Leverett Glacier, was sampled immediately upstream of its
confluence with the Akuliarusiarsuup Kuua to form the ‘Watson
River’ near the town of Kangerlussuaq (Cameron et al., 2017).

Sampling
At each stream, three replicate microbiological samples were
taken from the thalweg of the water column using a sterile syringe
(except Foxfonna, where only one replicate was taken). Water
was passed through Sterivex filters (0.22 µm; Millipore, Billerica,
MA, United States) until they clogged, which was between 50
and 600 mL, with most having at least 300 mL (Table 1).
Filters were flushed of water, filled with nucleic acid preservation
buffer (LifeGuard, MO BIO, Carlsbad, CA, United States), and
promptly frozen at −20◦C. Given that time of day may have
a strong influence on the hydrology of glacial systems (longer
residence-time water may be disproportionately released at low
flows), stream sampling was undertaken to roughly correspond
with diurnal peaks in runoff if possible.

Chemical Analyses
Physical and hydrochemical characterization was conducted
concurrently with microbial cell collection as described
previously (Žárský et al., 2018). Briefly, conductivity and pH
were measured in situ at each stream with either a Multi
3430 digital pH and conductivity meter (WTW, Weilheim,
Germany) or a low range Hanna Combo (Hanna Instruments,
United States) pH/conductivity meter. Latitude/longitude and
elevation were measured by handheld GPS, and estimates
of glacier areas were derived from the literature (Table 1).
Meltwater samples for nutrient and dissolved organic carbon
(DOC) analyses were collected directly from the stream via
sterile syringe. Nutrient samples were filtered through 0.45 µm
polyethersulfone GD/XP syringe filters (Whatman) into acid-
washed 30 ml Nalgene HDPE bottles and immediately frozen
at −20◦C. Nutrient concentrations were determined by using
a LaChat QuikChem 8500 flow injection analyser for nitrate
(NO3

−; QuikChem Methods 10−107−04−1−B; LOD = 1 µg
L−1 = 71 nM), ammonium (NH4

+; 10−107−06−1−Q;
LOD = 8 µg L−1 = 571 nM) and soluble reactive phosphorus
(SRP; 31-115-01-1-I; LOD = 1 µg L−1 = 32 nM). DOC samples
were filtered through Whatman Puradisc AQUA syringe filters
(cellulose acetate, 0.45 µm) into acid-washed 30 ml Nalgene
HDPE bottles and frozen. DOC concentrations were determined
using a Shimadzu TOC-L analyzer (Shimadzu, Kyoto, Japan) with
high sensitivity catalyst (LOD for DOC = 20 µg L−1 = 1.7 µM).

Dissolved major ions (F+, Na+, K+, Mg2+, Ca2+, Cl−, SO4
2−,

and HCO3
−) and dissolved silica (DSi) were sampled by taking

meltwater from the thalweg with a clean, 1 l Nalgene bottle triple-
rinsed with stream water. The water was filtered within 24 h
through a 47 mm 0.45 µm cellulose nitrate filter membrane
(Whatman) mounted on a clean Nalgene filter tower. Samples
were stored in 30 ml HDPE Nalgene bottles, and kept refrigerated
(∼4◦C). Major ions were analyzed by ion chromatography on
a Thermo Scientific Dionex ICS5000 + capillary system as
described by Hawkings et al. (2015), with HCO3

− estimated from
charge deficit (Tranter et al., 2002), and DSi measured using
a LaChat QuikChem 8500 flow injection analyzer (QuikChem
Method 31-114-27-1-D) as described by Hawkings et al. (2017).
Pre-weighed filters were used to determine total suspended solids
(TSS) after drying the filters in an oven at 50◦C overnight,
re-weighing, subtracting the filter weight and normalizing by the
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FIGURE 1 | Map of the six studied regions, with detailed insets for each showing the location of each glacier stream sampled. Counterclockwise from top-left: (A)
southeast Alaska (red squares), (B) Qeqertarsuaq (Disko Island, blue upside-down triangles), (C) the Greenland Ice Sheet (gold circles), (D) Iceland (green triangles),
(E) Norway (turquoise diamonds), and (F) Svalbard (purple asterisks). The scale bar in each panel represents 25 km. Background images are from
Landsat/Copernicus and the United States Geological Survey, taken via Google and compiled with QGIS.

water volume that passed through (measured using a measuring
cylinder and usually ∼300–500 mL). See Žárský et al. (2018) for
further notes on analytical precision and accuracy.

Chemical Indices
From our geochemical data, we calculated two indices that
have been used previously in interpreting patterns in weathering
and hydrology (e.g., Dubnick et al., 2017b). The sulfate mass
fraction (SMF) is defined as the concentration of sulfate
(SO4

2−), divided by the sum of sulfate and bicarbonate

(HCO3−; Brown et al., 1996; Tranter et al., 2002). High
SMF (e.g., >0.5) values indicate that a larger proportion
of protons are coming from sulfide oxidation compared to
carbonation reactions, and is thus an indication of the influence
of carbonation versus sulfide oxidation as proton/HCO3

−

sources (Wadham et al., 2004). Complementing this, we also
calculated a divalent/monovalent (DiMo) ratio of major cations:
Ca2+

+ Mg2+/Na+ + K+. This ratio is a crude approximation
of the degree of carbonate dissolution versus silicate dissolution
(Wadham et al., 2010). Higher DiMo values are likely to be more
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TABLE 1 | Physical characteristics of meltwater streams.

Glacier Region Date
sampled

Glacier
area (km2)

Latitude Longitude Elevation
(m)

Vol. water
filtered (mL)

Temperature
(◦C)

Conductivity
(µS/cm)

pH Total
suspended
solids (g/L)

Herbert Alaska 27-Jun-17 60a 58.539120◦ −134.684540◦ 280 3 × 300 0.30 21.00 7.70 0.339

Mendenhall Alaska 28-Jun-17 127a 58.438010◦ −134.544570◦ 113 3 × 300 0.20 18.00 8.61 0.219

Lemon Alaska 29-Jun-17 15a 58.364320◦ −134.478740◦ 20 3 × 360 5.30 38.00 7.81 0.025

Eagle Alaska 29-Jun-17 53a 58.528640◦ −134.805680◦ 6 3 × 480 3.70 18.00 8.07 0.050

Leverett GrIS 5-Sep-17 1200b 67.064770◦ −50.162940◦ 314 3 × 300 0.00 30.00 9.32 0.963*

Russell GrIS 6-Sep-17 120c 67.076780◦ −50.276820◦ 182 3 × 300 0.00 35.00 8.85 0.5*

Qinnguata Kuussua GrIS 7-Sep-17 1800d 67.016170◦ −50.653090◦ 42 3 × 300 0.00 33.00 8.75 NA

Sólheimajökull Iceland 16-Aug-16 47e 63.534833◦ −19.352194◦ 275 3 × 300 NA 48.00 8.78 0.500

Skaftafellsjökull Iceland 17-Aug-16 100f 64.028667◦ −16.932667◦ 153 3 × 250 NA 30.50 9.38 0.253

Eyjabakkajökull Iceland 18-Aug-16 110g 64.666250◦ −15.723694◦ 939 3 × 300 NA 5.60 8.24 0.283

Kaldalónsjökull Iceland 20-Aug-16 37g 66.117611◦ −22.287750◦ 318 3 × 500 NA 6.50 8.50 0.284

Styggedalsbreen Norway 22-Sep-16 2.02h 61.488306◦ 7.880444◦ 1307 3 × 300 0.70 3.00 7.5** 0.009

Austerdalsbreen Norway 24-Sep-16 19.85h 61.588500◦ 6.995333◦ 490 3 × 300 0.30 25.00 6.7** 0.026

Bøverbreen Norway 25-Sep-16 6.75h 61.556694◦ 8.049500◦ 1432 3 × 300 0.70 2.00 6.1** 0.207

Glacier 6 Qeqertarsuaq 4-Aug-15 1.5i 69.715833◦ −53.441617◦ 907 3 × 600 0.10 7.90 7.20 0.107

Glacier 10 Qeqertarsuaq 6-Aug-15 7i 69.766717◦ −53.413400◦ 765 3 × 300 0.10 7.70 8.70 0.827

Glacier 11 Qeqertarsuaq 6-Aug-15 9.7i 69.784050◦ −53.427200◦ 782 3 × 300 2.20 9.90 6.90 0.194

Glacier 13 Qeqertarsuaq 9-Aug-15 18i 69.801817◦ −53.375900◦ 798 3 × 300 0.10 9.00 7.52 0.156

Midtre Lovénbreen*** Svalbard 19-Jul-16 6j 78.895567◦ 12.069350◦ 50 3 × 600 0.9 38.97 8.85 0.746

Nansenbreen Svalbard 2-Aug-16 45.1j 78.353145◦ 14.075243◦ 154 2 × 150,
1 × 200

0.90 70.00 7.21 2.354

Sefströmbreen Svalbard 4-Aug-16 155j 78.719740◦ 14.374894◦ 158 3 × 200 0.80 108.00 8.25 0.902

Ebbabreen Svalbard 6-Aug-16 25j 78.726805◦ 16.794599◦ 288 3 × 300 0.60 112.00 7.60 0.363

Longyearbreen Svalbard 10-Aug-16 4j 78.189720◦ 15.533134◦ 340 3 × 200 NA 210.00 8.37 0.599

Foxfonna Svalbard 5-Aug-17 3.95j 78.15243◦ 16.10879◦ 425 1 × 100 0.10 25.00 8.10 NA

Estimates of glacier area is given with relevant citations: aestimated from Hood and Berner (2009), bPalmer et al. (2011), cVan de Wal and Russell (1994), dLindbäck et al. (2015), eBjörnsson et al. (2000), fTweed et al.
(2005), gBjörnsson et al. (2003), hAndreassen et al. (2012), iŽárský et al. (2018), jHagen et al. (1993). *Averaged from samples taken over 2018 summer. **Measurements from August 2018. ***Data is averaged from
3 days around the sampling day (i.e., 16, 18, and 21 July 2016).
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associated with carbonate weathering and a channelized drainage
system, whereas lower numbers may be proportionally high in
contributions from the distributed drainage system (Wadham
et al., 2010; Dubnick et al., 2017b). All values were converted to
µeq L−1 before calculation.

Nucleic Acids Extraction, Quantification,
and Sequencing
DNA from the suspended sediment samples was extracted,
amplified, and sequenced identically as in Žárský et al. (2018).
Briefly, DNA was extracted using the PowerWater Sterivex DNA
Isolation Kit (MO BIO) following the manufacturer’s protocol.
Extracted DNA was quantified using a Qubit fluorometer
and Qubit dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA,
United States). Template DNA samples were shipped to the
Mr. DNA laboratory (Shallowater, TX, United States) where
16S rRNA gene V4 region primers 515f/806r (Caporaso et al.,
2011) with barcode on the forward primer were used in a 28
cycle PCR using the HotStarTaq Plus Master Mix Kit (Qiagen,
Hilden, Germany) with an initial melt step of 94◦C for 3 min,
followed by 28 cycles of 94◦C for 30 s, 53◦C for 40 s, and
72◦C for 1 min. After amplification, PCR products were checked
in 2% agarose gel and the samples were pooled in equimolar
proportions. Pooled samples were purified using calibrated
Ampure XP beads. Sequencing was performed on an Illumina
MiSeq platform following the manufacturer’s guidelines. The
quality checked dataset is available in the MG-RAST database
(Meyer et al., 2008) under the accession number MGP92375, and
representative sequences of selected OTUs were given accession
numbers MN880326-MN880375 in GenBank.

Bioinformatic Analysis
Sequence data were analyzed by the pipeline SEED v2.0.4
(Větrovský et al., 2018). Paired ends were joined by fastq-join
(Aronesty, 2011), and all sequences with mismatches in tags were
removed from the dataset. Chimeras were detected, and the non-
chimeric sequences were clustered into operational taxonomic
units (OTUs) using UPARSE implemented in USEARCH
8.1.1861 (Edgar, 2013), with a 97% similarity threshold. The
consensus from each OTU was constructed from a MAFFT
alignment (Katoh and Standley, 2013), based on the most
abundant nucleotide at each position. Singletons, chloroplasts,
and mitochondria were removed, and OTUs identified as obvious
PCR contaminants (i.e., human pathogens and symbionts,
organisms strikingly incompatible with the glacier environment,
and known contaminants of DNA isolation kits) were deleted.
The resulting reads ranged from 22,336 to 113,601 per sample
(mean = 64,233), and the dataset was rarefied to the lowest
number (22,336). The 50 most abundant OTUs were identified
against the SILVA nr. 132 database in Mothur (Schloss et al.,
2009), and their putative metabolisms and ecological roles
were assessed by megaBLAST and BLASTn algorithms against
the GenBank nt/nr database. The characteristics of described
species were accepted for OTUs showing sequence similarity
>97% with these species. Finally, to calculate un-weighted and
weighted UniFrac distances, a phylogenetic tree was created

with RAxML (Stamatakis, 2014) and included the top 1,371
OTUs by abundance. The resulting new dataset was rarefied to
the minimum number of reads (21,518) and was used in all
ordination analyses.

Statistical Analyses
To visualize differences in environmental variables between
regions, we performed principle components analysis (PCA)
with physical and hydrological variables hypothesized to have
microbiological relevance using the ggbiplot package (Vu,
2011) in R. Variable distributions were investigated by plotting
histograms, and were log10-transformed if necessary to create a
normal distribution.

In order to ascertain differences in assemblage structure
between regions, diversity indices (#OTUs, Chao1, and
Shannon) were calculated for each sample using the full
rarefied dataset and compared using Tukey’s Honest Significant
Differences test (TukeyHSD). We then created unconstrained
ordinations (principle coordinates analysis; PCoA) to evaluate
variability between samples and sites using both un-weighted
(presence/absence based) and weighted (abundance based)
UniFrac distances on the unfiltered, untransformed subsampled
dataset. The significance of geographical region on assemblage
structure was tested by using a permutational multivariate
analysis of variance (PERMANOVA) using the adonis() function
in the vegan package (Oksanen et al., 2018). This was followed by
a homogeneity of dispersion test (i.e., to see if regional groupings
have statistically similar/dissimilar dispersions) conducted with
the betadisper() function in vegan. Lastly, to visualize differences
in the distribution of particularly influential OTUs, the top 50
OTUs by abundance were plotted (averaged by site and log10 + 1-
transformed) in a heatmap. A dendrogram was produced with
the heatmap.2() function in the gplots package (Warnes et al.,
2019) using the ‘average’ clustering method and Euclidean
distance. Significant clusters were identified using the simprof()
function in the clustsig package (Whitaker and Christman, 2014),
with identical clustering and distance methods described above,
and with transformation = “identity” and alpha = 0.000001.

Distance-based redundancy analysis (dbRDA) models were
then created for both the weighted and un-weighted UniFrac
datasets to find the most parsimonious combination of
environmental variables to explain variability in assemblage
structure across all sites. Quinnguata Kuusua was assigned the
same TSS value as for Leverett River given the similarity of
the catchment size and close geographical proximity. Other
sites/samples where environmental data were missing and could
not be confidently substituted from other sources were removed
from analysis (i.e., Foxfonna and Midtre Lovénbreen; Table 2).
Instances where solute concentrations where below detection
(e.g., DOC, Table 2) were replaced with half the detection limit
value. Candidate models were constructed by including only
environmental variables with variance inflation factors less than
or equal to 5 to avoid including redundant, collinear parameters
(SMF and DiMo were positively correlated with SO4

2− and
negatively correlated with SRP, and because of the presumed
greater biological relevance of the latter variables, the former
were excluded from analyses). These included log10-transformed
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TABLE 2 | Hydrochemical characteristics of meltwater, including nutrient concentrations, major cations and anions, dissolved organic carbon (DOC), sulfate mass fraction (SMF), and the divalent:
monovalent ratio (DiMo).

Site SRP NH4
+ NO2

− + NO3
− DIN DSi F− Cl− SO4

2− Na+ K+ Mg2+ Ca2+ HCO3
− DOC SMF DiMo

Herbert 2.5 0.0 12.1 12.1 378.4 80.4 234.1 2025.0 345.9 580.4 234.7 2138.3 6110.4 198.4 0.30 4.22

Mendenhall 2.4 3.0 14.4 17.4 288.2 77.5 283.3 1949.7 333.1 553.9 226.5 1911.2 5332.0 108.1 0.32 3.98

Lemon 1.3 0.0 33.8 33.8 690.7 85.1 272.8 2775.8 403.4 627.9 369.2 4481.6 13075.9 204.8 0.21 7.56

Eagle 0.6 0.0 16.1 16.1 516.7 75.5 370.3 667.7 463.7 493.6 249.3 1780.3 6807.8 227.9 0.11 3.33

Leverett 5.6 0.0 15.5 15.5 870.2 93.8 155.1 3333.4 1259.7 1008.9 357.3 2519.7 9424.1 218.1 0.31 1.92

Russell 2.3 34.1 23.7 57.8 986.7 85.7 148.5 3184.4 786.8 835.3 553.3 3379.1 11670.4 412.5 0.26 3.85

Qinnguata Kuussua 5.3 5.8 23.7 29.5 971.2 89.6 188.6 3308.3 1124.6 1007.1 462.9 2902.9 10739.3 233.0 0.28 2.45

Sólheimajökull 40.8 4.9 13.3 18.2 2661.7 540.3 2007.0 1928.3 5461.9 449.3 721.9 3217.0 20975.5 62.9 0.10 0.88

Skaftafellsjökull 25.7 8.9 27.1 36.0 1104.6 445.3 1785.3 739.2 3203.1 109.6 155.0 2166.3 10603.5 56.8 0.08 0.85

Eyjabakkajökull 8.8 5.0 5.7 10.7 464.5 420.0 94.5 140.0 400.8 29.2 101.3 529.6 1541.0 <LOD 0.10 1.91

Kaldalónsjökull 9.3 6.3 6.2 12.5 381.1 228.9 535.2 469.2 916.8 46.3 118.3 484.0 2320.5 <LOD 0.20 0.83

Styggedalsbreen 3.8 8.6 31.6 40.2 300.7 16.2 62.1 272.5 132.0 100.1 153.8 370.8 1902.6 105.4 0.15 3.75

Austerdalsbreen 2.2 5.5 56.4 61.9 747.3 174.4 234.0 6702.7 442.9 527.4 154.5 3212.0 3070.4 111.5 0.73 5.28

Bøverbreen 6.4 6.8 <LOD 6.8 139.1 21.1 77.7 433.0 119.2 248.1 54.3 167.7 735.0 84.0 0.43 1.11

Glacier 6 9.1 3.5 0.0 3.5 441.9 6.7 390.9 179.7 564.8 42.8 85.2 710.6 3233.7 192.3 0.07 1.66

Glacier 10 17.5 18.2 0.0 18.2 653.1 4.4 327.1 226.1 703.8 42.7 1335.3 751.5 10060.0 151.8 0.03 4.65

Glacier 11 17.7 25.9 0.0 25.9 221.7 5.2 157.9 102.1 253.9 41.2 91.1 185.2 1341.0 134.8 0.09 1.38

Glacier 13 29.8 9.5 29.5 39.0 974.1 5.9 226.3 206.0 1250.7 42.7 44.2 522.7 4498.9 155.5 0.05 0.54

Midtre Lovénbreen* NA NA 24.5 NA NA NA 205.0 6362.7 703.3 350.0 1068.0 6923.7 20421.3 269.6 0.72 11.01

Nansenbreen 2.1 13.0 4.2 17.2 128.1 143.8 83.4 14632.4 352.8 391.7 2027.8 13000.9 32105.9 169.7 0.37 32.16

Sefströmbreen 0.3 6.2 4.6 10.8 92.9 288.3 57.6 18922.1 108.8 104.9 998.1 19717.4 40419.1 84.4 0.37 143.75

Ebbabreen 0.0 12.5 15.2 27.6 85.2 50.8 1220.1 28347.7 1143.0 412.7 1576.7 19307.5 32080.8 80.9 0.53 18.14

Longyearbreen 1.2 31.7 309.6 341.3 372.2 53.9 1579.2 86419.4 15841.2 688.7 10156.4 13895.7 23665.5 187.7 0.82 2.16

Foxfonna 2.0 15.0 28.7 43.7 194.2 84.3 456.4 6119.5 1992.8 580.4 375.2 142.1 5733.1 640.2 0.58 0.37

All concentrations are reported in parts per billion (ppb), and SMF and DiMo ratios were converted to µeq L−1 before calculation. *Data is averaged from 3 days around the sampling day (i.e., 16, 18, and 21 July 2016).
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glacier elevation, area, latitude, pH, DSi, DIN, Cl−, DOC, TSS,
SRP, and SO4

2−. The best combination of variables for each
of the un-weighted and weighted datasets was then isolated
through backward selection using the ordistep() function in
vegan. Significance of the full model, as well as individual terms,
was assessed using the anova() function. In order to assess
relationships between environmental variables and individual
OTUs, Pearson correlation coefficients were calculated between
the same environmental variables included in dbRDA candidate
models and the top 50 OTUs using the cor() function in R.
Heatmaps and dendrograms were subsequently generated using
the heatmap.2() function, and significant clusters calculated as
described above.

Unless otherwise stated, significance was designated at
α = 0.05, adjusted (Adj. R2 values are reported, and all statistics
and figures were generated using the R statistical environment (R
Core Team, 2017), primarily using functions available within the
phyloseq package (McMurdie and Holmes, 2013).

RESULTS

Differences in Glacier and Meltwater
Characteristics
Regional differences were observed in the measured physical
and chemical characteristics of glacial meltwater (Figure 2,
see Tables 1, 2 for a full summary). Glaciers from Norway
and Qeqertarsuaq were sampled at the highest elevations, and
samples from the GrIS had the largest catchment areas and TSS
concentrations. Iceland and Qeqertarsuaq, both being basaltic
localities, clustered together in the PCA, while other regions
did not show substantial overlap (Figure 2). These streams
had among the greatest SRP and DSi concentrations, and
lowest DiMo ratios (indicating the predominance of silicate
over carbonate weathering). Meltwater streams from Svalbard
displayed comparatively high conductivities, as well as the
greatest DiMo values and SO4

2− and DOC concentrations. SMF
values were greatest in two of the Norway sites (Bøverbreen and
Austerdalsbreen) and two of the Svalbard sites (Ebbabreen and
Longyearbreen). Iceland, along with the GrIS outlet glaciers, also
had the greatest pH values, while Alaskan and Norwegian glaciers
had very low measured pH (6.1-7.5 for Norway; Table 1).

Meltwater Assemblage Structure
Stream assemblages were dominated by the domain Bacteria,
and all streams exported substantially less than 1% of Archaea
by relative abundance. In total, 404 orders from 58 unique
phyla were identified from the full, rarefied dataset. All
samples were dominated by the phylum Proteobacteria, which
had a mean relative abundance of 50.4%, and ranged from
13.3 to 67.2% (Supplementary Figure S1). Proteobacteria
was followed in abundance by Bacteroidetes (mean = 16.2,
range = 2.38–26.5%), and Actinobacteria (mean = 9.86%,
range = 3.38–45.4%). Several sites also had notable proportions
of Acidobacteria (mean = 3.06%, range = 0.10–9.58%) and
Verrucomicrobia (mean = 4.86%, range = 0.049–20.9%),
which were highest in abundance at Greenland sites

(Qeqertarsuaq and GrIS). Cyanobacteria averaged 1.10%
across all samples, and ranged from 0 to 10.2%. In terms of
orders, Betaproteobacteriales (i.e., Betaproteobacteria) was the
most common (mean = 33.6%, range = 4.97–50.6%), followed
by Sphingobacteriales (mean = 4.93%, range = 0.31–11.3%),
Chitinophagales (mean = 4.54%, range = 0.09–24.9%), and
Micrococcales (mean = 4.01%, range 0.40–10.9%). Cytophagales
(mean = 3.93%, range = 0.27–15.3%) and Verrucomicrobiales
(mean = 3.18%, range = 0.02–20.4%) furthermore made up a
substantial proportion of a few samples.

In total, 16,986 OTUs were observed in the full rarefied
dataset. Of these, 150 were observed at all sites, and 1,313 were
observed within all six regions. In contrast, 6,637 OTUs were
present at one site only, and 8,056 were observed from one region
only. Alaska had the most unique OTUs with 3,239 (∼32% of
its total diversity), followed by Norway with 1,116, Iceland with
1,076, Qeqertarsuaq with 994, Svalbard with 934, and the GrIS
with 697 (∼16% of its total diversity). Calculated alpha diversity
metrics showed strong variability among regions (Figure 3), and
differences were significant among all of Observed OTU richness
(ANOVA, F = 13.63, p << 0.01), Chao1 (F = 17.33, p << 0.01),
and Shannon diversity (F = 8.82, p << 0.01). Specifically, Alaskan
streams had significantly greater Observed OTU richness and
Chao1 values than all other regions (TukeyHSD, p < 0.01 for
all comparisons), with the exception of Norway in the case of
Observed OTUs (p = 0.11). Similarly, Iceland, Norway, and
Qeqertarsuaq regions had significantly greater Observed OTU
richness and Chao1 values in comparison to Svalbard (p < 0.03
for all comparisons). On the other hand, Shannon diversity
was more similar between regions with the exception of the
Greenland Ice Sheet, which had substantially lower values, and all
regions had significantly greater values in comparison (p < 0.05
for all). When compared with latitude, Observed OTU richness
(Adj. R2 = 0.42, F = 51.89, p << 0.01), Chao1 (Adj. R2 = 0.45,
F = 57.38, p << 0.01), and Shannon diversity (Adj. R2 = 0.06,
F = 5.06, p = 0.03) were all significantly and negatively correlated.

Principle coordinate analyses (PCoA) were conducted to
assess relationships between assemblages across geographic
regions. When un-weighted UniFrac distances were applied
(i.e., OTUs receive equal weighting), 29.6% of the variability
was explained by axis 1 and 2 combined (Figure 4). GrIS
sites, and a subset of the Svalbard samples, clustered apart
from other regions, while Norway, Iceland, Alaska, and
Qeqertarsuaq samples formed an overlapping cluster. When
tested with PERMANOVA, geographical regions were significant
in explaining assemblage variability (R2 = 0.36, pseudoF = 7.18,
p < 0.01), although dispersions were significantly different by
region (pseudoF = 15.81, p < 0.01). When weighted UniFrac
distances were used (i.e., accounting for abundance), axis 1 and
2 together explained 50.0% of the variability (Figure 4). All
regions clustered closely together, with Qeqertarsuaq, GrIS, and
a subset of Alaskan sites oriented more toward the top of the
figure, and with a subset of Svalbard sites oriented toward the
bottom. Application of the PERMANOVA test suggested that
these regional groupings were also significant different (R2 = 0.47,
pseudoF = 11.51, p < 0.01), although regions again significantly
differed in their dispersions (pseudoF = 7.55, p < 0.01).
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FIGURE 2 | Principle components analysis (PCA) showing differences in selected environmental variables by region. Alaska sites are shown in red squares, the
Greenland Ice Sheet (GrIS) in gold circles, Iceland in green triangles, Norway in turquoise diamonds, Qeqertarsuaq in blue upside-down triangles, and Svalbard in
purple asterisks. Sites with missing environmental data are excluded (i.e., Foxfonna and Midtre Lovénbreen, see Tables 1, 2). Ellipse probabilities are set to 0.8.

In order to gain insight into influential taxa driving patterns
in the PCoA analyses, the top 50 OTUs by abundance were
identified and averaged by site (see Supplementary Table S1
for full taxonomic and ecological information). Within sites,
the top 50 OTUs collectively represented between 40 and
76% of the total number of reads in the full rarefied dataset
(mean and median = 54%). When averages were plotted
in a heatmap (Figure 5), multiple glaciers from the same
region formed significant groups, but no glaciers from different
regions significantly clustered together. In total, 13 significant
clusters were formed, with Nansenbreen alone forming cluster
a. Cluster b was formed by the Qeqertarsuaq sites (Glacier
6, 10, 11, and 13), and cluster c by the Norwegian sites
(Austerdalsbreen, Bøverbreen, and Styggedalsbreen). Two of
the Iceland sites, Kaldalónsjökull and Eyjabakkajökull, formed
cluster d. Sefströmbreen and Russell glaciers both formed
their own clusters, cluster e and f, respectively. Leverett and
Qinnguata Kuusua from the GrIS formed cluster g, and Eagle
and Lemon from Alaska formed cluster h. The remaining
Iceland sites, Sólheimajökull and Skaftafellsjökull, clustered alone
(clusters i and j, respectively). Alaskan glaciers Herbert and
Mendenhall together formed cluster k, and Midtre Lovénbreen
alone formed cluster l. Lastly, the remaining Svalbard sites,
Foxfonna, Ebbabreen, and Longyearbreen, formed cluster m.

Three OTUs in particular were abundant at all sites, with
the most common of these being Polaromonas sp. (Figure 5
and Supplementary Table S1). On average, Polaromonas sp.

accounted for 15% of all reads, ranging from 3 to 28% across
samples. This was followed by Methylophilus sp. with an average
relative abundance of 6% (ranging 1–15%) and Nitrotoga sp.
with 4% (ranging <1–23%). However, at lower abundances,
regional microbial assemblages became more distinct. For
example, Greenland sites (GrIS and Qeqertarsuaq) had higher
abundances of the Verrucomicrobium Luteolibacter sp., and
GrIS and the larger Alaskan rivers (Eagle Glacier and Lemon
Glacier) had high abundances of Pseudarcicella sp., which was
at low abundances at all other sites. Svalbard sites (as well as
Mendenhall Glacier, Herbert Glacier, and a few others) had
high abundances of sulfur oxidizers Sulfuricurvum sp. from
the phylum Epsilonbacteraeota (i.e., Epsilonproteobacteria), and
Thiobacillus sp. from the phylum Proteobacteria (Figure 5 and
Supplementary Table S1). Finally, sites from the GrIS also had
elevated abundances of Planktophila sp.

Correlations With Environmental
Variables
We constructed dbRDA models to identify physical and chemical
variables that best explain variability in exported microbial
assemblage structure across sites (Figure 6). For the un-
weighed UniFrac dataset, the most parsimonious model included
elevation (F = 2.78, p = 0.01), Cl− (F = 1.55, p = 0.06), DOC
(F = 1.81, p = 0.03), SO4

2− (F = 3.84, p < 0.01), glacier area
(F = 3.04, p < 0.01), and latitude (F = 3.48, p < 0.01). The
y-axis explained 13.0% of the variability in the dataset, and was
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FIGURE 3 | Boxplots comparing the observed number of OTUs, Chao1, and Shannon diversity between major (sub)Arctic regions. The dataset was rarefied to
22,336 reads, and regions (x-axis) are ordered by increasing latitude.

driven primarily by elevation and latitude toward the bottom,
and glacier area toward the top, being most strongly associated
with GrIS samples. The x-axis explained 18.0% of the variability,
and was primarily driven by SO4

2− and latitude toward the
right, corresponding mostly closely to Svalbard samples, and
elevation and Cl− concentrations toward the left, corresponding
with Alaska, Norway, Iceland, and Qeqertarsuaq. The full model
explained 31.0% of the variability, and was significant by ANOVA
(F = 2.75, p < 0.01).

For the weighted UniFrac dataset (Figure 6), the most
parsimonious model included DOC (F = 3.46, p < 0.01), glacier
area (F = 3.73, p < 0.01), SO4

2− (F = 3.20, p = 0.01), Cl− (F = 3.42,
p < 0.01), and latitude (F = 6.20, p < 0.01). The y-axis explained
11.2% of the variability, and was predominantly driven by DOC
and glacier area toward the top, being most closely associated
with GrIS samples. The x-axis explained 29.2% of the variability,
and was driven primarily by latitude toward the right and Cl−,
SO4

2−, and glacier area to the left. Svalbard and Qeqertarsuaq
samples were most strongly oriented toward the right, while
GrIS and Alaska were oriented toward the left. The full model

explained 40.4% of the variability, and was significant by ANOVA
(F = 4.00, p < 0.01).

The abundance of the top 50 OTUs was then compared
with corresponding hydrochemical characteristics to determine
possible drivers for common taxa (Figure 7). Based on these
relationships, the row dendrogram split the top 50 OTU’s into
nine significant clusters. Cluster 1 included Achromobacter sp.,
Caulobacter sp., and Pseudarcicella sp., which were positively
correlated with latitude, Cl−, and SO4

2− and negatively
correlated with SRP and DSi. Cluster 2 was formed by
Sulfuricurvum sp. alone, and cluster 3 included four OTUs
(Ferrunginibacter, Gemmatimonas sp., Acidimicrobinae, and
Actinobacteria). Both clusters 2 and 3 were positively correlated
with DOC, but negatively correlated with TSS, latitude, elevation,
and SRP. Cluster 4 included several of the most common OTUs,
such as Polaromonas sp., Rhodoferax sp., and Nitrotoga sp., and
was (mostly) positively correlated with pH, glacier area, TSS, and
SRP. Cluster 5 hosted some of the remaining abundant OTUs,
such as Luteolibacter sp., Thiobacillus sp., and Glaciibacter sp.,
and were negatively related to latitude, elevation, and SRP, but
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FIGURE 4 | Principle coordinates analysis (PCoA) showing differences between geographic regions on un-weighted (top) and weighted (bottom) UniFrac
distances. Alaska sites are shown in red squares, the Greenland Ice Sheet (GrIS) in gold circles, Iceland in green triangles, Norway in turquoise diamonds,
Qeqertarsuaq in blue upside-down triangles, and Svalbard in purple asterisks. Colored circles indicate 95% confidence intervals of regional categories.

positively correlated with DOC, pH, and glacier area. Cluster 6
was negatively correlated with DOC and SO4

2− concentrations,
but positively correlated with SRP and elevation. Clusters 7
and 9, the former of which hosted the common Methylophilus
sp., were both negatively correlated with pH and Cl− overall.
However, cluster 9 was positively correlated with TSS, SO4

2−, and
latitude, while cluster 7 showed the opposite relationships. Lastly,
cluster 8 showed positive relationships with SRP, latitude, and
elevation, but showed mixed relationships with the remaining
variables (Figure 7).

DISCUSSION

As glacial melt rates continue to increase across the northern
hemisphere (Zemp et al., 2019), a fuller understanding of
the consequences of deglaciation is warranted. One of the
most conspicuous of the anticipated effects will be the altered
production of meltwater (e.g., Milner et al., 2017; Huss and Hock,
2018), along with associated changes in hydrologic pathways (e.g.,

meltwater generated further inland and at greater elevations,
intensifying connectivity between supra- and subglacial habitats),
which ultimately have the greatest relevance for determining the
quantity and character of solute and particulate fluxes. Yet, while
the physical and chemical changes accompanying deglaciation
may be comparatively straightforward to predict, the biological
consequences for glacial ecosystems are far less intuitive (Fell
et al., 2017; Hotaling et al., 2017a), and generalizations are
inherently difficult to make due to differences in glacier size,
elevation, bedrock, thermal regime, vegetation, and precipitation
patterns (e.g., Carnahan et al., 2019). By studying microbial
assemblages exported by glacier meltwater streams, it may be
possible to investigate microbial processes taking place in the
overall glacial system, and assess changes in structure and
export over time.

Assemblage Structure
In this study, we performed a geographically broad survey
of glacial streams from across the Arctic and sub-Arctic to
investigate whether the composition of microbial assemblages is
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FIGURE 5 | Heatmap showing the log10 + 1-transformed abundance of the top 50 OTUs averaged by glacier stream site for the full rarefied dataset. Higher values
are indicated by greater shade intensity. Site labels are colored by region, with Alaska sites indicated by red, the Greenland Ice Sheet (GrIS) by gold, Iceland by
green, Norway by turquoise, Qeqertarsuaq by blue, and Svalbard by purple. The column side bar indicates the 13 significant site clusters.

linked to differences in geographic location and/or the physical
and chemical characteristics of meltwater. We found meltwater
assemblages to have the same coarse structure reported from
other glacier streams (taking into consideration updates to the
Silva database), being dominated by the phyla Proteobacteria and
Bacteroidetes (Sheik et al., 2015; Cameron et al., 2017; Dubnick
et al., 2017a). Interestingly, we found that all glacier meltwater
streams export a small subset of the same OTUs at high relative
abundances. A species of Polaromonas was the most abundant
OTU recovered from all sites in this study, and belongs to a
genus exhibiting a ubiquitous, global distribution throughout
the cryosphere (Darcy et al., 2011). While the ecological role
of Polaromonas spp. has not been decisively resolved, they are
thought to be generalists, able to utilize a wide variety of carbon
substrates and survive inhospitable periods (possibly including
long-range dispersal) through dormancy (Darcy et al., 2011;
Franzetti et al., 2013). The other abundant OTUs included
the methylotrophic Methylophilus sp. and nitrogen oxidizing

Nitrotoga sp., both of which are genera commonly recovered
from cold environments globally (Achberger et al., 2016; Goordial
et al., 2016; Boddicker and Mosier, 2018).

Yet, assemblages were also regionally unique, with up to a
third of all OTUs from a given region being exclusive to that
region. Most of these unique OTUs were found within the
rare biosphere (exhibiting less than ∼0.1% relative abundance;
Lynch and Neufeld, 2015), which helps to explain differences
observed between the un-weighed and weighted UniFrac
analyses. Interestingly, the three regions with the greatest number
of unique OTUs (Alaska, Norway, and Iceland) clustered tightly
together in the un-weighted UniFrac ordination (which is
more sensitive to differences in low-abundance OTUs) while
regions with fewer unique OTUs (specifically Svalbard and GrIS)
presented less overlap with other regions and a greater dispersion
between sites. However, when weighted UniFrac distances were
plotted (taking into consideration OTU abundances), there
was much greater overlap among regions, reflecting the high
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FIGURE 6 | Distance-based redundancy analysis (dbRDA) showing the most parsimonious combination of explanatory variables for explaining assemblage structure
for both un-weighted (top) and weighted (bottom) UniFrac datasets. Sites with missing metadata were excluded (i.e., Foxfonna and Midtre Lovénbreen, see
Tables 1, 2). Alaska sites are shown in red squares, the Greenland Ice Sheet (GrIS) in gold circles, Iceland in green triangles, Norway in turquoise diamonds,
Qeqertarsuaq in blue upside-down triangles, and Svalbard in purple asterisks.

relative abundances of the several aforementioned OTUs that
were common to all sites. When a dendrogram was created
to compare the relationships between sites and the top 50
OTUs, the ‘high elevation’ sites from Qeqertarsuaq, Iceland, and
Norway were mostly oriented toward the right. These sites had
relatively low relative abundances of sulfur oxidizers Thiobacillus
and Sulfuricurvum, especially in comparison to the Svalbard
sites, where SO4

2− concentrations are commonly high (Yde
et al., 2008). Meanwhile, the larger rivers sampled from Alaska
(Lemon Glacier and Eagle Glacier) and the GrIS clustered to
the left, set apart by relatively high abundances of Pseudarcicella
sp. and Planktophila sp. As both Pseudarcicella (e.g., Cruaud
et al., 2019) and Planktophila (Lee and Eom, 2016) are relatively
common freshwater genera, their elevated relative abundances
are potentially an indicator of lateral freshwater inputs between
the source glacier and sampled sites.

Furthermore, regions differed in their magnitude of exported
diversity, and alpha diversity decreased with increasing latitude.

This pattern is a well-known phenomenon for macro-organisms
(i.e., the Latitudinal Diversity Gradient, e.g., Pianka, 1966;
Rohde, 1992; Hillebrand, 2004), and has more recently been
observed for microorganisms in other biomes, such as the
ocean (Fuhrman et al., 2008; Raes et al., 2018). As argued for
other systems, this pattern may be a function of geological
age, greater productivity (either from more calendar days with
solar radiation, or potentially greater fluxes of allochthonous
organic carbon transported to glacier surfaces), or a higher mean
air temperature, which could enhance supraglacial metabolic
activity. However, the Latitudinal Diversity Gradient has seen
mixed support in terrestrial soil bacterial communities (Fierer
and Jackson, 2006; Chu et al., 2010), and more work will be
necessary to validate this pattern and identify its drivers within
glacial environments. Importantly, most of the taxa identified
in this study are not endemic (Supplementary Table S1),
but bacteria with (putatively) cosmopolitan distributions. Thus,
differences in among-site diversity are likely more attributable to
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FIGURE 7 | Heatmap showing the relationship between environmental variables (only those with variance inflation factors less than or equal to 5 included) and the
top 50 OTUs. Sites with missing metadata were excluded (i.e., Foxfonna and Midtre Lovénbreen, see Tables 1, 2). Cool colors indicate high Pearson correlation
coefficient values, and warm colors indicate low values. The row side bar indicates the nine significant OTU clusters.

the diversity of available niches rather than geographical isolation
or dispersal limitation.

Relationships With Meltwater
Characteristics
In addition to possible spatial patterns, we also hypothesized
that assemblage structure would be related to the physical and
chemical characteristics of the meltwater, reflecting dominant
hydrologic processes as well as potential energy sources. We
found that the most parsimonious models for both the un-
weighted and weighted dbRDA analyses included DOC, SO4

2−,
latitude, glacier area, and Cl−, indicating that similar factors
are responsible for determining both the taxa present as well
as their relative abundance in glacier meltwater. However, the
magnitude of their importance differed between un-weighted
and weighted analyses, and may therefore represent different
mechanisms of influence. Specifically, physical variables such as
latitude, glacier area, SO4

2−, and elevation showed a high level of
influence in the un-weighted analysis. These variables potentially
represent a gradient of physical habitat types, which may in

turn correspond to niche and taxonomic diversity. In contrast,
Cl−, SO4

2−, and DOC exhibited a higher degree of influence
in the weighted dbRDA analysis, and may reflect differences in
the availability of necessary solutes/resources, which may allow a
subset of taxa to proliferate.

Comparisons between the identity and inferred metabolisms
of the top 50 OTUs (Supplementary Table S1) with
environmental variables were made to help further disentangle
factors structuring assemblages between sites and regions.
Furthermore, we reasoned that clusters showing higher
correlations with proxies generally associated with greater
rates of subglacial weathering (e.g., TSS, SRP, pH, and DSi)
may indicate a proportionately greater subglacial source of
cells. A subset of the clusters indeed seemed reasonable from
this perspective. For example, the OTUs composing clusters
4 and 5 were identified as aerobic autotrophs, and showed
an overall positive correlation with pH, glacier area, and TSS,
suggesting that these OTUs are disproportionately sourced
from subglacial habitats (potentially utilizing basal melt as an
oxygen source). Adding to this interpretation, Thiobacillus
from cluster 5 is a commonly observed subglacial genus
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(e.g., Achberger et al., 2016), and cluster 4 included Rhodoferax
sp., which was previously found to dominate subglacial sediment
samples from Qeqertarsuaq (Žárský et al., 2018). However, other
clusters presented more ambiguous associations. For example,
clusters 2 and 3 were disproportionately composed of OTUs
inferred to be anaerobic, and while their positive relationship
with DSi may collectively suggest a greater subglacial source,
their negative relationships with TSS and SRP make this
argument less strong. Similarly, members of clusters 6 and 8
are almost all inferred to be aerobic heterotrophs, yet showed
mixed relationships with all of TSS, DSi, and pH. Thus, in the
majority of cases, the origin of exported OTUs from the glacier
environment was not possible to resolve with our cluster analysis.

Correlations between individual OTUs and the meltwater
chemistry were also sometimes counterintuitive. For example,
autotrophic sulfur oxidizers Thiobacillus sp. and Sulfuricurvum
sp. correlated positively with DOC, but showed no relationship
with SO4

2−. Similarly, inferred nitrifiers (Nitrotoga sp. and
Nitrosospira sp.) and nitrogen reducers (Glaciimonas sp., and
Intrasporangiaceae) showed no relationship with DIN. Clusters
6 and 8, which were predominately composed of aerobic
heterotrophs, were strongly negatively correlated with DOC
(though they were positively correlated with SRP). A final
example is from the Nansenbreen glacier, where sulfur oxidizers
represent up to 25% of the top 50 OTUs, yet sulfate is only slightly
elevated compared with other sites. While it is possible that
comparisons with different chemical species might yield different
results (e.g., H2S instead of SO4

2−), and we understand caution
should be exercised in making conclusions from the inferred
metabolisms of clustered OTUs, we still expected more robust
relationships with some of these more specific taxa with solutes
corresponding to their metabolisms.

One possible explanation for these results may be due to
collinearity within sites. Sites strongly clustered within regions
in the PCA analyses, suggesting strong site-related variability
in environmental variables. Furthermore, it is likely that some
samples play a disproportionate role in driving OTU responses
given insufficient gradients for some variables. For example,
Svalbard had the greatest values for many variables (including
latitude, chemical indices, and conductivity), which set this
region apart in the PCA, and thus generally represented the
higher range of abiotic characteristics in individual comparisons.
Therefore, it is difficult to say if correlations in general are an
indicator of hydrologic processes, reflect biogeographic/regional
patterns, or are entirely spurious. Furthermore, glaciers were
sampled at different stages of hydrological development. As
discussed previously by Hatton et al. (2019b), our ‘spot sampling’
approach may make potential signals difficult to identify and/or
interpret due to their being taken out of the hydrological context
of the site. Future efforts might find very different patterns
and relationships with hydrochemical variables if samples are
taken throughout different points in the year (Sheik et al., 2015;
Dubnick et al., 2017a) or over a greater selection of sites.

Another confounding factor is the problem of scale and
chemical mixing. In general, while glaciers host broad supra-
and subglacial habitats, there are also ‘microhabitats’ within
these heterogeneous domains with their own specific energy

sources and chemical signatures, which is highlighted by our
observation of a few taxa at relatively high abundances in a
subset of sites. However, as solutes and particulates are collected
by meltwater, they are diluted, and thus the unique physico-
chemical characteristics of microhabitats (as well as supra- and
subglacial chemical signals) can be ‘averaged away’, making them
undetectable through bulk meltwater analyses. However, these
microhabitats may be important hotspots of subglacial life given
that any energy source is likely to have a large impact in
an otherwise energy-limited environment. We argue that one
considerable strength of analyzing the microbial assemblages of
meltwater is that it may be possible to detect these microhabitats
with the rationale that any spot with high microbial productivity
is likely to have an elevated signature in the mixed community
structure, though it may not necessarily be reflected by meltwater
characteristics. Thus, OTUs that cannot be explained by bulk
meltwater chemistry may actually be indicators of these otherwise
undetectable microhabitats.

CONCLUSION

Our results suggest that glaciers export both shared cosmopolitan
taxa that dominate assemblages, as well as microbes unique to
particular regions and sites, and highlight the heterogeneous
nature of glacial environments their associated microbiota.
Greater exported diversity was uncovered at lower latitudes,
which are also the most prone to physical reduction from climate
change, and are thus the most likely to experience broad changes
in the diversity of microbial export in the future. Furthermore,
we found some assemblages contain individual OTUs with
distinct metabolic signals, likely reflecting spatially confined
energy sources that have small effects on overall water chemistry,
but a great influence on meltwater assemblage structure.
Thus, rather than reflecting biogeochemical characteristics of
meltwater, we found microbial cells instead provide important
information about glacier habitats that are essentially impossible
to resolve by analyzing bulk meltwater chemistry alone.
Given the contributions of glacier exports to stream microbial
diversity, it follows that post deglaciation, a substantial source
of this diversity may disappear, although the viability and
potential functional roles performed by exported microbes
(e.g., competition, nutrient cycling, genes for exchange, etc.)
are poorly explored. Nonetheless, this work suggests that
exported microbial cells show promise as biological tracers for
investigating hydrological processes, exploring the heterogeneous
nature of subglacial habitats, and monitoring changes in
glaciated watersheds.
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