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The structure of microbial communities, microalgae, heterotrophic protozoa and fungi
contributes to characterize food webs and productivity and, from an anthropogenic
point of view, the qualitative characteristics of water bodies. Traditionally, in freshwater
environments many investigations have been directed to the study of pelagic microalgae
(“phytoplankton”) and periphyton (i.e., photosynthetic and mixotrophic protists) through
the use of light microscopy (LM). While the number of studies on bacterioplankton
communities have shown a substantial increase after the advent of high-throughput
sequencing (HTS) approaches, the study of the composition, structure, and spatio-
temporal patterns of microbial eukaryotes in freshwater environments was much less
widespread. Moreover, the understanding of the correspondence between the relative
phytoplankton abundances estimated by HTS and LM is still incomplete. Taking into
account these limitations, this study examined the biodiversity and seasonality of the
community of eukaryotic microplankton in the epilimnetic layer of a large and deep
perialpine lake (Lake Garda) using HTS. The analyses were carried out at monthly
frequency during 2014 and 2015. The results highlighted the existence of a rich and
well diversified community and the presence of numerous phytoplankton taxa that were
never identified by LM in previous investigations. Furthermore, the relative abundances
of phytoplankton estimated by HTS and LM showed a significant relationship at
different taxonomic ranks. In the 2 years of investigation, the temporal development of
the whole micro-eukaryotic community showed a clear non-random and comparable
distribution pattern, with the main taxonomic groups coherently distributed in the
individual seasons. In perspective, the results obtained in this study highlight the
importance of HTS approaches in assessing biodiversity and the relative importance
of the main protist groups along environmental gradients, including those caused by
anthropogenic impacts (e.g., eutrophication and climate change).
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INTRODUCTION

Microbial eukaryotes are a large polyphyletic assemblage of
organisms that include many groups that are more closely
related to plants, fungi or animals than they are to other
protists (Campbell et al., 2008). The majority of protist
diversity is distinguished into a number of comprehensive
monophyletic groups, which are usually referred to by the
informal name “supergroups” (Guillou et al., 2013). Besides
heterotrophic protists and microscopic fungi, photosynthetic
and mixotrophic protists, or “microalgae,” are scattered within
many supergroups along with many other protozoans, with the
exception of Archaeplastida, which form a group of their own
(Simpson et al., 2017).

Overall, the structure and abundance of microbial
communities, microalgae, heterotrophic protozoans and
fungi contribute to control productivity levels and characterize
trophic webs and, from an anthropogenic perspective, the
qualitative characteristics of waterbodies. Nevertheless, in
freshwater environments, the majority of the investigations were
historically addressed toward the study of microalgae, either
pelagic (“phytoplankton”) (Padisák, 2004; Reynolds, 2006) or
periphytic (Rimet et al., 2015). These two broads and loosely
defined functional groups are composed of a wide variety of
photosynthetic and mixotrophic organisms that show specific
adaptations to different lake typologies and trophic status.
Traditionally, in addition to the protist fraction, microalgae
also include photosynthetic cyanobacteria (Padisák, 2004; Guiry
and Guiry, 2019). In lakes, a wide variety of studies showed a
clear correlation between eutrophication and the development
of distinctive algal groups (such as toxigenic cyanobacteria and
chlorophytes) and species (Reynolds et al., 2002; Paerl and Otten,
2013; Meriluoto et al., 2017). Further, the temporal dynamics of
phytoplankton were historically investigated in many typologies
of waterbodies, laying the foundation for the generalization
of temporal patterns and seasonality of the main taxonomic
groups determined by light microscopy (LM) (Sommer et al.,
2012; De Senerpont Domis et al., 2013). Conversely, the study of
non-photosynthetic protists in inland waters was mostly focused
on taxonomic and broad ecological aspects of selected groups
and populations (see e.g., Foissner and Berger, 1996; Wujek,
2005). In general, the knowledge of the key ecological roles
of freshwater planktic microeukaryote communities has been
limited by incomplete inventories of diversity (Cotterill et al.,
2008; Grossmann et al., 2016).

The limitations implicit in the use of traditional microscopical
determinations and identification of morphological diacritical
characters has posed serious difficulties in the evaluation of
the biodiversity not only in non-photosynthetic protozoans,
but also in most microalgal groups (Hugerth and Andersson,
2017). Though still limited to a few applications in freshwater
environments, high throughput sequencing (HTS) technologies
have revealed a high level of microeukaryote biodiversity (Nolte
et al., 2010; Simon et al., 2015; Cruaud et al., 2019). In the case
of phytoplankton, the comparability of the relative abundance of
specific taxa collected using LM and HTS remains an active field
of investigation (Giner et al., 2016).

The main aim of this contribution is to characterize
the biodiversity and seasonality of eukaryotic microplankton
(excluding small zooplankton) in the epilimnetic layer of the large
and deep perialpine Lake Garda using HTS. The work is a follow
up of a recent contribution focused on the characterization of
the biodiversity and seasonality of bacterial communities in the
same lake (Salmaso et al., 2018a). This previous study identified
a higher number of cyanobacterial taxa compared to those
previously characterized by light microscopy. Heterotrophic
protists in Lake Garda and in the other large lakes south of the
Alps were the object of a low number of investigations (Pucciarelli
et al., 2008; Asioli et al., 2009). Conversely, phytoplankton was
and is one of the main biological elements included in the Italian
Long Term Ecological Research (LTER1) network (Morabito
et al., 2018; Salmaso et al., 2018b) and in the monitoring plans
ruled by the Water Framework Directive (Water Framework and
Directive, 2000; Pasztaleniec, 2016). Until now, phytoplankton
in the southern perialpine lake district was investigated using
traditional microscopy methods. Therefore, the application of
HTS methods in the study of microeukaryotes is expected
to amplify and complement the knowledge on heterotrophic
microeukaryotes and phytoplankton in the large perialpine lakes.
Specific objectives of this work include (i) the characterization
and critical discussion of the composition and seasonal dynamics
of planktic microeukaryotes through a 2-year study; (ii) the
evaluation and comparison of the biodiversity of photosynthetic
and mixotrophic protists (“phytoplankton”) evaluated by HTS
and traditional microscopical methods; (iii) the quantitative
evaluation of the comparability of spatial and temporal patterns
of phytoplankton estimated by LM and HTS.

MATERIALS AND METHODS

Study Site
Lake Garda is the largest Italian lake. It is located at 65 m a.s.l.
and has a surface area of 368 km2, a volume of 49× 109 m3, and a
maximum depth of 350 m. The lake is an important resource for
irrigation, industry, drinking water supply and tourism. Owing
to the great depth, complete mixing can occur only during cold
winters and complete cooling of the water column. The last
complete mixing of the lake was documented between 2004 and
2006. Since then, spring circulation of the water column ranged
between 80 and 170 m. In the last decade, the lake underwent
a slow but continuous process of oligotrophication. After 2010,
total phosphorus (TP) concentrations at spring overturn in the
whole water column and in the trophogenic (0–20 m) layers
ranged between around 15 and 19 µg L−1, and 10 and 16 µg L−1

(Salmaso et al., 2018c, 2020).

Environmental Variables
Samples were collected in the LTER station (45.69 N, 10.72 E)
of Lake Garda, which corresponds to the deepest zone of the
north-western lake (350 m). Sampling and field measurements
were carried out at monthly frequency from January 2014 to

1http://www.lteritalia.it/
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October 2015 in three layers within the euphotic zone of the
lake (0–2 m, 9–11 m, and 19–21 m; hereafter 1 m, 10 m, and
20 m, respectively), with a total of 34 and 30 samples collected in
2014 and 2015, respectively. Due to bad weather and dangerous
lake conditions, in January 2014 samplings were carried out in
the most sheltered south-eastern basin. Vertical profiles of water
temperature (Temp) were carried out using a multi-parameter
probe (Idronaut Ocean Seven 316Plus). Water transparency
and light attenuation coefficients (kd) were measured with a
Secchi disk and with a submersible irradiance sensor (LiCor
192SA), respectively. The euphotic depth was estimated as
zeu = loge(100) × kd

−1. Nitrate nitrogen (NO3-N), ammonium
(NH4-N), soluble reactive phosphorus (SRP), reactive silica (Si),
Alkalinity (Alk), pH, water conductivity reported at 20◦C (Cond)
and dissolved oxygen (O2) were determined following standard
methods (Cerasino and Salmaso, 2012); further details are
provided in Salmaso et al. (2018a). In the analysis of data, seasons
included the periods between January and March (winter), April
and June (spring), July and September (Summer), and October
and December (autumn).

Phytoplankton Analyses
Phytoplankton counting (density, cell mL−1, and biovolume,
mm3 m−3) were carried out using an inverted light microscope
(Zeiss Axiovert 135) and methods described in detail by Rott
et al. (2007) and Salmaso et al. (2018c). Microscopic species
identification was based on the more recent monographs of
the series Süßwasserflora von Mitteleuropa (Springer Spektrum)
and Das Phytoplankton des Süßwassers (E. Schweizerbart’sche
Verlagsbuchhandlung, Stuttgart). The classification of species
into corresponding higher taxonomic ranks was based on the
most recent and continuously updated literature review by
Guiry and Guiry (2019). Chlorophyll-a (Chla) was estimated
from spectrophotometer readings of acetone extracts following
standard methods (Lorenzen, 1967).

DNA Extraction, Library Construction
and Sequencing
HTS analyses for the determination of protists were carried
out on the same environmental samples filtered on GF/C
filters (1.2 µm) used in the previous analyses of microbial
communities using the 16S rRNA gene; the detailed procedure
of DNA extraction from environmental samples is reported
in Salmaso et al. (2018a). In short, DNA extraction was
performed with Mo Bio PowerWater R© DNA Isolation Kit
(MO BIO Laboratories, a QIAGEN Company, United States).
All the samples showed measurable concentrations of DNA
(average ± SD, 47 ± 23 ng µL−1), with the exclusion of two
samples (June 2014, 20 m and July 2014, 1 m), which were
excluded from the successive analyses.

For each individual environmental sample, total genomic
DNA was subjected to PCR amplification by targeting a
∼380-bp fragment of the 18S rRNA gene variable region
V4 using the specific primer set TAReuk454FWD1 (5′
CCAGCASCYGCGGTAATTCC 3′) (Stoeck et al., 2010) and
TAReukREV3_modified (5′ ACTTTCGTTCTTGATYRATGA

3′) (Stoeck et al., 2010; Piredda et al., 2017) with overhang
Illumina adapters. PCR amplification and library construction
were performed as described in Salmaso et al. (2018a). Finally,
all barcoded libraries were pooled in equimolar concentrations
by qPCR in a final library and checked on a Typestation 2200
platform (Agilent Technologies, Santa Clara, CA, United States).
The final library was sequenced on an lllumina R© MiSeq (PE300)
platform (MiSeq Control Software 2.6.2.1 and Real-Time
Analysis software 1.18.54).

The sequences were assigned to samples using sample-specific
barcodes and saved in FASTQ formatted files. Sequences were
deposited to the European Nucleotide Archive (ENA) with study
accession number PRJEB36925.

Bioinformatic and Statistical Data
Analysis
Sequences were analyzed using the DADA2 package 1.12.1
(Callahan et al., 2016) in R 3.6.0 (R Core Team, 2019) and
Bioconductor v. 3.9 packages (Huber et al., 2015); truncLen
and trimLeft parameters were set at 275 and 230, and 20 and
21, respectively. The DADA2 error model resolves read variants
(amplicon sequence variants, ASVs, also known as exact sequence
variants, ESVs) that differ by as little as one nucleotide, providing
exact sequence variants that replace the OTUs obtained by
traditional pipelines based on the clustering of reads above a
certain subjective identity (Callahan et al., 2017). Taxonomic
assignment was carried out using the RDP naive Bayesian
classifier method described in Wang et al. (2007) and the PR2

protist ribosomal reference database v. 4.11.1 with 80% minimum
bootstrap confidence threshold; in the PR2 database, the suffix
“_X” is used to indicate unknown/unnamed taxonomic levels
(Guillou et al., 2013).

A total of 1248 ASVs was obtained after the application
of the bioinformatic pipeline. The ASVs table, taxonomy,
and environmental data were imported into the R package
phyloseq 1.28.0 (McMurdie and Holmes, 2013). After removal
of higher plants, higher organisms, other metazoans and
unclassified taxa at the level of Division, the number of ASVs
was 1073. The ASVs table was rarefied without replacement
(rarefy_even_depth function in phyloseq) to the minimum
number of sequences per sample (5767), obtaining a final table
with 1035 ASVs. The sequences were therefore classified into
three wide-ranging functional groups including “heterotrophic
microplankton,” “phytoplankton” and “fungi.” The attribution
of microplankton to the “phytoplankton” group followed the
traditional criteria used in microscopy and phytoplankton
ecology, therefore including mixotrophic species and also large
heterotrophic flagellates (e.g., Gyrodinium and katablepharids;
Wehr and Sheath, 2003; Moestrup and Calado, 2018; Guiry
and Guiry, 2019), and allowing comparison with data
obtained by microscopy (Reynolds, 2006; Salmaso, 2010);
see Supplementary Table 1. Alpha diversity in the single samples
(ASVs number and Shannon diversity) and beta-diversity
(Bray and Curtis) were computed following Salmaso et al.
(2018a). Differences in alpha diversity between groups of
samples were estimated using the Kruskal–Wallis rank sum test

Frontiers in Microbiology | www.frontiersin.org 3 May 2020 | Volume 11 | Article 789

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00789 May 5, 2020 Time: 18:35 # 4

Salmaso et al. Eukaryotic Microplankton in Large Lakes

(KW) and the pairwise Wilcoxon rank sum test (WR), with
p-values adjusted using the Benjamini and Hochberg (1995)
correction (R Core Team, 2019). The fraction of ASVs shared
between groups of samples was visualized using Venn’s diagrams
(package venn in R).

Ordination of samples based on all the eukaryotic
microplankton was carried out using non-metric
multidimensional scaling (NMDS) and vector fitting
procedures. As for HTS data, NMDS was computed using
standard parameters in the vegan package, i.e., performing a
preliminary square root transformation and Wisconsin double
standardization (Oksanen et al., 2018). Differences in taxa
composition between groups of samples collected in different
seasons and depths were tested using PERMANOVA computed
on the same Bray-Curtis distance matrix used in NMDS, with
9999 bootstraps (function adonis in R vegan package; Oksanen
et al., 2018). The concordance between the NMDS configurations
computed using the data collected in 2014 and 2015 (i.e.,
correspondence between the same sampling months/depths in
the 2 years) was tested by Procrustes analyses and PROTEST
tests (Jackson, 1995; Legendre and Legendre, 1998). The same
approach was used to compare NMDSs computed using
ASVs obtained from HTS analyses and phytoplankton species
biovolumes determined by LM.

Relationships among environmental variables were tested
by computing Spearman ρ correlations, with p-values adjusted
using the Benjamini and Hochberg (1995) correction. The
correlation between environmental variables and the eukaryotic
microplankton community was estimated by computing the
Mantel test (Legendre and Legendre, 1998; Oksanen et al.,
2018). The environmental distance (euclidean) matrix was
computed using a set of standardized environmental variables.
The microeukaryotic dissimilarity matrix was computed using
the same methods used in NMDS. The significance of the statistic
was evaluated by 9999 permutations of rows and columns of the
dissimilarity matrix.

To evaluate the relationships between classified and
unclassified ASVs at the genus level, the distribution of
ASVs in selected groups (Dinoflagellata and Bacillariophyta) was
carried out by mapping abundances on a phylogenetic tree built,
after aligning sequences with MAFFT 7.409 (Katoh and Standley,
2013), using phyML 3.1 (Guindon et al., 2010; Salmaso et al.,
2015) and the R package phyloseq; potentially poorly aligned
positions and divergent regions of the alignment were checked
using Gblocks (Talavera and Castresana, 2007). The DNA
substitution model (GTR + I + G) was selected after calling
PhyML 3.1 with the phymltest function in the R package ape.
The rooted trees were built using Perkinsida and Bolidophyceae
as outgroups of Dinoflagellata and Bacillariophyta, respectively.

The comparison with the phytoplankton data obtained by
LM was carried out using a separate rarefied (2686 reads) HTS
table including only phytoplankton taxa. To allow comparison
with the current taxonomic system adopted in phytoplankton
ecology and microscopy classification (Salmaso, 2010), the taxa
identified by HTS were further re-classified in the corresponding
phytoplankton phyla and lower taxonomic ranks using the
package algaeClassify in R (Patil et al., 2019), following the

classification system by Guiry and Guiry (2019). After this
step, the comparison between the relative (%) abundances of
phytoplankton phyla and other selected lower taxonomic groups
determined using HTS (from single ASVs reads) and microscopy
(from single species densities and biovolumes) was carried out
by computing Spearman ρ correlations and quantile regressions
with the package “quantreg” in R (Koenker, 2018). Quantile
regressions are used as a robust regression method when the
assumption of normality in the residuals might not be satisfied
(Koenker and Bassett, 1978). The 50% quantile regression
(τ = 0.50) corresponds to an estimate in which half of the
observations are expected to fall below and above the regression
line. Standard errors and significance of the slopes were estimated
using 9999 bootstraps.

RESULTS

Environmental Variability
The environmental data used in this work were analyzed in detail
by Salmaso et al. (2018a). In the layer between the surface and
20 m, water temperatures were between 8 and 25◦C. A strong
thermal stratification, with a thermocline extending up to 25 m in
2014 and ca. 30 m in 2015, developed between May and October
(Supplementary Figure 1). The Secchi disk transparency ranged
between 4 and 18 m. In the cold months (November–April) and
during the stratification period, the euphotic depth was between
20 m and 35 m, and 15 m and 20–25 m, respectively. The
amplitude of the water mixed layer exceeded that of the zeu
values between October and April. SRP showed higher (ANOVA,
p < 0.001) concentrations in winter (mean ± SE, 6.1 ± 0.7 µg
L−1) compared to the other seasons (1.8± 0.5 µg L−1). Similarly,
NO3-N and Si were higher (ANOVA, p < 0.001) in winter
(320 ± 9.9 µg N L−1 and 0.58 ± 0.02 mg Si L−1) compared
to the other seasons, showing minimum concentrations in
summer (154 ± 16 µg N L−1 and 0.26 ± 0.05 mg Si L−1).
Water temperature was positively correlated with pH (range,
7.74–8.78) (ρ = 0.54; p < 0.001) and negatively correlated
(−0.87 < ρ < −0.36; p < 0.01) with O2 (8.7–12.9 mg L−1),
conductivity (202–229 µS cm−1), alkalinity (116–163 mg L−1),
NO3-N (69–383 µg N L−1), silica (0.05–0.74 mg Si L−1), SRP
(0.6–19.9 µg P L−1), and TP (1.0–27.4 µg P L−1). More detailed
information on the seasonal development of environmental
variables were provided in Salmaso et al. (2018a). Based on the
OECD (1982) thresholds, the annual averages of transparency
(9.8± 0.9 m), TP (10.7± 0.5 µg P L−1) and Chla (2.99± 0.17 µg
L−1), and the annual minimum values of transparency (4 m) and
maximum of Chla (7.58 µg L−1) in Lake Garda were typical of
oligotrophic/oligo-mesotrophic conditions.

Community Diversity
The number of protist ASVs in the individual samples varied
between 90 and 190. In both years, the number of ASVs
showed significant differences in the four seasons (KW < 0.05).
Compared to the winter months, the higher numbers of ASVs
were observed in summer and autumn (2014; WR, P < 0.01)
and summer (2015; WR, P < 0.05). These results were paralleled
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by higher Shannon diversity values in autumn (2014; WR,
P < 0.10) and in summer and autumn (2015; WR, P < 0.01)
compared to the winter months (Supplementary Figure 2).
Overall, the number of total ASVs was positively linked to
water temperature (r2 = 0.34, P < 0.001); the relationship
was confirmed also considering separately heterotrophic protists
(r2 = 0.34, P < 0.001), phytoplankton (r2 = 0.12, P < 0.01), and
fungi (r2 = 0.20, P < 0.01).

Most of the protistan ASVs were shared between the three
sampling depths (46%). Similarly, the fraction of ASVs shared in
2014 and 2015 was 47% (Supplementary Figure 3). Nevertheless,
keeping only the most frequent taxa (543 ASVs; i.e., after
removing the rarest ASVs that did not appear more than five
times in at least two occasions), the number of ASVs shared
between the three sampling depths and the 2 years was 80 and
78%, respectively.

Dominant Taxonomic Groups and Taxa
The most abundant supergroups, present with a fraction of
reads (averages of the three depths) greater than 10% in at
least one sampling date, were Alveolata, Hacrobia, Stramenopiles,
Archaeplastida, Rhizaria, and Opisthokonta (Figure 1A). Within
the supergroups, the most abundant divisions in the water
column (>10% in at least 1 occasion) belonged to the Alveolata
(Ciliophora, 125 ASVs; Dinoflagellata, 69; and Perkinsea, 32),
Stramenopiles (Ochrophyta, 222), Hacrobia (Cryptophyta, 18),
Archaeplastida (Streptophyta, 15; and Chlorophyta, 63), Rhizaria
(Cercozoa, 97) and Opisthokonta (Fungi, 116) (Figure 1B).
Following the criteria of classifications used in the PR2 database,
a large fraction of ASVs was classified to the family level
(84%), whereas the taxonomic identifications at the genus
and species levels were lower (66 and 62%, respectively). The
list of taxa identified to the family level is reported in the
Supplementary Table 1.

The most abundant microeukaryota classified at the genus
level belonged to the most abundant divisions and classes
(Supplementary Table 2). Among the heterotrophic protists, the
Ciliophora (most of them in the class Spirotrichea) included
12 dominant genera, the most abundant being represented
by Askenasia sp., Rimostrombidium spp., Histiobalantium sp.,
Limnostrombidium sp. and Strobilidiidae. Besides a genus
belonging to the Perkinsida group, the remaining dominant taxa
in the heterotrophic protists were Cercozoa and Stramenopiles
(Supplementary Table 2). Overall, phytoplankton were the most
represented group; the most abundant taxa were included in
the class Cryptophyceae (Cryptomonas spp., Plagioselmis sp.)
and classes included in the Ochrophyta, namely Chrysophyceae
(Uroglena sp.), Bacillariophyceae (Stephanodiscus sp., Fragilaria
spp., Aulacoseira spp.) and Synurophyceae (cf. Synura sp.)
(Supplementary Table 2 and Figure 2). Among the wide group
of “green algae,” the Zygnemophyceae were represented by
Closterium sp. and Mougeotia sp., whereas Chlorophyceae and
Chlorodendrophyceae by Chlamydomonas spp. and Mychonastes
sp., and Tetraselmis sp., respectively. The class Dinophyceae
(Dinoflagellata) included Gyrodinium helveticum, Ceratium
hirundinella, and Asulcocephalium miricentonis. Once included
in the cryptomonads (Wehr and Sheath, 2003), Katablepharidales

were also well represented. Among Fungi, the most abundant
taxon was classified among Chytridiomycetes (Rhyzophidiales).
Other important taxa with a relative contribution > 1% on the
total of reads in protists and classified at the family level (and
therefore not included in Supplementary Table 2) comprised
one Polar-centric-Mediophyceae, which, after a BLAST search,
belonged to the Cyclotella comensis/ocellata group (i.e., the most
abundant unclassified species, in gray, below Discostella sp. in
Figure 3).

Amplicon Sequence Variants
The most abundant genera included in Supplementary Table 2
were identified with a variable number of ASVs. A few
of the taxa belonging to Askenasia and unnamed
genera among Perkinsida_XXX, Rhyzophidiales_X and
Pseudodendromonadales_XX had a large (>20) number of
ASVs. In most cases, in the genera/taxa characterized by a
high number of ASVs, generally only a few genotypes were
dominant. For example, in the four genera considered above,
only 3 individual ASVs out of 24, 30, 26, and 50 occurred with a
fraction of reads greater than 10% each. The low mean similarity
among sequences indicated that these groups were composed by
several different species (Supplementary Table 2). This could be
confirmed by the different seasonality that characterized e.g., the
3 dominant ASVs in Perkinsida, which showed three consecutive
periods of growth, between July and August, and October and
December/January of both years, and January and March/June
2015, respectively.

Multiple ASVs were also identified at the species level
(Figures 3, 4). Among diatoms, Fragilaria included 4 different
ASVs belonging to F. crotonensis, 2 ASVs attributable to F. bidens
and 1 ASV of unclear attribution (F. capucina/vaucheriae). The
two most abundant F. crotonensis ASVs were identifiable in all
months (Figure 3), with higher abundances between late winter
and spring, and a significant temporal correlation between reads
(ρ = 0.40, p < 0.01). Asterionella formosa was composed by
3 ASVs, mostly distributed in the autumn and winter periods.
Conversely, the other diatoms classified at the species level
(Aulacoseira granulata, A. islandica and Melosira varians) were
represented by a unique ASV. In the Dinophyceae (Figure 4),
Gyrodinium helveticum and Ceratium hirundinella were present
with one dominant ASV. Asulcocephalium, which was identified
as a unique species (Supplementary Table 1), had two abundant
ASVs out of 9. More tenuous differences among ASVs were
observed in the other genera or species (Figure 4). Among
dinoflagellates, it is worth highlighting the presence of Baldinia
(Figure 4 and Supplementary Figure 4), a species that was
recognized for the first time in 2015 using microscopic and
genetic (18S rDNA) analyses (see section Discussion).

Overall, the HTS analyses identified several phytoplankton
genera and species that were not recognized by microscopic
analyses in this work (Supplementary Table 1) and previous
investigations (Salmaso, 2010; Salmaso et al., 2018c). A thorough
analysis is beyond the scope of this work, but focusing the
attention on the two groups considered previously (Figures 3,
4), the contribution of HTS in the evaluation of phytoplankton
biodiversity is quite apparent. Besides the confirmation of
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FIGURE 1 | Temporal development of the microeukaryotic (A) Supergroups and (B) Divisions in Lake Garda from January 2014 to October 2015. Data refer to the
averages of the three sampled layers (1, 10, and 20 m). Samples are coded by year and month. The bars report the percentage contributions on the sample totals.

dominant diatoms identified by LM, a few additional diatoms
included Fragilaria bidens and Discostella sp. (Figure 3). Among
dinoflagellates, additional species included Asulcocephalium
miricentonis, Parvodinium inconspicuum/umbonatum,
Peridinium cinctum, Scrippsiella sp. (a marine genus) as
well as other taxa belonging to the Thoracosphaeraceae and
Prorocentrales, and other species possibly (BLAST ca. 95%)
attributable to the Tovellia/Woloszynskia group (originally
classified within Tovellia cf. aveirensis) and Ceratium (Figure 4).

Temporal Development of Eukaryotic
Microplankton
Eukaryotic microplankton samples showed an ordered seasonal
pattern, characterized by a clear and significant clustering of
samples belonging to the individual seasons in the NMDS
configuration (Figure 5; PERMANOVA, P < 0.001). The
temporal distribution of samples showed a comparable temporal
pattern in both years (same sampling months/depths in 2014 and
2015; Figure 5; PROTEST test, P = 0.001); the repeatability of
annual cycles was confirmed also after computing two separate
NMDS in 2014 and 2015. The seasonal development did not show
significant differences among the three sampling depths (i.e., 1,
10, and 20 m; PERMANOVA, P > 0.2). The regular development
of the community was strongly (vector fitting, P < 0.01) linked
to the main environmental variables (Figure 5A). The summer
samples were characterized by higher water temperatures, lower
concentrations of nutrients and lower euphotic depths compared
to the winter samples. The spring samples were associated to
high conductivity, alkalinity, pH, oxygen, and chlorophyll-a

levels. Based on the whole dataset, the correlation between the
environmental variables and the community structure was highly
significant (Mantel statistic, r = 0.60, P < 0.001). The results were
highly significant also after making the computations separately,
on the three depth layers (Mantel statistic, r = 0.67, 0.52 and 0.51
at 1, 10, and 20 m, respectively; P< 0.001).

Most of the divisions belonging to heterotrophs,
phytoplankton and fungi, developed in specific temporal periods,
particularly between spring and summer (Figure 5B). The only
divisions that showed a higher development around the winter
period, or between winter and autumn, were Mesomycetozoa
and Telonemia, and Haptophyta, Cryptophyta and Cercozoa,
respectively. This was substantiated considering a few examples
at the genus/species level. Among ciliates, Askenasia and
Rimostrombidium_D showed a marked development between
late spring and summer, and spring, whereas Histiobalantium
showed a higher development in winter and between spring and
early summer (Supplementary Figures 5A–C). The winter, and
the winter and autumn development in the divisions Telonemia
and Cercozoa were well represented by Telonemia-Group-
2_X and Novel-clade-2_X (Supplementary Figures 5D,E).
The development of fungi in spring was exemplified by
the strict localization of Rhyzophidiales between April and
May/June (Supplementary Figure 5F). Further examples for
phytoplankton are reported in the next section.

Temporal Development of Phytoplankton
The NMDS ordination of samples based on HTS phytoplankton
composition (Figures 6A,B) was comparable to that obtained
using the whole microplankton community (Figure 5)
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FIGURE 2 | Temporal development of classes belonging to the functional group “Phytoplankton” in Lake Garda from January 2014 to October 2015. Data refer to the
averages of the three sampled layers (1, 10, and 20 m). Samples are coded by year and month. The bars report the percentage contributions on the sample totals.

(PROTEST test, P = 0.001). Analogously, vector fitting of
environmental data provided very similar results. Samples in the
different seasons showed significant compositional differences
(PERMANOVA, P = 0.001), whereas no differences were detected
in the three sampled layers (PERMANOVA, P = 0.15) and in
the temporal distribution of samples in the 2 years (PROTEST
test, P = 0.001). As in the case of the whole microeukaryotic
community, many phytoplankton classes showed a higher
development during spring and summer (Figure 6B). A typical
class mostly developing in the cold months was represented by
Bacillariophyta, whereas the Xanthophyceae, Mamiellophyceae,
Trebouxiophyceae Prymnesiophyceae and Zygnemophyceae
were mostly or almost exclusively present in spring/early summer
(Figure 7). Dinophyceae and Eustigmatophyceae were more
frequent in the late summer and autumn months. The remaining
classes were differently present in spring and autumn, and or
summer months. The marked seasonality that characterized the
development of phytoplankton classes was well exemplified by
the temporal development of a few genera, such as Cryptomonas
(from summer to late winter), Ceratium (late summer and
autumn), Asulcocephalium (summer and autumn), Gyrodinium
(from late autumn to late winter), Aulacoseira (early-mid

spring), Melosira (late winter-early spring), and Mougeotia (late
spring-early summer) (Supplementary Figures 6A–D,F–H).
Conversely, Baldinia appeared only in 2015, between July and
August, mostly in the upper 10 m (Supplementary Figure 6E).

The NMDS configuration obtained from the ordination
of phytoplankton biovolumes determined by LM and the
associated vector fitting of environmental data (Figure 6C)
were fully equivalent with the results obtained using HTS
data (Figure 6A) (PROTEST test, P = 0.001). Phytoplankton
phyla showed a higher association with the spring and early
summer months (Ochrophyta, Charophyta and Chlorophyta),
and with mid and late summer months (Miozoa = Dinophyceae)
(Figure 6D). Compared to HTS (Figure 6B), Cryptophyta in the
NMDS configurations obtained from LM data showed a greater
association with the summer months (Figure 6D). Moreover,
owing to a broad temporal distribution, Bacillariophyceae did not
show any significant association with the NMDS configuration.

The concordance of the configurations obtained by HTS
and microscopic data (biovolumes) suggested the existence of a
relationship at least among the dominant phytoplankton groups
in the two datasets. A direct comparison at predetermined
higher taxonomic level of the two datasets was, however, not

Frontiers in Microbiology | www.frontiersin.org 7 May 2020 | Volume 11 | Article 789

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00789 May 5, 2020 Time: 18:35 # 8

Salmaso et al. Eukaryotic Microplankton in Large Lakes

FIGURE 3 | Maximum likelihood (ML) rooted topology of the class Bacillariophyta identified in Lake Garda based on alignment of 18S rRNA gene; the names of the
taxa classified to the genus level (Guillou et al., 2013) are reported on the tips of the phylogenetic tree; the tree is rooted by an outgroup member of the class
Bolidophyceae. Each symbol on the tip of the tree corresponds to a single sample; different symbols and colors correspond to the four seasons and genera,
respectively; the size of symbols is scaled according to abundance. The small black filled circles at the nodes indicate corresponding branch support aLRT-SH-like
(Anisimova and Gascuel, 2006) values > 0.85.

possible due to differences in the classifications used in the
two approaches (Guillou et al., 2013; Glöckner et al., 2017;
Guiry and Guiry, 2019). Nevertheless, after re-classification of
phytoplankton taxonomic groups obtained in the HTS analysis
into the main algal phyla usually considered in traditional
phytoplankton taxonomy (Salmaso, 2010; Guiry and Guiry,
2019; Patil et al., 2019), the concordance (at least P < 0.05)
between the two estimates (% values) was quite apparent
(Figure 8 and Table 1). These results were essentially confirmed
also considering the taxa agglomerated at lower taxonomic
ranks, such as orders and families (Supplementary Table 3).
Based on quantile regressions and biovolume values, the only
groups that showed disagreement were Chlamydomonadales and
Tribonematales and, partly, Synurales. In general, biovolume
values provided a better concordance with the HTS abundance

values (Table 1 and Supplementary Table 3). Though significant,
most of the relationships between HTS, and densities and
biovolumes, had slopes deviating from 1. As exemplified in
Supplementary Figure 7, this was the consequence of the various
methods of estimating the abundance of phytoplankton used
in HTS (reads) and LM (number of cells or volume occupied
by species).

DISCUSSION

This work examined the nature, extent and seasonality of the
microeukaryotic community in the euphotic layer of a large
perialpine lake. The HTS analyses highlighted the existence
of a rich and well diversified community, and the existence
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FIGURE 4 | Maximum likelihood (ML) rooted topology of the class Dinophyceae identified in Lake Garda based on alignment of 18S rRNA gene; the names of the
taxa classified to the genus level (Guillou et al., 2013) are reported on the tips of the phylogenetic tree; the tree is rooted by an outgroup member of the class
Perkinsida. Symbols as in Figure 3.

of several phytoplankton taxa that were never identified in
previous investigations by light microscopy. In addition, the
microeukaryotic community pattern was highly consistent within
individual seasons and the 2 years, providing evidence that
distribution patterns were not resulting from exclusive random
processes. After a brief evaluation of the constraints imposed
by HTS analyses in the interpretation of data, these aspects,
and implications for the study of microplankton ecology and
assessment of water quality, will be addressed in the next sections.

Constraints in the Quantitative
Interpretation of HTS Data in the Study
on Microeukaryotes
Inaccurate quantitative data estimates in HTS results are
introduced by several factors, which include, among others,
variable DNA quantity, differential DNA extraction success
and different amplification rates between different species, and
different quantitative estimates between different sequencers
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FIGURE 5 | Non-metric multidimensional scaling (NMDS) ordination (stress = 0.15) of samples based on the microeukaryotic composition (ASVs). Samples are
coded by season (colors) and depth (symbols). (A) vector fitting of significant (P < 0.01) environmental variables: Temp, water temperature; Cond, water
conductivity; O2, dissolved oxygen; SRP, soluble reactive phosphorus; NO3_N, nitrate nitrogen; Si, reactive silica; Alk, alkalinity; zeu, euphotic depth; Chla,
Chlorophyll-a. (B) Vector fitting (at least P < 0.1) of microeukaryotic divisions: Apico, Apicomplexa; Centr, Centroheliozoa; Cerco, Cercozoa; Chlor_p, Chlorophyta;
Cilio, Ciliophora; Crypt_p, Cryptophyta; Dinof_p, Dinoflagellata; Fungi, Fungi; Hapto_p, Haptophyta; Hilom, Hilomonadea; Katab_p, Katablepharidophyta; Mesom,
Mesomycetozoa; Ochro_p, Ochrophyta; Perki, Perkinsea; Rhodo_p, Rhodophyta; Stram_p, Stramenopiles_X; Strep_p, Streptophyta (Zygnemophyceae); Telon,
Telonemia. The suffix “_p” indicates divisions totally or partly attributable to “phytoplankton.”

TABLE 1 | (A) Spearman correlation coefficients between phytoplankton abundances (% density and % biovolume) estimated by light microscopy and % HTS reads. (B)
Quantile regressions (τ = 0.50) between % phytoplankton abundances (y) and % HTS reads (x).

(A) (B)

Phylum Biovolume vs.
HTS

Density vs. HTS Biovolume vs.
HTS

Density vs. HTS

Spearman P Spearman P SlopeQ50 (SE) P SlopeQ50 (SE) P

Chlorophyta 0.54 *** 0.34 ** 0.42 (0.13) ** 0.65 (0.17) ***

Charophyta 0.88 *** 0.89 *** 1.23 (0.18) *** 0.43 (0.11) ***

Ochrophyta 0.40 ** 0.29 * 0.63 (0.23) ** 0.84 (0.33) *

Bacillariophyta 0.59 *** 0.32 * 0.74 (0.30) * 0.22 (0.21) ns

Miozoa 0.64 *** 0.71 *** 0.99 (0.25) *** 0.03 (0.01) *

Cryptophyta 0.64 *** 0.54 *** 0.28 (0.05) *** 0.84 (0.19) ***

SlopeQ50, regression slope; SE, standard error. Algal phyla are defined as in Guiry and Guiry (2019), following the classification system used in light microscopy.
Significance codes, P: *** ≤ 0.001; ** ≤ 0.01; * ≤ 0.05; ns > 0.10.

and runs (Lamb et al., 2019). Though with a large degree
of uncertainty, the results of a recent meta-analysis suggested
that weak quantitative relationships may exist between the
biomass and number of reads (Lamb et al., 2019). Therefore,
current HTS approaches quantify taxa as fractions of the
sample sequence library generated by each analysis (Vandeputte
et al., 2017). Comparative analyses of microplankton data
should take into consideration the limits implicit in the use
of relative data. As a result, attempts to evaluate functional
relationships among species have the potential to introduce
biases. For example, Vandeputte et al. (2017) showed how
the taxonomic trade-off between two bacteria inhabiting
the human microbiota, i.e., Bacteroides and Prevotella, was
an artifact of relative microbiome analyses and lack of
information of microbial loads, which can vary substantially
between samples.

An important factor influencing abundance estimates in HTS
studies is the different 18S rRNA gene copies in the cells.
Compared to the prokaryotic organisms, where the 16S rDNA
copy numbers are generally less than 10 (Sun et al., 2013;
Stoddard et al., 2015), the range of 18S rDNA copy numbers
in unicellular eukaryotes spans different orders of magnitude.
In the estimates provided by Wang et al. (2017), the 18S rDNA
copy numbers in dinoflagellates, diatoms and ciliates ranged
from 61 and 36896, 200 and 12812, and from around 50000
to 567893, respectively. Similarly, Lofgren et al. (2019) showed
that ribosomal rDNA copy numbers in fungi varied from 14 to
1442 copies. As a result, the relative abundance of 18S rDNA
gene copies in different species estimated from the analysis of
environmental DNA can be attributed not only to the variation in
the relative abundance of microeukaryotes, but also to variation
in genomic 18S rDNA copy numbers among those organisms

Frontiers in Microbiology | www.frontiersin.org 10 May 2020 | Volume 11 | Article 789

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00789 May 5, 2020 Time: 18:35 # 11

Salmaso et al. Eukaryotic Microplankton in Large Lakes

FIGURE 6 | Non-metric multidimensional scaling (NMDS) of the phytoplankton community. (A,B) NMDS (stress = 0.17) of samples based on phytoplankton
composition determined by HTS (ASVs). Samples are coded by season (colors) and depth (symbols); (A) vector fitting of significant environmental variables
(P < 0.01, with the exclusion of Chla, P < 0.10); codes as in Figure 5A; (B) vector fitting of phytoplankton classes (P < 0.05, with the exclusion of Bolidophyceae,
P < 0.10): Bacil, Bacillariophyta; Bolid, Bolidophyceae; Chlod, Chlorodendrophyceae; Chlor, Chlorophyceae; Chrys, Chrysophyceae; Crypt, Cryptophyceae; Dinop,
Dinophyceae; Eusti, Eustigmatophyceae; Katab, Katablepharidaceae; Mamie, Mamiellophyceae; Prymn, Prymnesiophyceae; Synur, Synurophyceae; Trebo,
Trebouxiophyceae; Xanth, Xanthophyceae; Zygne, Zygnemophyceae. (C,D) NMDS (stress = 0.21) of samples based on the biovolumes of phytoplankton species
estimated by light microscopy; (C) vector fitting of significant environmental variables (P < 0.01); codes as in Figure 5A; (D) vector fitting of phytoplankton phyla
(P < 0.05): Chlor, Chlorophyta; Charo, Charophyta; Ochro, Ochrophyta; Miozo, Miozoa (Dinoflagellata); Crypt, Cryptophyta; Bacillariophyta not included (P > 0.10).

(Mangot et al., 2013; Gong and Marchetti, 2019). The higher
18S rDNA copy numbers in the cells of ciliates could contribute
to explain the large relative contribution of this group to the
microeukaryotic community (Figure 1).

The effect of the variability attributable to heterogeneity in
copy numbers on the abundance estimation can be attenuated
by the existence of a relationship between 18S rDNA copy
numbers and cell size. Godhe et al. (2008) found a highly
significant positive log-log linear (power) relationship between
rDNA copies and biovolumes in several selected species of
dinoflagellates and diatoms. These results suggest that the relative
proportions among ribotypes in microeukaryotes may reflect
their proportion in biomass rather than cell abundance. Pitsch
et al. (2019) found that, in ciliates, the LM biomass-based

assemblage compositions had a higher similarity to 18S rDNA
read numbers compared to LM cell counts. In this work,
the relative abundances of most phytoplankton phyla/divisions
and lower taxonomic levels estimated by HTS and LM
showed a significant relationship. The association between the
two methods was verified both considering cell abundances
and biovolumes (biomasses). The slight better performance
of biovolumes (Table 1 and Supplementary Table 3) was
possibly due to the relationship between cell sizes and
18S rDNA copy numbers. It is important to note that
the maximum linear dimensions of individual phytoplankton
cells fall within a wide range, from ca. 0.5 to 2 µm
(picoeukaryotes) to well over 100 µm (e.g., Closterium, thin
pennate diatoms), which correspond to a variation of over
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FIGURE 7 | Ridgeplot showing a set of density plots of phytoplankton classes along the year. Data refer to the period from January 2014 to October 2015; jittered
points indicate the occurrences of classes with a number of reads > 3 in the different sampling dates; doy, day of the year. Classes have been ordered by computing
the weighted averages of the doy for every single class using the R function waps (https://github.com/hts-tools/metatools). The graph does not include
Bangiophyceae (Cyanidiales), which were found only in August 2015.

7 orders of magnitude in phytoplankton specific biovolumes
(Litchman et al., 2007).

A further element that can cause overestimation in the
diversity of microeukaryotes is the intragenomic heterogeneity of
18S rRNA genes (Wang et al., 2017). For example, using single-
cell quantitative PCR, Gong et al. (2013) showed a significant
intraindividual 18S rDNA diversity, with sequence differences
primarily due to single nucleotide polymorphisms (SNPs);
moreover, nucleotide diversity was positively correlated to the
rDNA copy number, posing potential problems in the rDNA-
based estimation of species richness. At present, considering
the high sensitivity of amplicon sequence variants approaches,
which can resolve biological differences of even 1 or 2 nucleotides
(Callahan et al., 2016), it is not always straightforward to attribute
differences to interspecific, intraspecific, or intraindividual levels
(cf. Supplementary Table 2). In ciliates, Gong et al. (2013)
showed that the minimum similarity among two 18S rDNA
copies from the same individual was 99.1%, whereas the average

similarity among copies of the same cell was 99.7 to 99.9%.
Therefore, using a classical OTUs approach, the 1% similarity
cut-off for clustering 18S rDNA sequences into OTUs was
considered reliable to exclude intragenomic sequence variations.
In ASVs, this could not however exclude the provenance of
single SNPs from the same individual. Further investigations
for a wider range of microeukaryotes are needed to interpret
intraspecific and intraindividual 18S rDNA sequence variations.
These aspects still represent and underexploited field of research
(Caron and Hu, 2019).

Other methods based on OTUs clustering have been effectively
used to solve the presence of sequencing errors inherent in the
use of HTS approaches (Mangot et al., 2013), further highlighting
that clustering and denoising strategies present important
advantages and disadvantages. Nevertheless, representing a cloud
of divergent sequences, de novo OTUs are invalid outside of the
data set in which they are defined; conversely, ASVs represent
exact sequences with consistent taxonomic labels, therefore
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FIGURE 8 | (A–F) Relationship between the relative abundances of the main phytoplankton phyla (Guiry and Guiry, 2019) estimated by light microscopy (% of
biovolumes on the sample totals, mm3 m−3) and HTS (% of reads on the sample totals, rarefied table). Superimposed on the plots are the 0.50 (median fit: solid
dark green) and 0.30 and 0.70 (dashed gray) quantile regression lines.

allowing direct comparison of different datasets (Callahan et al.,
2017). This means that ASVs generated in different studies with
the same primer set can be validly merged and compared, but
downstream analyses should take into account other potential
methodological differences. A direct comparison of the ASVs and
OTUs approaches is outside the scope of this study. Nonetheless,
the efficacy of denoising approaches compared to other non-
ASVs based methods has been substantiated in a number of
investigations using e.g., bacterial (Glassman and Martiny, 2018;
Nearing et al., 2018; Caruso et al., 2019; Prodan et al., 2020) and
fungal (Pauvert et al., 2019) mock communities.

For the reasons above, the interpretation of diversity based
on ASVs should take into account its multifaceted nature.
ASVs do not correspond to species or even lower taxonomic
levels, rather they represent different oligotypes of these same
or different taxonomic levels, and even individuals (Eren et al.,
2013; Salmaso, 2019). If focused on the evaluation of classical
diversity estimations, downstream analyses should therefore
consider unique taxa agglomerated at different taxonomic ranks,
e.g., Supplementary Tables 1, 2, which however do not include
all the unclassified taxa at the genus and/or family levels.

Taxonomic Diversity
The increase in the number of heterotrophic microeukaryotes
and phytoplankton ASVs in the warmer months is indicative
of a greater plankton activity and production connected with

increased physiological activities at higher temperatures
in a thermally stable water column (Padisák, 2004).
The temporal concordance among several heterotrophic
protists and phytoplankton was possibly instrumental for
an increase of trophic interactions among taxa, e.g., due
to predation/grazing (Weisse et al., 2016). Nevertheless,
considering the semiquantitative nature of abundance data
in HTS analyses, the identification of functional relationships
among groups and species would be unavoidably speculative
(Vandeputte et al., 2017).

The scarcity of information regarding the heterotrophic
protist diversity in the large and deep lakes surrounding the Alps
does not allow to make any systematic comparison with previous
studies. In Lake Garda, investigations were only occasional, as
in 2004, after the development of a "black-spot" summer bloom
caused by a ciliated protozoan, Stentor amethystinus, which
lives symbiotically with the chlorophyte Chlorella (Pucciarelli
et al., 2008). Since then, this species was never reported
again in literature and, even in this study, representatives of
Stentor and even members of the class Heterotrichea were no
longer identified.

Conversely, the “phytoplanktonic” component within the
protist community was the object of several studies carried
out by light microscopy all over the large lakes north and
south of the Alps (Anneville et al., 2005; Gallina et al., 2013;
Salmaso et al., 2018b). Nevertheless, the limits implicit in the
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identification of species made by microscopy are apparent, due
to the limited number of diacritical morphological features
distinguishing microalgal species, especially when the qualitative
and quantitative determinations are made on fixed samples.
Moreover, the change in phenotype induced by environmental
changes may cause individuals of the same species to be identified
as dissimilar species (Luo et al., 2006). A detailed comparison of
results obtained from HTS and microscopy was outside the scope
of this work. Nevertheless, just focusing on two representative
phytoplankton groups, i.e., diatoms and dinoflagellates, HTS
allowed to confirm the presence of several dominant genera
and species already and easily recognized by LM, as well as
the presence of other taxa never identified by LM in previous
studies. Among the dominant taxa, in the case of dinoflagellates,
HTS results reflected the LM results regarding the occurrence
of Baldinia anauniensis in Lake Garda. Using a polyphasic
approach (microscopy and phylogenetic analyses), this species
was identified for the first time in July 2015 during a huge
surface bloom in the northern shores of the lake (harbor of Riva
del Garda) (Salmaso et al., 2018c). In this work, the continued
presence of Baldinia was documented in the upper 10 m in
July and August 2015 (Supplementary Figures 4, 6E). These
results showed that during the shoreline bloom, this species also
developed in the pelagic photic zone. Moreover, the absence of
reads in 2014 suggests that this species is not an annual member
of the community.

Moving the focus to the taxa that were identified for the
first time by HTS, a few were present with abundant reads in
several samples, such as Asulcocephalium miricentonis and a
taxon attributable to the Prorocentrales. Asulcocephalium (10–
16 µm long) is difficult to distinguish by LM from other
small dinoflagellates and was described only recently in Japanese
freshwaters. The detection of several other closely related
environmental SSU rDNA sequences suggested a worldwide
distribution of this, or related, freshwater species (Takahashi
et al., 2015). The Prorocentrales taxon is part of a group that
mainly includes marine species and only a few freshwater taxa
(Croome and Tyler, 1987; Delmail et al., 2011; Moestrup and
Calado, 2018). The sequences identified in Lake Garda showed
the highest% identity (BLAST, >97%) with many uncultivated
strains identified in freshwater environments (Oikonomou et al.,
2012; Kahn et al., 2014; Luo et al., 2017), therefore confirming the
existence of a widespread taxon still waiting adequate taxonomic
and ecological description. Similarly, taxonomic attributions
to taxa typically observed in marine environments, such as
Scrippsiella, requires confirmation. Using culture dependent
approaches, Flaim and D’Andrea (2006) observed that an
isolate microscopically identified as Peridinium aciculiferum was
almost identical (99%, 18S rDNA LSU, 934 bp) to a strain of
Scrippsiella sp. These authors highlighted that further studies
at the ultrastructural level were needed to confirm whether the
isolate was part of Scripsiella.

The results obtained in this work highlight the high
potential of HTS in supporting the completion, amendment
and refinement of microeukaryotic species lists for more robust
biodiversity assessment in aquatic habitats and more reliable
evaluation of water quality monitoring. In perspective, this

can have a formidable impact on the update and analysis
of long-term datasets, e.g., those collected within the LTER
network, imposing a new level of understanding of the long-term
temporal changes and patterns in the local, regional and global
distribution of freshwater planktic organisms. On the other side,
biodiversity assessment using modern marker gene amplification
approaches is severely limited both by the short length of reads
obtained by present technologies, and by the incompleteness of
genetic databases, which are still fed by information obtained
through isolation and cultivation approaches. In Figures 3, 4,
the gray branches corresponded both to reads with ambiguous
classification due to the poor discriminant power of short reads,
and to taxa that did not show any correspondence below the
order or family rank. Further, the similarity of short 18S rDNA
sequences between non-closely related species represents serious
challenges in the classification of species (Escobar-Zepeda et al.,
2018), and the use of different hypervariable regions and primers
can impact alpha diversity estimates (Guillou et al., 2013; Tragin
et al., 2018). When a particular group of microeukaryotes are
to be investigated, short regions with higher resolution can
be considered, included rbcL for diatoms (Rimet et al., 2018),
and plastidial 16S rRNA genes of photosynthetic eukaryotes
(Decelle et al., 2015; Needham and Fuhrman, 2016). Therefore,
the number of taxa and their identification at the genus and/or
species level can be considered indicative, pending further
confirmation (possibly through isolation and analysis of the most
representative taxa).

Seasonal Dynamics and Functions of
Heterotrophic Microeukaryotes
The temporal development of the microeukaryotes showed
a strong seasonality at different taxonomic levels, from
supergroups, divisions and classes (Figures 1, 2, 7), to individual
taxa (Supplementary Figures 5, 6). Microeukaryotes showed
a strong link with the main physical and chemical variables
controlling cyclical environmental gradients that characterize
large lakes in temperate regions (Salmaso et al., 2018b). These
results demonstrated the strong deterministic control of
ecological processes in the assembly of different microeukaryotic
communities adapted to different environmental and ecological
conditions. From a wider perspective, and contrasting with
former assumption of unlimited dispersal, these observations
are in agreement with the more recent studies based on
massive amplification of DNA markers by HTS, which
demonstrated that many protists have actually markedly
restricted distributions (Khomich et al., 2017). Using a large-
scale molecular sampling based on standardized HTS methods,
Grossmann et al. (2016) showed that limited dispersal and
distribution in protists differed by habitat type and taxonomic
group, without different patterns of distribution between rare
and abundant taxa.

Protistan assemblages can rapidly change in short-term
periods (Vigil et al., 2009; Mangot et al., 2013). Nevertheless,
the equivalent and predictable seasonal pattern in the
temporal development of protists in the two studied years
is indicative that, in large and deep lakes, a monthly sampling
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is sufficient to observe reproducible pattern among the
planktic community. This can be considered a distinctive
trait of large and deep lakes with high renewal time. These
waterbodies have the tendency to operate as large inertial
systems, minimizing the effects of external disturbances
(Salmaso et al., 2018c).

Among the heterotrophic microeukaryotes, ciliates were the
most abundant group. Representatives of this division have
a wide range of trophic lifestyles, spanning from particle
feeding to symbiosis and parasitism. Overall, though not
exclusively (e.g., Histiobalantium), the most abundant ciliates
were mostly associated with higher temperatures, from mid
spring to autumn, such as Askenasia and Rimostrombidium.
Askenasia is a mixotrophic/omnivorous and carnivore ciliate
predating on other ciliates and possibly dinoflagellates (Earland
and Montagnes, 2002). In a nutrient-rich temperate estuary,
Haraguchi et al. (2018) showed that the high grazing rates
during summer was associated with high biomass of Askenasia.
Rimostrombidium is a ciliate feeding on particles. Posch et al.
(2015) demonstrated that this species in Lake Zurich acted
as a primary consumer of cryptomonads. In this work,
this was supported by the negative association (ρ = −0.49,
p < 0.001) between the order Choreotrichida and the class
Cryptophyceae (cf. Supplementary Table 2). Histiobalantium,
which developed in the spring months and, partly, winter, is
a diffusion feeding ciliate, which can ingest small algae such
as cryptophytes (Müller and Schlegel, 1999). Other important
taxa included Limnostrombidium (mostly spring and autumn),
a mixotrophic coarse filter-feeding taxon (Macek et al., 2006),
and Tintinnidium, a phytoplankton-consuming ciliate (e.g.,
ingesting Stephanodiscus; Meier and Reck, 1994). With a different
ecological habit, after a free-swimming stage, Vorticella attach
to substrates (soil, mud, plant roots, living substrata) by stalks.
In Lake Garda and other lakes, Vorticella was found attached
to many filaments of the cyanobacterium Dolichospermum
lemmermannii (Canter et al., 1992; Salmaso et al., 2015).
The buoyancy provided by the aerotopes of the host was
sufficient to keep in suspension both the cyanobacterium and
the ciliate. With this association, Vorticella is able to feed
on the picoplanktonic organisms in the epilimnetic waters
(Canter et al., 1992).

Besides ciliates, other heterotrophic protists were
represented by members of the Perkinsida. This group
is widely distributed in marine environments, and only
recently it was increasingly reported also in freshwater
environments (Bråte et al., 2010b; Ortiz-Álvarez et al.,
2018). Perkinsida can be parasites of a variety of aquatic
organisms, including algae, bivalves, fish and amphibians.
Similarly, beside marine environments, Bråte et al. (2010a)
demonstrated a wide presence of Telonemia, a group feeding on
bacteria and phytoplankton, in different lakes. Cercozoans
taxa include amoeboids and flagellates that feed using
filose pseudopods.

Among fungi, Chytridiomycota (Chytrids) are unicellular and
swim by undulating a single flagellum (Longcore and Simmons,
2012). The family Chytridiomycetes is known to contain a
number of parasitic species infecting e.g., amphibians.

Seasonal Dynamics of Phytoplankton
The understanding of the factors controlling the seasonality
of microeukaryotes was widely investigated for many of the
taxa belonging to the functional group of “phytoplankton”.
The fraction of this group with dimensions greater than 2–
4 µm was the object of countless ecological investigations based
on microscopical observations. These available studies allow
synthesis of information in a consistent framework (Harris,
1986; Munawar and Talling, 1986; Padisák, 2004; Reynolds, 2006;
Sommer et al., 2012).

Most of the results obtained in this work were consistent
with the results based on microscopic observations, and with
the community patterns obtained in previous investigations
in Lake Garda (Salmaso, 2010; Salmaso et al., 2018c) or
synthetized in more comprehensive works (Sommer et al.,
2012; De Senerpont Domis et al., 2013). Moreover, the
comparison of HTS phytoplankton data with the corresponding
normalized data obtained by microscopy showed a significant
concordance. Comparable results included: the localization of
large filamentous Bacillariophyta (Aulacoseira and Melosira)
in spring and tabular colonies (Fragilaria) in spring and
autumn; the development of filamentous Xanthophyceae
(Tribonema) in spring, and Zygnemophyceae (Closterium) in
late autumn/winter, and spring and early summer (Mougeotia);
the year round presence of Chrysophyceae and Cryptophyceae;
the increase of Chlorophyceae (Chlamydomonadales and
Sphaeropleales) from spring to autumn; and the presence of
Dinophyceae mostly in the summer months (e.g., Ceratium
and Peridinium).

These temporal patterns are explained with specific
environmental requirements and tolerances (Sandgren, 1988;
Reynolds et al., 2002; Reynolds, 2006; Sommer et al., 2012).
For example, the large and heavy siliceous Bacillariophyta
require sufficient levels of turbulence to remain in suspension.
This requirement is fulfilled in late winter and spring, while
in summer the thermal stratification causes a rapid sinking
of the large diatoms in the hypolimnetic waters. To a lesser
extent, similar requirements are met also by the large Mougeotia,
Closterium, and Tribonema, with species that respond positively
to moderate water mixing and illumination (Tapolczai et al.,
2015). Compared to other obligate phototrophic microalgae,
the mixotrophic character of Chrysophyceae, Cryptophyceae
and Dinophyceae provides an alternative strategy for these
algal groups at low inorganic nutrient concentrations, especially
during periods of low water mixing, when the uptake of nutrients
is limited by diffusion into the cell (Sandgren, 1988; Ward et al.,
2011). The Sphaeropleales (“Chlorococcales”) is a diversified
group that respond positively to the increasing thermal stability
by adopting a wide range of morphological adaptations to
contrast large sinking losses, such as small size and mucilage
formation (Reynolds, 2006, 2007).

The comparison of phytoplankton data obtained using
microscopy and HTS is made difficult also by the use of
different classification systems which are not directly comparable.
Moreover, a number of organisms identified by HTS does
not find correspondence in the data obtained by microscopy.
Among others, this is the case of picoeukaryotic algae (e.g.,
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Mamiellophyceae), the numerous simple unicellular flagellated
microalgae attributable to the Trebouxiophyceae and
Chlorophyceae and in general all the other groups difficult to
identify by LM (e.g., Xanthophyta).

The significant correspondence between the relative
phytoplankton abundances estimated by HTS and LM is a
promising element for the comparability of data and their
interpretation based on the two approaches. In principle, this
correspondence could not be required if the evaluation of HTS
data is based on standardized and consistent methods. Yet,
this would require a completely new evaluation of relationships
among algal groups in different environmental gradients and at
different taxonomic levels. Considering that most of the ecology
of phytoplankton and interpretation of their distribution along
environmental gradients is based on LM, the comparability of the
two approaches could facilitate the use of interpretative criteria
regarding the distribution and seasonality of phytoplankton
recognized with the traditional approaches (e.g., Harris, 1986;
Padisák, 2004; Reynolds, 1997, 2006). This aspect was previously
shown and discussed by Medinger et al. (2010) and Giner et al.
(2016) and should be taken into account in the interpretation of
results based on the two methods.

CONCLUSION

Despite limits implicit in the quantitative estimation of
microeukaryotes abundances, the application of HTS allowed
obtaining a more complete picture of the microeukaryotic
diversity in a large and deep perialpine lake. The contribution of
HTS was particularly apparent when considering the comparison
with the data of phytoplankton estimated by microscopy.
HTS confirmed the dominant species determined by LM and
highlighted the presence of several other species, including
a few taxa not described to lower taxonomic levels in the
datasets. Further, the relative abundances of phytoplankton
phyla/divisions estimated by HTS and the biovolumes obtained
by LM showed a significant relationship, providing perspectives
in the use of HTS approaches in the evaluation of biodiversity
and relative importance of major phytoplankton groups along
environmental gradients, including eutrophication and other
anthropogenic impacts. This view is further supported by the
strong deterministic role of environmental and biotic variables
in the assembly of different microeukaryotic assemblages and
populations adapted to different ecological conditions along
the temporal gradient. Finally, HTS are contributing to change
the traditional concept of “phytoplankton,” providing a more

comprehensive picture of both traditional phytoplankton groups
determined by LM and the whole prokaryotic and eukaryotic
planktic community.
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